Integrated circuit with improved RC delay

Information

  • Patent Grant
  • 6660661
  • Patent Number
    6,660,661
  • Date Filed
    Wednesday, June 26, 2002
    22 years ago
  • Date Issued
    Tuesday, December 9, 2003
    20 years ago
Abstract
In one embodiment, a passivation level includes a low-k dielectric. The low-k dielectric helps lower the capacitance of a metal line in a last metal level, which may be just below the passivation level. In another embodiment, the metal line is relatively thick. This helps lower the metal line's resistance and resulting RC delay.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates generally to integrated circuits, and more particularly to integrated circuit fabrication processes and structures.




2. Description of the Background Art




A typical integrated circuit has several vertically stacked levels, with any given level comprising one or more layers of materials. The topmost level in an integrated circuit is referred to as a “passivation level.” The passivation level helps protect an integrated circuit's structures during packaging and in operation. Below the passivation level are metal and dielectric levels. Metal levels include metal lines for carrying electrical signals. Dielectric levels provide electrical isolation between metal levels.




The speed at which a signal is propagated in an integrated circuit is limited by the delay through the metal line carrying the signal. This delay, commonly known as “RC delay,” is determined by the product of the resistance (R) and capacitance (C) of the metal line. Reducing the resistance and/or capacitance of a metal line lowers its RC delay and increases signal propagation speed. Thus, reducing the RC delay of metal lines plays a major role in making integrated circuits run faster.




SUMMARY




In one embodiment, a passivation level includes a low-k dielectric. The low-k dielectric helps lower the capacitance of a metal line in a last metal level, which may be just below the passivation level. In another embodiment, the metal line is relatively thick. This helps lower the metal line's resistance and resulting RC delay.




These and other features of the present invention will be readily apparent to persons of ordinary skill in the art upon reading the entirety of this disclosure, which includes the accompanying drawings and claims.











DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a side cross-sectional view of a passivation level of a conventional integrated circuit.




FIGS.


2


(


a


)-


2


(


f


) schematically illustrate a problem with the passivation level of FIG.


1


.




FIGS.


3


(


a


)-


3


(


h


) show side cross-sectional views of an integrated circuit being fabricated in accordance with an embodiment of the present invention.





FIG. 4

shows a side cross-sectional view of a metal stack in accordance with an embodiment of the present invention.





FIG. 5

shows a flow diagram of a method for fabricating an integrated circuit in accordance with an embodiment of the present invention.




FIGS.


6


(


a


)-


6


(


f


) schematically illustrate the effect of metal line spacing to a passivation level in accordance with an embodiment of the present invention.




FIGS.


7


(


a


)-


7


(


d


) show scanning electron micrographs of a cross-section of an integrated circuit in accordance with an embodiment of the present invention.




FIGS.


8


(


a


)-


8


(


d


) show scanning electron micrographs of a cross-section of an integrated circuit in accordance with an embodiment of the present invention.





FIG. 9

shows plots illustrating measurement and simulation results for various metal lines in a last metal level.




The use of the same reference label in different drawings indicates the same or like components. Drawings are not to scale unless otherwise noted.











DETAILED DESCRIPTION




In the present disclosure, numerous specific details are provided such as examples of apparatus, process parameters, materials, process steps, and structures to provide a thorough understanding of embodiments of the invention. Persons of ordinary skill in the art will recognize, however, that the invention can be practiced without one or more of the specific details. In other instances, well-known details are not shown or described to avoid obscuring aspects of the invention.




Referring now to

FIG. 1

, there is shown a portion of a conventional integrated circuit with a passivation level comprising a capping layer


104


and a topside material


103


. The passivation level protects underlying structures such as metal lines


102


. Capping layer


104


may be a 1000 Angstroms thick silicon dioxide layer. A silicon dioxide layer may be deposited using TEOS (tetraethyl ortho-silicate) as a precursor. Topside material


103


may comprise silicon nitride deposited to a thickness of 9000 Angstroms as measured from the topmost portion of a dielectric


101


. Silicon nitride may be deposited using silane or dichlorosilane as a precursor. Both capping layer


104


and topside material


103


may be deposited by plasma enhanced chemical vapor deposition (PECVD).




