This application claims the benefit of Korean Patent Application No. 10-2020-0044782, filed on Apr. 13, 2020, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
The inventive concepts relate to an interposer and a semiconductor package including the interposer.
In response to the rapid development of the electronics industry and requests of users, electronic devices are further miniaturized, multi-functionalized, and have a large capacity. Accordingly, there is a demand for a semiconductor package including a plurality of semiconductor chips. Due to the growing demand for higher integration of the plurality of semiconductor chips included in a semiconductor package, there frequently occurs a case wherein a printed circuit board cannot accommodate the high integration. To solve this, a semiconductor package connecting among a plurality of semiconductor chips by using an interposer has been developed.
The inventive concepts provide an interposer and a semiconductor package including the interposer.
According to an aspect of the inventive concepts, there is provided a semiconductor package including: a first package substrate; a first semiconductor chip on the first package substrate; an interposer substrate including a lower surface facing the first package substrate, an upper surface opposite to the lower surface, and an upper conductive pad in the upper surface; a first dam structure on the upper surface of the interposer substrate and extending along an edge of the upper conductive pad; a first molding layer in contact with the lower and upper surfaces of the interposer substrate and with an outer wall of the first dam structure; and a conductive connector in contact with an inner wall of the first dam structure and with the upper conductive pad.
According to another aspect of the inventive concepts, there is provided a semiconductor package including: a first package substrate; a first semiconductor chip on the first package substrate; an interposer substrate including a lower surface facing the first package substrate, an upper surface opposite to the lower surface, and a lower conductive pad in the lower surface and an upper conductive pad in the upper surface; a first conductive connector between the lower conductive pad and the first package substrate; a first dam structure on the upper surface of the interposer substrate and having a ring shape continuously extending along an edge of the upper conductive pad; and a first molding layer in contact with the lower and upper surfaces of the interposer substrate and with an outer wall of the first dam structure, the first molding layer having a height less than or equal to a height of the first dam structure.
According to another aspect of the inventive concepts, there is provided an interposer for a semiconductor package, the interposer including: an interposer substrate; a conductive pad in a surface of the interposer substrate; and a dam structure on the interposer substrate, the dam structure having a ring shape continuously extending along an edge of the conductive pad and including an opening through which the conductive pad is exposed.
Example embodiments of the inventive concepts will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings in which:
Hereinafter, example embodiments of the inventive concepts will be described in detail with reference to the accompanying drawings Like reference numerals in the drawings denote like elements, and thus their repetitive description will be omitted.
Spatially relative terms, such as “lower,” “under,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “under” other elements or features would then be oriented “above” the other elements or features. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. In addition, when an element is referred to as being “between” two elements, the element may be the only element between the two elements, or one or more other intervening elements may be present.
When the terms “about” or “generally” are used in this specification in connection with a numerical value, it is intended that the associated numerical value includes a manufacturing tolerance (e.g., ±10%) around the stated numerical value. Moreover, when the words “generally” and “substantially” are used in connection with geometric shapes, it is intended that precision of the geometric shape is not required but that latitude for the shape is within the scope of the disclosure. Further, regardless of whether numerical values or shapes are modified as “about,” “substantially,” and/or “generally,” it will be understood that these values and shapes should be construed as including a manufacturing or operational tolerance (e.g., ±10%) around the stated numerical values and/or shapes.
Referring to
For example, the interposer substrate base 110 may be formed of pre-impregnated material (“prepreg”). The prepreg may be, for example, a material formed by mixing glass fibers and/or carbon fibers with a resin (e.g., a pressure-curing, thermoset, and/or photoset polymer). Alternatively, the interposer substrate 101 may be a wafer including a semiconductor, like silicon (Si). In the case where the interposer substrate 101 includes a semiconductor, the semiconductor may be crystalline, polycrystalline, and/or amorphous. For example, the substrate 101 may include crystalline Si, polycrystalline Si, and/or amorphous Si. The interposer substrate 101 may include ceramic, for example an oxide, a nitride, a carbide an oxynitride, and/or a combination thereof. The interposer substrate 101 may be configured to act like an insulator and to electrically separate neighboring upper conductive pads 120.
The upper conductive pad 120 and the lower conductive pad 130 may be on and under the interposer substrate 101, respectively. For example, the upper conductive pad 120 may be embedded in an upper surface 108 of the interposer substrate 101, and the lower conductive pad 130 may be embedded in a lower surface 109 of the interposer substrate 101. The upper conductive pad 120 and the lower conductive pad 130 may be electrically connected to each other via an internal interconnect layer140 inside the interposer substrate 101. The internal interconnect layer 140 may be, for example, electrically connected to the upper conductive pad 120 and the lower conductive pad 130 by conductive via structures 145.
