This application relates to aligned nanotubes.
Single-walled carbon nanotubes (SWNTs) may provide much better performance for electronics than traditional silicon due to their high carrier mobility and current-carrying capacity. Nanotubes can work as ballistic and high mobility transistors, and integrated logic circuits such as inverters and ring-oscillators can be constructed using individual nanotubes.
Randomly grown nanotube networks can be used for flexible devices and circuits. However, the stripe-patterning used to remove heterogeneous percolative transport through metallic nanotube networks cannot be easily scaled to submicron regime, and only PMOS transistors have been demonstrated for the reported circuits.
This application discloses techniques, apparatus and systems for full wafer-scale processing of massively aligned carbon nanotube arrays for high-performance submicron channel transistors and integrated nanotube circuits.
In one aspect, a method can include growing aligned nanotubes on at least one of a wafer-scale quartz substrate or a wafer-scale sapphire substrate (1210); transferring the grown aligned nanotubes onto a target substrate (1220); and fabricating at least one device based on the transferred nanotubes (1230).
Implementations can optionally include one or more of the following features. The at least one of a wafer-scale quartz substrate or a wafer-scale sapphire substrate can be sized to be at least one of two inches in diameter. Growing the aligned nanotubes on the at least one of a wafer-scale quartz substrate or a wafer-scale sapphire substrate can be carried out with temperature ramping rate of less than one ° C. per minute but greater than zero ° C. per minute near a quartz phase transition temperature to avoid breakage of quartz wafer.
Transferring the grown aligned nanotubes onto a target substrate can include coating the aligned nanotubes with a film; peeling off the film together with aligned nanotubes using a thermal tape to obtain a composite of the nanotubes and the film; pressing the composite of the nanotubes and the film against the target substrate; removing the thermal tape by heating up the target substrate; and removing the film to leave the nanotubes on the target substrate.
The method can include stacking multiple transfers of nanotubes to increase tube density. Stacking multiple transfers can include stacking multiple composites of the nanotubes and the film on top of each other and over the target substrate. The stacked composites can be etched together to form a network of the aligned nanotubes on the target substrate. The film can include at last one of a metal film or a polymer film. The metal film can include at least one of aluminum or copper. The polymer film can include Poly(methyl methacrylate) (PMMA).
The fabricating can include fabricating submicron back-gated nanotube transistors on the transferred nanotubes with SiO2 as a gate dielectric and Si as a back-gate at a wafer-scale. The fabricating can include fabricating submicron top-gated nanotube transistors on the transferred nanotubes with high-κ Al2O3 or HfO2 as a gate dielectric and a metal electrode as a top-gate at a wafer-scale. Additionally, stacking multiple transfers of nanotubes can be performed to increase tube density. The fabricating can include fabricating submicron individual back-gated nanotube transistors on the transferred nanotubes with high-κ Al2O3 or HfO2 as a back-gate dielectric and a metal electrode as an individual back-gate.
The method can include using a defect-tolerant circuit design for a nanotube based integrated circuit, wherein the defect-tolerant circuit design comprises etching away unwanted nanotubes and using same group of nanotubes for the at least one device. The individual back-gated nanotube transistors can facilitate a doping process. The method can include using at least one metal with low work functions as source and drain contacts to align the nanotubes for at least one of n-type nanotube transistors, PN junctions, or CMOS integrated circuits. The at least one metal With low work functions comprises Scandium (Sc), Yttrium (Y), Gadolinium (Gd), Dysprosium (Dy), Ytterbium (Yb), or Terbium (Tb). The fabricating can include fabricating multiple wafer-scale devices comprising at least one of back-gated transistors, top-gated transistors, CMOS inverters, CMOS NOR logic gates, CMOS NAND logic gates, or ring oscillators.
In another aspect, the described techniques can be used to implement a device that includes at least one of the following devices fabricated at a wafer-scale: submicron back-gated nanotube transistors fabricated on aligned nanotubes with SiO2 as a gate dielectric and Si as a back-gate; submicron top-gated nanotube transistors on aligned nanotubes with high-κ Al2O3 or HfO2 as a gate dielectric and a metal electrode as atop-gate at a wafer-scale; or submicron individual back-gated nanotube transistors on aligned nanotubes with high-κ Al2O3 or HfO2 as a back-gate dielectric and a metal electrode as an individual back-gate. The apparatus can include at least one of CMOS inverters, CMOS NOR logic gates, CMOS NAND logic gates, or ring oscillators.