Metal lines


102


may be in a last metal level (i.e., the metal level closest to the passivation level) of an integrated circuit. Underneath metal lines


102


, which may be of aluminum, is a dielectric level that comprises dielectric


101


. Dielectric


101


may be a layer of silicon dioxide. In

FIG. 1

, various levels underneath dielectric


101


are not shown for clarity of illustration.




Because of the inability of topside material


103


to fill small spaces, air gaps


105


may or may not form between metal lines


102


. Air gaps


105


tend to form at relatively narrow metal line spacing because the aspect ratio in such cases is typically large. Air gaps


105


are voids and thus have a dielectric constant approximately equal to 1. The low dielectric constant of air gaps


105


helps lower capacitance on metal lines


102


. However, the size and formation of air gaps


105


are not readily controllable because they vary with the critical dimensions of metal lines


102


. Additionally, the dielectric constant of topside material


103


is relatively high (e.g., the dielectric constant of silicon nitride is approximately 7.0), which offsets the low dielectric constant of air gaps


105


.




FIGS.


2


(


a


)-


2


(


f


) schematically illustrate the above mentioned air gap formation problem with the passivation level of FIG.


1


. Referring to FIG.


2


(


a


), a passivation level comprising a capping layer


204


of silicon dioxide and a topside material


203


of silicon nitride protects metal lines


202


. Also shown in FIG.


2


(


a


) but not necessary to the present discussion are a layer


208


of silicon dioxide, a metal level


207


, a layer


201


of silicon dioxide, and air


206


.




The inability of topside material


203


to fill small spaces results in air gaps


205


between metal lines


202


. Note that some structures are not labeled in FIGS.


2


(


a


)-


2


(


f


) for clarity of illustration. For example, only some of metal lines


202


and air gaps


205


are labeled in FIGS.


2


(


a


)-


2


(


f


).




FIGS.


2


(


a


)-


2


(


f


) show what happens to air gaps


205


as the space between metal lines


202


is widened. FIG.


2


(


b


) shows air gaps


205


when the space between metal lines


202


is widened from that in FIG.


2


(


a


), FIG.


2


(


c


) shows air gaps


205


when the space between metal lines


202


is widened from that in FIG.


2


(


b


), and so on. As the space between metal lines


202


is widened, air gaps


205


tend to move away from metal lines


202


and shrink in size as illustrated in FIGS.


2


(


a


) through


2


(


f


). That is, if a space between metal lines


202


is wide enough, topside material


203


may fill the space without forming an air gap


205


. Thus, although air gaps


205


have a low dielectric constant, they do not always form between metal lines


202


. Additionally, even if air gaps


205


do form, the relatively high dielectric constant of topside material


203


between metal lines results in a relatively high RC delay on metal lines


202


.




An embodiment of the present invention is now described with reference to the side cross-sectional views of FIGS.


3


(


a


)-


3


(


h


). FIG.


3


(


a


) shows a side cross-sectional view of a dielectric level comprising a dielectric


301


. In one embodiment, dielectric


301


comprises silicon dioxide. As will be further explained below, dielectric


301


is preferably a low-k dielectric. Dielectric


301


may be on a semiconductor substrate. Depending on the application, there may be metal levels and other dielectric levels below dielectric


301


.




In FIG.


3


(


b


), a metal level is formed by first depositing a metal


302


over dielectric


301


. The metal level including metal


302


may be the last metal level just below the passivation level; the last metal level may also be the “first metal level” if it is the only metal level in the integrated circuit. It is to be noted that as used in the present disclosure, the terms “over”, “overlying”, “under” and “underlying” refer to the relative placement of two materials that may or may not be directly in contact with each other. That is, the two materials may be separated by another material.