The upper conductive pad 120 may be a pad to which a conductive connector (e.g., 260 of
The upper conductive pad 120 and the lower conductive pad 130 may include a conductive material. For example, the upper conductive pad 120 and the lower conductive pad 130 may include a metal (e.g., copper (Cu), aluminum (Al), tungsten (W), titanium (Ti), tantalum (Ta), indium (In), molybdenum (Mo), manganese (Mn), cobalt (Co), tin (Sn), nickel (Ni), magnesium (Mg), rhenium (Re), beryllium (Be), gallium (Ga), ruthenium (Ru), and/or an alloy thereof) but is not limited thereto.
The interposer 100 may include a first dam structure 150 on the upper surface 108 of the interposer substrate 101. The first dam structure 150 may be disposed around the upper conductive pad 120 and extend along an edge of the upper conductive pad 120. For example, the first dam structure 150 may encircle an outer edge of the upper conductive pad 120. The first dam structure 150 may be spaced outward from the upper conductive pad 120 and/or at least partially come in contact with the upper conductive pad 120. The first dam structure 150 may protrude upward from the upper surface 108 of the interposer substrate 101. A level of an upper surface 151 of the first dam structure 150 may be higher than a level of an upper surface of the upper conductive pad 120.
The first dam structure 150 may have a ring shape continuously extending along the edge of the upper conductive pad 120. In a top view, the first dam structure 150 may have a shape surrounding the edge of the upper conductive pad 120. According to some example embodiments of the inventive concepts, the first dam structure 150 may have a circular ring shape in a top view. According to other example embodiments of the inventive concepts, the first dam structure 150 may have a polygonal and/or star ring shape such as a triangular, quadrangular, or pentagonal ring shape in a top view.
According to some example embodiments of the inventive concepts, the first dam structure 150 may have a shape corresponding to a shape of the upper conductive pad 120. For example, as shown in
According to other example embodiments of the inventive concepts, the first dam structure 150 may have a different shape from the shape of the upper conductive pad 120. For example, when the upper surface of the upper conductive pad 120 has a circular shape, the first dam structure 150 may have a polygonal ring shape. The first dam structure 150 may partially traverse the edge of the upper conductive pad 120, and thus partially cover a section of the upper conductive pad 120. A section of the upper surface 108 of the interposer substrate 101 may also be exposed in the opening. For example, in the case wherein the first dam structure 150 is a polygonal ring shape and the upper conductive pad 120 is a circular shape, the wall of first dam structure 150 may traverse the edge of the upper conductive pad 120, partially covering the upper conductive pad 120, and/or a portion of the upper surface 108 of the interposer substrate 101 may be exposed at the vertices of the polygonal ring shape.
The first dam structure 150 may include an opening 153 through which at least a part of the upper conductive pad 120 is exposed. For example, the opening 153 may expose part of or all of an upper surface of the upper conductive pad 120. The opening 153 may be a space defined by an inner wall of the first dam structure 150. The opening 153 may be filled with a conductive connector attached to the upper conductive pad 120.
Two or more first dam structures 150, spaced apart from each other, may be on the interposer substrate 101. The each of the two or more first dam structures 150 may extend along edges of different upper conductive pads 120. For example, the two or more first dam structures 150 may surround respective edges of a plurality of upper conductive pads 120 disposed in a matrix pattern on the interposer substrate 101. The matrix pattern may include a generally orthogonal alignment, or may include an off-set stacking alignment.
The first dam structure 150 may block the flow of a molding material and thus prevent inflow of the molding material to the inside of the opening 153 of the first dam structure 150 in a process of manufacturing a semiconductor package including the interposer 100. For example, in a process of manufacturing a semiconductor package including the interposer 100, when a first molding layer (240 of
Furthermore, the first dam structure 150 may provide the opening 153 filled with a conductive connector attached to the upper conductive pad 120. While forming the conductive connector through a reflow process for bonding the conductive connector to the upper conductive pad 120, a lower part of the conductive connector may be supported by the first dam structure 150, and thus, the conductive connector may be formed to have a relatively uniform shape and height.
According to some example embodiments of the inventive concepts, the first dam structure 150 may include an insulating material. For example, the first dam structure 150 may include a solder resist, an epoxy-group resin, a polyimide-group resin, and/or the like.
According to some example embodiments of the inventive concepts, the first dam structure 150 may include a conductive material. For example, the first dam structure 150 may include a metal, a conductive polymer, or the like. For example, the first dam structure 150 may include a metal such as copper (Cu), nickel (Ni), cobalt (Co), gold (Au), tungsten (W), and/or an alloy thereof.