In another aspect, the described techniques can be used to implement an apparatus that includes a wafer that includes at least one of the following devices: submicron back-gated nanotube transistors fabricated on aligned nanotubes with SiO2 as a gate dielectric and Si as a back-gate; submicron top-gated nanotube transistors on aligned nanotubes with high-κ Al2O3 or HfO2 as a gate dielectric and a metal electrode as atop-gate at a wafer-scale; or submicron individual back-gated nanotube transistors on aligned nanotubes with high-κ Al2O3 or HfO2 as a back-gate dielectric and a metal electrode as an individual back-gate. The wafer can include at least one of CMOS inverters, CMOS NOR logic gates, CMOS NAND logic gates, or ring oscillators.
The techniques, apparatus and systems described herein can provide one or more of the following advantages. For example, truly integrated high-performance nanotube circuits and wafer-scale fabrication can be fabricated. Technical implementations in fabricating the integrated nanotube circuits and wafer-scale fabrication can include wafer-scale synthesis and transfer of aligned nanotubes, and integrated submicron-scale device fabrication and tuning. In addition, the described techniques, apparatus and systems can be used to provide a defect-tolerant circuit design for integrated nanotube circuits. Additionally, the described techniques, apparatus and systems can be used to produce aligned nanotube devices that can that allow for wafer-scale fabrication and integration; enhance transistor performance; and allow for controlled doping to produce truly integrated circuits with p-type and n-type transistors on one chip. These and other aspects and their exemplary implementations are described in detail in the attached drawings, the description and the claims.
a-i show an example of wafer-scale aligned nanotube synthesis, transfer, and fabrication.
a-h show example characteristics of back-gated transistors down to submicron channel length.
a-h show examples of top-gated transistors for doping and truly integrated CMOS inverters.
a-g show examples of PMOS NOR and NAND gates with top-gated transistors.
a-f show examples of defect-tolerant CMOS NOR and NAND with individual back-gated transistors.
a, 8b, 8c and 8d show SEM images before a transfer, after 1-time transfer, after 2-time transfer, and after 4-time transfer, respectively.
a shows a schematic diagram of an aligned nanotube device.
b shows an SEM image of an aligned nanotube device.
c shows a transfer (ID-VG) characteristics of a typical n-type nanotube transistor (L=4 μm, and W=8 μm) measured before and after electrical breakdown.
d shows transfer characteristics of an aligned nanotube device after electrical breakdown measured under different drain voltages.
e shows output characteristics (ID-VD) of aligned nanotube devices measured under different gate voltages.
a, 10b and 10c show a schematic diagram, optical microscope image and SEM image (with artificial color) of a diode device.
d, 10e and 10f show energy band diagrams in equilibrium; forward-bias and reverse-bias respectively.
g shows two-terminal I-V characteristics of a PN-junction in linear scale, which exhibits clear rectifying behavior.
h shows two-terminal I-V characteristics of a PN-junction shown in logarithm scale, which exhibits clear rectifying behavior.
i shows gate dependence of I-V characteristics of a diode.
a and 11b show the schematic diagram and optical microscope image of the integrated CMOS inverter.
c shows an SEM image (with artificial color) showing an n-type branch of the CMOS inverter which clearly highlights the aligned carbon nanotubes in the channel, original Ti/Pd metal contacts, Gd source/drain extensions and Ti/Au back-gate.
d shows transfer characteristics of a p-type pull-up branch of a CMOS inverter.
e shows transfer characteristics of an n-type pull-down branch of a CMOS inverter.
f shows simulated inverter voltage transfer characteristics (VTC).
g shows a comparison of measurement results with simulation results.
a-g show implementations of a process for wafer-scale processing of aligned nanotube devices.