In one embodiment, metal


302


comprises aluminum. Other interconnect materials may also be used as a metal


302


. Metal


302


may be deposited by physical vapor deposition, for example. The thickness of metal


302


depends on the application. Advantageously, metal


302


is deposited to be as thick as the application will allow to lower its resistance and thereby reduce its RC delay. In one embodiment, an aluminum metal


302


is deposited to a thickness of approximately 8000 Angstroms. As will be further discussed later on below, a thicker aluminum metal


302


(e.g., between 8000 Angstroms and 15000 Angstroms, preferably 12000 Angstroms) results in lower RC delay.




Referring to

FIG. 4

, metal


302


may also be a metal stack that comprises a layer


401


(e.g., titanium, titanium-tungsten, titanium/titanium-tungsten, or titanium-nitride), a metal layer


402


, and a layer


403


(e.g., titanium-tungsten, titanium/titanium-tungsten, or titanium-nitride). In one embodiment, layer


401


is a 300 Angstroms thick titanium layer deposited on a dielectric level (not shown), while layer


403


is a 300 Angstroms thick titanium-tungsten layer deposited on metal layer


402


. Metal layer


402


is preferably deposited to be as thick as possible to minimize its resistance and the resulting RC delay. Metal layer


402


may be a layer of aluminum deposited to a thickness of 8000 Angstroms or 12000 Angstroms, for example. The thickness of metal layer


402


may be varied to meet specific application requirements.




Continuing in FIG.


3


(


c


), masks


312


are formed over metal


302


. Masks


312


provide a pattern for etching metal


302


into one or more metal lines. A mask


312


may be of a resist material and formed by photolithography. A mask


312


may also be a hard mask. In applications where a relatively thick metal


302


is employed, mask


312


is preferably a hard mask to ensure there is enough masking material in the subsequent etching process. For example, a 3000 Angstroms thick silicon dioxide may be employed as a hard mask


312


on top of a 12000 Angstroms thick metal


302


.




In FIG.


3


(


d


), metal


302


is etched to form metal lines hereinafter referred to as “metal lines


302


”. A metal line


302


may be an integrated circuit structure for carrying electrical signals. Metal line


302


may be in a last metal level of an integrated circuit. That is, metal line


302


may be in a metal level just below a passivation level.




In FIG.


3


(


e


), masks


312


are stripped. Depending on the material of hard masks


312


, they may also be left in place. For example, a mask


312


of silicon dioxide does not have to be stripped from metal


302


.




In FIG.


3


(


f


), a passivation level is formed by first depositing a low-k dielectric


323


over and between metal lines


302


. Low-k dielectric


323


may be a dielectric material having a relatively low dielectric constant. As used in the present disclosure, the term “low-k dielectric” refers to a dielectric material having a dielectric constant less than 3.9 (i.e., k<3.9).




In one embodiment where metal lines


302


are 8000 Angstroms thick, low-k dielectric


323


is deposited to a thickness of 5000 Angstroms. In another embodiment where metal lines


302


are 12000 Angstroms thick, low-k dielectric


323


is deposited to a thickness of 8000 Angstroms. Low-k dielectric


323


may be deposited by chemical vapor deposition or spin-on process. The thickness of low-k dielectric


323


may vary depending on the application.




Low-k dielectric


323


preferably has gap-fill capability to substantially fill spaces between metal lines


302


. Although air gaps may not form between metal lines


302


because of the gap-fill capability, the relatively low dielectric constant of low-k dielectric


323


helps reduce capacitance and the resulting RC delay on metal lines


302


. As can be appreciated, because low-k dielectric


323


does not depend on the formation of air gaps, the reduced capacitance may be achieved over a wide range of metal line spacing. Additionally, because there is no variability associated with air gap formation, the capacitance between metal lines (and the RC delay of the metal lines) will have a tighter distribution, and hence a more predictable value.




In one embodiment, low-k dielectric


323


is a dielectric material deposited using the Flowfill® dielectric deposition technology commercially available from Trikon Technologies of the United Kingdom (on the Internet: www.trikon.com). Other low-k dielectric materials, processes, and reactors may also be used. For example, low-k dielectric


323


may also be formed using the SiLK™ dielectric deposition technology commercially available from The Dow Chemical Company (on the Internet: www.silk.dow.com), or the fluorinated silicate glass (FSG) dielectric deposition technology from Novellus Systems, Inc. or Applied Materials, Inc. The aforementioned dielectric deposition technologies from Trikon Technologies and The Dow Chemical Company both provide a low-k dielectric


323


having a dielectric constant approximately less than 3 (i.e., k<3).




Continuing in FIG.


3


(


g


), a dielectric


314


is optionally deposited over low-k dielectric


323


. In one embodiment, dielectric


314


comprises silicon dioxide deposited to a thickness of 1000 Angstroms by PECVD. In the example of FIG.


3


(


g


), dielectric


314


serves as a capping layer but may otherwise be omitted in most applications.




In FIG.


3


(


h


), a topside material


313


is deposited over dielectric


314


. Topside material


313


, dielectric


314


, and low-k dielectric


323


form a passivation level that helps protect metal lines


302


and other underlying structures. In one embodiment, topside material


313


is silicon nitride deposited to a thickness of 9000 Angstroms by PECVD.




It is to be noted that low-k dielectric


323


may absorb humidity when exposed to air or wet solvents. This may occur, for example, after etching a passivation level to expose metal pads. In that case, spacers may be formed on exposed portions of low-k dielectric


323


. For example, silicon nitride spacers may be deposited along a sidewall including low-k dielectric


323


. Techniques for protecting a low-k dielectric in a passivation level are also described in the commonly-assigned disclosure U.S. application Ser. No. 10/184,336, entitled “PROTECTION OF A LOW-K DIELECTRIC IN A PASSIVATION LEVEL,” Attorney Docket No. 10002.000900 (PM02007), filed on Jun. 26, 2002 by Mira Ben-Tzur, Krishnaswamy Ramkumar, Tito Chowdhury, and Michal Efrati Fastow. The just mentioned disclosure is incorporated herein by reference in its entirety.




Referring now to

FIG. 5

, there is shown a flow diagram of a method


500


for fabricating an integrated circuit in accordance with an embodiment of the present invention. In action


502


, metal lines are formed in a last metal level just below the passivation level. Of course, the last metal level may also be the “first metal level” if it is the only metal level in the integrated circuit. The metal lines are preferably formed to be as thick as the application will allow to lower their resistance and the resulting RC delay. For example, a metal line may be formed to have a thickness between 8000 Angstroms and 15000 Angstroms, preferably 12000 Angstroms. In one embodiment, the metal lines are formed by first depositing a metal layer by physical vapor deposition, and then etching the metal layer.




In action


504


, a low-k dielectric is deposited at least between metal lines in the last metal layer. The low-k dielectric preferably has gap fill capability to substantially fill the space between metal lines. In one embodiment, the low-k dielectric is deposited by PECVD and has a dielectric constant less than 3.9. The low-k dielectric may also be deposited using a spin-on process, for example.




In action


506


, a layer of dielectric is optionally deposited at least over the low-k dielectric. In one embodiment, the layer of dielectric serves as a capping layer and is deposited over the low-k dielectric by PECVD. In another embodiment, the layer of dielectric is omitted.




In action


508


, a topside material is deposited over the layer of dielectric. The topside material, the layer of dielectric, and the low-k dielectric form a passivation level that helps protect structures in the last metal level and underlying metal and dielectric levels.




FIGS.