Techniques, systems and apparatus are described for wafer-scale processing of aligned nanotube devices and integrated circuits. The described techniques, apparatus and systems can include wafer-scale synthesis of aligned nanotubes, wafer-scale transfer of nanotubes to silicon wafers, metallic nanotube removal and chemical doping, and defect-tolerant integrated nanotubes circuits. Synthesis of massive aligned nanotubes can be implemented on complete 4 inch quartz and sapphire substrates. The substrates with the massive aligned nanotubes can be transferred to 4 inch Si/SiO2 wafers. Complementary Metal-oxide-semiconductor (CMOS) analogous fabrication is performed to yield transistors and circuits with features down to 0.5 μm, with high current density ˜20 μA/μm and good on/off ratios. In addition, chemical doping can be used to build a fully integrated complementary inverter with a gain ˜5. Further, a defect-tolerant design can be implemented for NAND and NOR gates. This full-wafer approach can be used as a foundation for future integrated nanotube circuits.
Single-walled carbon nanotubes (SWNTs) may provide much better performance for electronics than traditional silicon due to their high carrier mobility and current-carrying capacity. Nanotubes can work as ballistic and high mobility transistors, and integrated logic circuits such as inverters and ring-oscillators can be constructed using individual nanotubes.
Randomly grown nanotube networks can be used for flexible devices and circuits. However, the stripe-patterning used to remove heterogeneous percolative transport through metallic nanotube networks may not be easily scaled to submicron regime, and only PMOS transistors were demonstrated for the reported circuits.
Aligned nanotubes can have significant advantages over randomly grown nanotubes in terms of manipulation and integration of nanotubes for device applications. Aligned nanotubes can be grown on sapphire, quartz or similar substrates, for example. Based on massively aligned SWNTs grown on sapphire, a high-yield, registration-free nanotube-on-insulator approach can be used to fabricate nanotube devices in a way analogous to the silicon-on-insulator process. Also, the aligned nanotube devices can be made based on aligned nanotubes on quartz with good uniformity over chip scale and minimized parasitic capacitance.
As described below, full wafer-scale processing, of massively aligned carbon nanotube arrays for high-performance submicron channel transistors and integrated nanotube circuits can include growing massive highly aligned nanotubes on quartz and sapphire wafers (e.g., 4 inch in size) using meticulous temperature control and then transferring the aligned nanotubes onto Si/SiO2 wafers using a facile transfer printing method. Wafer-scale device fabrication can be performed on 4 inch Si/SiO2 wafer to yield submicron channel transistors and circuits with high on-current density ˜20 μA/μm and good on/off ratios. Additionally, chemical doping methods can be implemented to obtain CMOS inverters with a gain of ˜5, for example. A defect-tolerant circuit design for NAND and NOR devices can be implemented to guarantee the correct operation of logic circuit, regardless of the presence of mis-aligned or mis-positioned nanotubes. The wafer-scale nanotube-on-insulator processing using multiple aligned nanotubes as described in this specification can provide significant advantage over conventional processes based on individual nanotubes with respect to current output and device uniformity, and provides a practical and realistic approach for integrated nanotube circuit applications.
Aligned nanotube growth was previously limited to small pieces of quartz or sapphire substrates, as growing nanotubes over complete 4 inch wafers has been very difficult due to the quartz wafer breakage during temperature ramping and the difficulty in uniform growth on complete wafers. The techniques, apparatus and system described in this specification can be used to successfully synthesize aligned SWNTs arrays on 4 inch quartz and sapphire wafers.
a-i show an example of a full wafer processing that includes synthesis and transfer printing of aligned nanotubes, and device fabrication. First, both quartz and sapphire wafers are annealed to improve the alignment of nanotubes at 900° C. and 1100° C. for 1.5 hrs in air, respectively.
The thermally robust a-plane sapphire wafer can be-annealed at 1100° C. at high ramping rate (45° C./min) as shown in
c shows a schematic diagram 120 and a photograph 122 of full wafer synthesis of aligned nanotubes on a 4 inch quartz wafer. The photograph 122 in the inset of
d-h show schematic diagrams and photographs showing the transfer procedure, such as gold film deposition (
i shows photo images of example nanotube devices and circuits built on a 4 inch Si/SiO2 wafer chip. A typical chip can include at least six different types of devices, including back-gated transistors, top-gated transistors, CMOS inverters, CMOS NOR and NAND logic gates, and ring oscillators. In addition, RF transistors can be characterized.
On the bottom image 180, six areas are labeled using figure reference numbers 1, 2, 3, 4, 5 and 6. Figure reference number 1 represents a back-gated transistor. A corresponding sample image of the back gated transistor is shown in image 181. Figure reference number 2 represents a top-gated transistor. A corresponding sample image of the top-gated-transistor is shown in image 182. Figure reference number 3 represents a CMOS inverter. A corresponding sample image of the CMOS inverter is shown in image 183. Figure reference number 4 represents a NOR logic gate. A corresponding sample image of the NOR logic gate is shown in image 184. Figure reference number 5 represents a NAND logic gate. A corresponding sample image of the NAND logic gate is shown in image 185. Figure reference number 6 represents a Ring oscillator. A corresponding sample image of the NOR logic gate is shown in image 186.
The electrical properties of nanotube transistors can be characterized as basic components for nanotube circuits. Compared with previous devices of micron or tens of micron channel length, the described techniques, apparatus and systems can be used to push the channel length to submicron for the first time.
The chart 220 in
The transconductances (gm) 232 can be calculated from the linear proportion of the transfer curves, as shown in the chart 230 in
To improve the on/off ratio (Ion/Ioff), controlled electrical breakdown is used to remove metallic and high-leakage semiconducting nanotubes. In some implementations, an automated electrical breakdown process is implemented by setting target on/off ratio and on-current, and then using computer control to perform multiple steps of breakdown until the target values were reached. This process, when combined with an automatic probe station, can make electrical breakdown fairly practical for wafer-scale processing. The backgate is set to 15 V to turn off the desired semiconducting nanotubes, while the source/drain voltage (Vds) is swept from 0 to −35 V to electrically stress and break the undesired tubes.
The chart 240 in
After electrical breakdown, chart 250 and inset 256 in
In addition to the tuning of the on/off ratio using electrical breakdown, the transistor conductance can be adjusted by performing multiple steps of nanotube transfer to increase the tube density. The chart 270 in
Besides the back-gated devices, top-gated devices can be fabricated by defining top-gate electrodes on back-gated devices. Compared with the common back-gate devices, the top-gate structure has an intrinsic benefit such as individual control of each transistor in a nanotube circuit. In order to make the top-gate electrodes, the pattern can be formed using photolithography, 50 nm Al2O3 can be deposited using atomic layer deposition(ALD) as top-gate dielectric, and 5 nm Ti/45 nm Pd can be deposited as the top-gate electrodes, followed by lift-off process.
a shows an example schematic diagram 300 of a top-gated device, where top gate partially covers the active channel so that nanotubes can be exposed to n-type dopants such as potassium.
Characteristics of CMOS circuits can include low static power consumption. Significant power is drawn when the CMOS circuits are switching between on and off states. Unlike doping in silicon CMOS processes, nanotubes can not be easily doped via ion implantation. The ability to obtain both p- and n-type nanotube FETs can be important to construct complementary electronics. A p-type nanotube device can be doped electrostatically, substitutionally, or via charge transfer to convert it into an n-type one. Four different methods, with potassium and electrostatic doping for top-gated devices, and polyethilenimine (PEI) and hydrazine (N2H4) for back-gated ones, are described to produce n-type transistors and to evaluate the most practical way for integrated circuits.
In order to dope nanotube devices with potassium, polymethylmethacrylate (PMMA) can be spin-coated as a capping layer for p-type transistor, and then the window can be opened up for other devices which can be altered into n-type after doping, as shown in the chart 350 and the inset 352 of
f includes the voltage transfer characteristics (VTC) 354, the schematic diagram 356, and the photo image 352 of the CMOS inverter. The inverter as described in this specification can be operated with a VDD=2 V and an input voltage range from 0 to 2.5 V. The gain deduced from the VTC data 354 is 5, which can be high enough to drive a more complicated logic circuit such as a ring oscillator.
In addition to potassium doping, electrostatic doping are studied on top-gated transistors with Si common back-gate. Electrostatic doping effects can be utilized in the dual-gate nanotube FET to obtain the polarity control (p or n) and to tune the threshold voltage of FET. The chart 360 in
Based on top-gated aligned nanotube transistors, more sophisticated PMOS circuits can be implemented. However, there may be misaligned or misoriented nanotubes in these devices that can result in incorrect logic behavior. Techniques, apparatus and system are described to implement a defect-tolerant structure to guarantee the correct logic behavior. The defect-immune circuit layouts can be implemented for PMOS NOR and NAND circuits.
PMOS circuits can be fabricated using the defect-immune layout.