6


(


a


)-


6


(


f


) schematically illustrate the effect of metal line spacing to a passivation level having a low-k dielectric with gap fill capability. Referring to FIG.


6


(


a


), a passivation level including low-k dielectric


323


, dielectric


314


, and topside material


313


protects metal lines


302


. Metal lines


302


are formed over a dielectric


301


. Also shown in FIG.


6


(


a


) but not necessary to the present discussion are a dielectric


601


, a metal


602


, and air


606


. (Note that some structures in FIGS.


6


(


a


)-


6


(


f


) are not labeled for clarity of illustration.)




FIGS.


6


(


a


)-


6


(


f


) show metal lines


302


as the space between them is widened. FIG.


6


(


b


) shows metal lines


302


spaced apart wider than in FIG.


6


(


a


), FIG.


6


(


c


) shows metal lines


302


spaced apart wider than in FIG.


6


(


b


), FIG.


6


(


d


) shows metal lines


302


spaced apart wider than in FIG.


6


(


c


), and so on. Because of the gap-fill capability of low-k dielectric


323


, air gaps do not form between metal lines


302


even as the space between them is widened. However, the low dielectric constant of low-k dielectric


323


helps lower capacitance on metal lines


302


. As can be appreciated by those of ordinary skill in the art reading the present disclosure, using a low-k dielectric in the passivation level not only helps in lowering RC delay, but also provides a tighter distribution of capacitance.




FIGS.


7


(


a


)-


7


(


d


) show scanning electron micrographs of a cross-section of an integrated circuit in accordance with an embodiment of the present invention. In FIGS.


7


(


a


)-


7


(


d


):




(a) each metal line


302


A is an aluminum metal line


302


deposited to a thickness of approximately 8000 Angstroms by physical vapor deposition;




(b) low-k dielectric


323


A is a low-k dielectric


323


deposited to a thickness of approximately 5000 Angstroms using the Flowfill® dielectric deposition technology from Trikon Technologies;




(c) dielectric


314


A is a silicon dioxide dielectric


314


deposited to a thickness of approximately 1000 Angstroms by PECVD; and




(d) topside material


313


A is a topside material


313


of silicon nitride deposited to a thickness of approximately 9000 Angstroms by PECVD.




The micrographs of FIGS.


7


(


a


)-


7


(


d


) show the planarity of a passivation level in accordance with an embodiment of the present invention and the gap fill capability of low-k dielectric


323


A. As shown in FIG.


7


(


a


), low-k dielectric


323


A fills the space between wide spaced and closely spaced metal lines


302


A, while providing relatively good planarity. FIG.


7


(


b


) shows a magnified view of the closely spaced metal lines


302


A on the right hand side of FIG.


7


(


a


). FIG.


7


(


c


) shows another magnified view of the closely spaced metal lines


302


A on the right hand side of FIG.


7


(


a


). FIG.


7


(


d


) shows a different view of FIG.


7


(


c


).




FIGS.


8


(


a


)-


8


(


d


) show scanning electron micrographs of a cross-section of an integrated circuit in accordance with an embodiment of the present invention. In FIGS.


8


(


a


)-


8


(


d


):




(a) each metal line


302


B is an aluminum metal line


302


deposited to a thickness of approximately 12000 Angstroms by physical vapor deposition and patterned with a hard mask


804


of silicon dioxide;




(b) low-k dielectric


323


B is a low-k dielectric


323


deposited to a thickness of approximately 8000 Angstroms using the Flowfill® dielectric deposition technology from Trikon Technologies;




(c) dielectric


314


B is a dielectric


314


of silicon dioxide deposited to a thickness of approximately 1000 Angstroms by PECVD; and




(d) topside material


313


B is a topside material


313


of silicon nitride deposited to a thickness of approximately 9000 Angstroms by PECVD.




The micrographs of FIGS.