While PMOS logic is easy to design and manufacture, it has several shortcomings as well. For example, the current flows through the pull-down resistor when the pull-up network is active, as discussed above. This can lead to static power dissipation even when the circuit sits idle. In order to overcome such problem, CMOS nanotube circuits can be implemented using the defect-tolerant design with individual back-gates for efficient chemical doping. Specifically, the individual back-gated devices have relative advantages over the top-gated ones, such as easy chemical doping and electrical breakdown owing to the fully exposed device structure. For the individual back-gated devices, individual back-gate electrodes can be defined on Si/SiO2 wafer via photolithography, 5 nm Ti/45 nm Au deposition, and a lift-off process. 50 nm ALD HfO2 can be deposited as the gate-dielectric, and then the aligned nanotubes can be transferred. Finally, the source/drain electrodes can be formed.
a is a diagram 500 showing a CMOS NOR device.
The techniques, apparatus and systems as described can be used to perform CMOS-analogous wafer-scale processing of integrated aligned nanotube circuits, including progress on wafer-scale synthesis and transfer of aligned nanotubes, metallic nanotube removal and chemical doping, and defect-tolerant integrated nanotube circuits. Synthesis of massive aligned nanotubes can be achieved on complete 4 inch quartz and sapphire substrates, followed by successful transfer of the nanotubes to 4 inch Si/SiO2 wafers. CMOS analogous fabrication is performed to yield transistors and circuits with features down to 0.5 μm, with high current density ˜20 μA/μm and good on/off ratios. In addition, extensive chemical doping is used to build fully integrated complementary inverter with a gain ˜5. Also, defect-tolerant designs are implemented for NAND and NOR gates.
As discussed before, multiple times of transfer can be used to increase the nanotube density. However, when the total number of transfers exceeds 2, the layer-by-layer transfer technique may fail because the adhesion between the gold film and the receiving substrate may become week with more than 2 transfers. By using stacking transfer, the adhesion problem can be solved. For example, 4 transfers are described below with increased nanotube density of more than 50 tubes/um.
a, 8b, 8c and 8d show SEM images before transfer 800, after 1-time transfer 810, after 2-time transfer 820, and after 4-time transfer 830, respectively. The corresponding nanotube densities are 15 tubes/um, 15 tube/um, 29 tubes/um, and 55 tubes/um, respectively.
In some implementations, n-type transistors can also be achieved by metal contact engineering. Pd, with a large work function, can align with the valence band of the carbon nanotubes, and form ohmic contacts for holes. Consequently, the devices with Pd contacts can exhibit p-type behavior. Thus by using metals with small work function as the electrodes, n-type conduction from the nanotubes can be obtained as well. For example, metal contact engineering can be applied to the above described aligned nanotube platform. Combining small work function metal Gadolinium (Gd) for n-type contact and large work function metal Palladium (Pd) for p-type contact, registration-free fabrication of air-stable n-type aligned nanotube transistors, PN-junctions, and CMOS integrated inverters can be obtained. Other metals with low works functions, (such as Scandium (Sc), Yttrium (Y), Gadolinium (Gd), Dysprosium (Dy), Ytterbium (Yb), or Terbium (Tb), and so on) can work equally well for this purpose.
70 nm Gd can be deposited by thermal evaporation followed by the lift-off process to form the source and drain metal contacts.
c is a chart 930 that shows the transfer (ID-VG) characteristics of a typical n-type nanotube transistor (L=4 μm, and W=8 μm) measured before and after electrical breakdown. Before breakdown 932, the device exhibits on/off ratio of around 2. After electrical breakdown 934, the on/off ratio is improved to around 1000 with a trade-off with the on-current.
Using similar approach, diode devices can also be achieved.
d, 10e and 10f show the corresponding energy band diagrams in equilibrium. 1040, forward-bias 1050 and reverse-bias 1060 respectively. With positive voltages applied to the p-side, the device operates in the forward-bias region and the barrier height reduces. Consequently, current flow increases exponentially with the applied positive bias voltage. In contrast, with negative voltages applied to the p-side, the device operates in the reverse-bias region and the barrier height increases, preventing the current from flowing.
The above-mentioned processes translate into the two-terminal I-V characteristic of the PN-junction shown in chart 1070 of
Furthermore, an integrated CMOS inverter can be demonstrated with different source drain metal contacts for optimum pull-up and pull-down performance.
d and 11e show the transfer characteristics of a p-type pull-up branch, and an n-type pull-down branch of the CMOS inverter respectively. The corresponding energy band diagrams 1146 and 1156 are shown as the insets. From their transfer characteristics, the output resistance of the p-type and n-type transistors can be derived at different gate voltages. For example,
Based on the derived output resistances and by treating p-type and n-type transistors as a voltage divider, the simulated inverter voltage transfer characteristics (VTC) 1162 can be derived as shown in
a-g show implementations of a process 1200 for wafer-scale processing of aligned nanotube devices. The process 1200 can include growing aligned nanotubes on at least one of a wafer-scale quartz substrate or a wafer-scale sapphire substrate (1210); transferring the grown aligned nanotubes onto a target substrate (1220); and fabricating at least one device based on the transferred nanotubes (1230).
The at least one of a wafer-scale quartz substrate or a wafer-scale sapphire substrate can be sized to be at least one of two inches in diameter. Growing the aligned nanotubes on the at least one of a wafer-scale quartz substrate or a wafer-scale sapphire substrate can be carried out with a temperature ramping rate of less than one ° C. per minute but greater than zero ° C. per minute near a quartz phase transition temperature to avoid breakage of quartz wafer (1212).
Transferring the grown aligned nanotubes onto a target substrate can include coating the aligned nanotubes with a film (1221); peeling off the film together with aligned nanotubes using a thermal tape to obtain a composite of the nanotubes and the film (1222); pressing the composite of the nanotubes and the film against the target substrate (1223); removing the thermal tape by heating up the target substrate (1224); and removing the film to leave the nanotubes on the target substrate (1225).
The method can include stacking multiple transfers of nanotubes to increase tube density (1226). Stacking multiple transfers can include stacking multiple composites of the nanotubes and the film on top of each other and over the target substrate. The stacked composites can be etched together to form a network of the aligned nanotubes on the target substrate (1227). The film can include at last one of a metal film or a polymer film. The metal film can include at least one of aluminum or copper. The polymer film can include Poly(methyl methacrylate) (PMMA).
The fabricating can include fabricating submicron back-gated nanotube transistors on the transferred nanotubes with SiO2 as a gate dielectric and Si as a back-gate at a wafer-scale (1232). The fabricating can include fabricating submicron top-gated nanotube transistors on the transferred nanotubes with high-κ Al2O3 or HfO2 as a gate dielectric and a metal electrode as a top-gate at a wafer-scale (1234). Additionally, stacking multiple transfers of nanotubes can be performed to increase tube density. The fabricating can include fabricating submicron individual back-gated nanotube transistors on the transferred nanotubes with high-κ Al2O3 or Hf2O as a back-gate dielectric and a metal electrode as an individual back-gate (1236).
The method can include using a defect-tolerant circuit design for a nanotube based integrated circuit, wherein the defect-tolerant circuit design comprises etching away unwanted nanotubes and using same group of nanotubes for the at least one device (1238). The individual back-gated nanotube transistors can facilitate a doping process. The method can include using at least one metal with low work functions as source and drain contacts to align the nanotubes for at least one of n-type nanotube transistors, PN junctions, or CMOS integrated circuits. The at least one metal with low work functions comprises Scandium (Sc), Yttrium (Y), Gadolinium (Gd), Dysprosium (Dy), Ytterbium (Yb), or Terbium (Tb). The fabricating can include fabricating multiple wafer-scale devices comprising at least one of back-gated transistors, top-gated transistors, CMOS inverters, CMOS NOR logic gates, CMOS NAND logic gates, or ring oscillators (1239).
While this specification contains many specifics, these should not be construed as limitations on the scope of an invention or-of what may be claimed, but rather as descriptions of features specific to particular embodiments of the invention. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or a variation of a subcombination.
Only a few implementations are disclosed. However, it is understood that variations and enhancements may be made.
This application claims priority under 35 USC §119(e) to U.S. Patent Application Ser. No. 61/117,390, filed on Nov. 24, 2008, the entire contents of which are hereby incorporated by reference.
This invention was made with government support under Contract Nos. CCF0702204 and CCF0726815 awarded by National Science Foundation and Contract No. 2003-NT-1107 awarded by Center on Functional Engineered and Nano Architectonics. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61117390 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12625543 | Nov 2009 | US |
Child | 13447105 | US |