8


(


a


)-


8


(


d


) show the planarity of a passivation level in accordance with an embodiment of the present invention and the gap fill capability of low-k dielectric


323


B. As shown in FIG.


8


(


a


), low-k dielectric


323


B fills the space between wide spaced and closely spaced metal lines


302


B, while providing relatively good planarity. FIG.


8


(


b


) shows a magnified view of the closely spaced metal lines


302


B on the right hand side of FIG.


8


(


a


). Also shown in FIG.


8


(


b


) are hard masks


804


of silicon dioxide deposited to a thickness of 3000 Angstroms by PECVD. Hard masks


804


were used as etching patterns in the formation of metal lines


302


B. FIG.


8


(


c


) shows closely spaced (e.g., 0.32 μm line spacing) metal lines


302


B, while FIG.


8


(


d


) shows a magnified view of FIG.


8


(


c


).





FIG. 9

shows plots illustrating measurement and simulation results for various metal lines in a last metal level. The measurement results were obtained by performing electrical testing on the metal lines, while the simulation results were obtained using the Raphael™ simulation software from Avant! Corporation of Fremont, Calif. The electrical testing was performed using the charge-based capacitance measurement (CBCM) technique; e.g., see “A simple method for on-chip, sub-femto farad interconnect capacitance measurement,” B. W. McGaughy and C. Hu, IEEE Electron Device Lett., page 21, January, 1997. The horizontal axis of

FIG. 9

represents the space between metal lines, while the vertical axis represents the product of resistance and capacitance (hereinafter “RC product”) for the metal line of interest.




In

FIG. 9

, plots


901


and


902


are the measured and simulated results, respectively, for a “control structure” having a “control metal line” such as a metal line


102


shown in FIG.


1


. The control metal line is being used herein for comparison purposes. The control metal line was an aluminum metal line deposited to a thickness of about 8000 Angstroms by physical vapor deposition. The control metal line was approximately 60 μm long and formed in a last metal level (which in this case is the second metal level from the substrate). The control metal line was surrounded by grounded metal lines on the same metal level. A topside material of silicon nitride was deposited between the control metal line and adjacent metal lines. Underneath the control metal line was a layer of silicon dioxide that was approximately 3000 Angstroms thick. Underneath the silicon dioxide layer was a grounded metal plane.




Plots


911


and


912


are the measured and simulated results, respectively, for an aluminum metal line referred to herein as an “8 K metal line”. The 8 K metal line was approximately 8000 Angstroms thick (hence the name), approximately 60 μm long, and formed in a last metal level (which in this case is the second metal level from the substrate). The 8 K metal line was surrounded by grounded metal lines on the same metal level. The low-k dielectric between the 8 K metal line and adjacent metal lines on the same metal level was a Flowfill® dielectric that was about 5000 Angstroms thick. The dielectric level below the 8 K metal line was of silicon dioxide. Underneath the silicon dioxide was a grounded metal plane.




Plots


921


and


922


are the measured and simulated results, respectively, for an aluminum metal line referred to herein as a “12 K metal line”. The 12 K metal line was approximately 12000 Angstroms thick, approximately 60 μm long, and formed in a last metal level (which in this case is the second metal level from the substrate). The 12 K metal line was surrounded by grounded metal lines on the same metal level. The low-k dielectric between the 12 K metal line and adjacent metal lines on the same metal level was a Flowfill® dielectric that was about 8000 Angstroms thick. The dielectric level below the 12 K metal line was of silicon dioxide. Underneath the silicon dioxide was a grounded metal plane.




As shown in

FIG. 9

, the respective RC products for the control metal line and the 8 K metal line are basically the same when the space between metal lines is relatively narrow. In the control case, air gaps tend to form between adjacent metal lines at narrow spaces. The air gaps have a low dielectric constant, which helps lower the capacitance on the control metal line. No air gap forms between the 8 K metal line and adjacent metal lines even at narrow spaces. However, the low-k dielectric between the 8 K metal line and adjacent metal lines helps in reducing capacitance.




At medium metal line spacing (e.g., between 0.5 μm to 1.0 μm), the 8 K metal line with low-k has a markedly lower capacitance compared to the control metal line. The silicon nitride topside material substantially fills the gap between the control metal line and adjacent metal lines as the space between them gets wider. This prevents the formation of capacitance-reducing air gaps. A low-k dielectric, on the other hand, does not depend on the formation of air gaps between adjacent metal lines to be effective and thus still provides a relatively low capacitance.




As the space between metal lines gets wider (e.g., wider than about 1.5 μm), capacitance on the metal lines is largely due to the dielectric constant of underlying dielectric levels. In other words, the advantage of low dielectric constant of the low-k dielectric between adjacent metal lines is less significant at wider metal line spacing. Thus, dielectric levels below the last metal level also preferably include a low-k dielectric to maximize capacitance reduction. For example, dielectric


301


shown in FIGS.


3


(


a


)-


3


(


h


) is preferably a low-k dielectric such as a Flowfill® dielectric or FSG.




As can be appreciated by those of ordinary skill in the art reading the present disclosure, a low-k dielectric may be advantageously employed in passivation levels regardless of metal line spacing in the last metal level. A low-k dielectric in a passivation level has a relatively low dielectric constant over a wide range of metal line spacing and thus provides better process control. At narrow metal line spacing, a low-k dielectric does not depend on the formation of air gaps to be effective. At medium metal line spacing, a low-k dielectric provides a marked improvement in capacitance as compared to conventional oxide/nitride passivation, for example. A low-k dielectric may also be employed in underlying dielectric levels to further lower capacitance on metal lines, specially at wide metal line spacing.




Still referring to

FIG. 9

, the 12 K metal line (measured plot


921


, simulated plot


922


) results in lower RC product compared to the 8 K metal line and the control metal line. Although the 12k metal line is thicker than the 8 K metal line and the control metal line, the capacitance on the 12 K metal line is still relatively low because of the low-K dielectric between adjacent metal lines. Additionally, the RC product of the 12 K metal line is lower than that of the 8 K metal line and the control metal line because of the 12 K metal line's lower resistance. Unlike the 8 K metal line, the 12 K metal line provides uniform RC product reduction over a wide range of space.




While specific embodiments of the present invention have been provided, it is to be understood that these embodiments are for illustration purposes and not limiting. Many additional embodiments will be apparent to persons of ordinary skill in the art reading this disclosure. Thus, the present invention is limited only by the following claims.



Claims
  • 1. A method of fabricating an integrated circuit, comprising:forming a plurality of metal lines in a last metal level; and depositing a low-k dielectric to substantially fill a space extending between a sidewall of a metal line and a sidewall of another metal line in the plurality of metal lines.
  • 2. The method of claim 1 wherein metal lines in the plurality of metal lines have a thickness that is at least about 8000 Angstroms.
  • 3. The method of claim 1 wherein metal lines in the plurality of metal lines have a thickness less than about 8000 Angstroms.
  • 4. The method of claim 1 wherein metal lines in the plurality of metal lines have a thickness that is at least about 12000 Angstroms.
  • 5. The method of claim 1 wherein metal lines in the plurality of metal lines have a thickness less than about 12000 Angstroms.
  • 6. The method of claim 1 wherein the low-k dielectric has a dielectric constant less than about 3.9.
  • 7. The method of claim 1 wherein metal lines in the plurality of metal lines are formed over a dielectric level that comprises a dielectric having a dielectric constant less than about 3.9.
  • 8. The method of claim 1 wherein metal lines in the plurality of metal lines comprise aluminum.
  • 9. The method of claim 1 further comprising:depositing a dielectric over the low-k dielectric; and depositing a topside material over the dielectric.
  • 10. The method of claim 9 wherein the dielectric comprises silicon dioxide.
  • 11. The method claim 9 wherein the topside material comprises silicon nitride.
  • 12. A method of forming an integrated circuit, the method comprising:forming a plurality of metal lines on a dielectric layer in a last metal level; and applying a low-k dielectric between metal lines in the plurality of metal lines and directly on the dielectric layer.
  • 13. The method of claim 12 wherein the low-k dielectric substantially fills a space between metal lines in the plurality of metal lines.
  • 14. The method of claim 12 wherein the low-k dielectric has gap-fill capability.
  • 15. The method of claim 12 wherein the low-k dielectric has a dielectric constant less than about 3.9.
  • 16. The method of claim 12 further comprising:depositing a dielectric over the low-k dielectric; and depositing a topside material over the dielectric.
  • 17. The method of claim 16 wherein the dielectric comprises silicon dioxide.
  • 18. The method claim 16 wherein the topside material comprises silicon nitride.
Parent Case Info

REFERENCE TO RELATED APPLICATION This application is related to the following commonly-assigned disclosure, which is incorporated herein by reference in its entirety: U.S. application Ser. No. 10/184,336, entitled “PROTECTION OF A LOW-K DIELECTRIC IN A PASSIVATION LEVEL,”, filed on Jun. 26, 2002 by Mira Ben-Tzur, Krishnaswamy Ramkumar, Saurabh Dutta Chowdhury, and Michal Efrati Fastow.

US Referenced Citations (13)
Number Name Date Kind
5668398 Havemann et al. Sep 1997 A
5759906 Lou Jun 1998 A
5918149 Besser et al. Jun 1999 A
5946601 Wong et al. Aug 1999 A
5963830 Wang et al. Oct 1999 A
6120844 Chen et al. Sep 2000 A
6143638 Bohr Nov 2000 A
6204200 Shieh et al. Mar 2001 B1
6228761 Ngo et al. May 2001 B1
6376360 Cha et al. Apr 2002 B1
6514881 Coffman Feb 2003 B1
6522005 Allman et al. Feb 2003 B1
20020164868 Chang et al. Nov 2002 A1
Non-Patent Literature Citations (7)
Entry
Seong Geon Park, et al. “A New ALD-TiN/CoSi2 Contact Plug Process for Reliable and Low Defect Density Bit-Line Integration in Sub-Quarter Micron Giga-bit DRAM” IEEE 2002, pp. 282-284; Semiconductor R&D Center, Samsung Electronics Co, LTD., Korea.
J.T. Wetzel, et al. “Evaluation of Material Property Requirements and Performance of Ultra-Low Dielectric Constant Insulators for Inlaid Copper Metallization” IEEE 2001, pp. 4.1.1-4.1.3; Int'l Sematech, Austin, Tx; Texas Instruments, Dallas, TX; Motorola, Austin, TX; TSMC, Taiwan; IBM, Burlington.
M. Ben-Tzur, et al. “Integrated of Low-K Dielectrics in The Passivation Level of A1 Based Multilevel Interconnect Technology” submitted for Publication Mar. 2002, (2 pgs); Cypress Semiconductor, San Jose, CA., USA.
Wei-Jen Hsia, et al. “Flowfill Technology Low Dielectric Constant Materials” Retrieved from the internet:<URL:http//www.trikon.com [printed on Mar. 29, 2002] (4 pgs); LSI Logic, CA; Trikon Technologies Ltd.
Bruce W. McGaughy, et al. “A Simple Method for On-Chip, Sub-Femto Fared Interconnect Capacitance Measurement” IEEE vol. 18, No. 1 Jan. 1997, pp. 21-23; University of California, Berkeley, CA., USA.
Conference highlights latest data on SILK resin, expanded Alliance membership, (3 pgs); Dec. 5, 2001; The Dow Chemical Company and Loomis Group; Midland, Michigan, USA.
INTERCONNECT; The International Technology Roadmap For Semiconductors, pp. 1-25, 2001 Edition.