According to some example embodiments of the inventive concepts, the first dam structure 150 may include a material having a higher melting point than that of a material forming the conductive connector attached to the upper conductive pad 120. For example, when the conductive connector is formed of a solder (e.g., a soft solder with a melting points between 90° to 450° C. and/or a hard solder with a melting point between 450° C. and 875° C.), the first dam structure 150 may be formed of a metal such as Cu, Ni, and/or Co. When the first dam structure 150 is formed of a material having a higher melting point than the material forming the conductive connector, the first dam structure 150 may not be relatively melted in comparison to the conductive connector in a reflow process for bonding the conductive connector to the upper conductive pad 120, and thus, the conductive connector may be stably supported by the first dam structure 150 during the reflow process.
According to some example embodiments of the inventive concepts, to form the first dam structure 150, a preliminary dam material layer (not illustrated) covering the upper surface 108 of the interposer substrate 101 may be formed, and then a patterning process on the preliminary dam material layer may be performed.
Referring to
According to some example embodiments of the inventive concepts, the first dam structure 150 may be formed of the same material as that of the upper conductive pad 120. In this case, during a reflow process for forming the conductive connector, generating an inter-metal compound between the first dam structure 150 and the upper conductive pad 120 may be prevented.
Referring to
The first package substrate 210 may include, for example, a printed circuit board (PCB). The first package substrate 210 may include a substrate base 211 formed of a polymer. For example, the substrate base 211 may include at least one of a phenol resin, an epoxy resin, and/or polyimide. In addition, the first package substrate 210 may include a first upper substrate pad 213 and a second upper substrate pad 215 in an upper surface of the substrate base 211, and a lower substrate pad 217 in a lower surface of the substrate base 211. Internal interconnect layer configured to electrically connect the first upper substrate pad 213, the second upper substrate pad 215, and the lower substrate pad 217 may be formed inside the substrate base 211.
The first upper substrate pad 213, the second upper substrate pad 215, internal interconnect layer, and the lower substrate pad 217 may include a conductive material. For example, the conductive material may be a metal, e.g., Cu, Al, W, Ti, Ta, In, Mo, Mn, Co, Sn, Ni, Mg, Re, Be, Ga, Ru, or an alloy thereof but is not limited thereto.
The first upper substrate pad 213 may be a pad to which a board-interposer conductive connector 220 is attached, and the second upper substrate pad 215 may be a pad to which a chip connection terminal 233 such as a micro-bump is attached. The contact surface area of the second upper substrate pad 215 may be smaller than the contact area of the first upper substrate pad 213. The lower substrate pad 217 may function as a pad to which an external connection terminal 290 is attached. The external connection terminal 290 may be, for example a solder ball. The external connection terminal 290 may electrically connect the semiconductor package 10 to an external device.
The first semiconductor chip 230 may be mounted on the first package substrate 210. The first semiconductor chip 230 may be between the first package substrate 210 and the interposer 100. The first semiconductor chip 230 may include a semiconductor substrate having an active surface and an inactive surface opposite to each other and include a semiconductor device layer on the active surface of the semiconductor substrate. The first semiconductor chip 230 may include a lower surface and an upper surface opposite to each other, and a chip pad 231 may be on the lower surface of the first semiconductor chip 230. For example, the lower surface of the semiconductor chip 230 may include the active surface of the first semiconductor chip 230. The chip pad 231 of the first semiconductor chip 230 may be electrically connected to the semiconductor device layer through an interconnect structure (not shown) inside the first semiconductor chip 230.
The first semiconductor chip 230 may include as a memory chip, a volatile memory chip, and/or a nonvolatile memory chip. The volatile memory chip may include, for example, dynamic random access memory (DRAM), static RAM (SRAM), thyristor RAM (TRAM), zero capacitor RAM (ZRAM), and/or twin transistor RAM (TTRAM). In addition, the nonvolatile memory chip may include, for example, flash memory, magnetic RAM (MRAM), spin-transfer torque MRAM (STT-MRAM), ferroelectric RAM (FRAM), phase change RAM (PRAM), resistive RAM (RRAM), nanotube RRAM, polymer RAM, and/or an insulator resistance change memory.
The first semiconductor chip 230 may be a non-memory chip. For example, the first semiconductor chip 230 may include, for example, an artificial intelligence semiconductor, a microprocessor, a graphic processor, a signal processor, a network processor, a chipset, an audio codec, a video codec, and/or an application processor as a logic chip but is not limited thereto.
The first semiconductor chip 230 may be mounted on the first package substrate 210 by a face-down scheme. That is, the first semiconductor chip 230 may be mounted on the first package substrate 210 such that a surface of the first semiconductor chip 230 on which the chip pad 231 is provided faces the first package substrate 210. The chip pad 231 of the first semiconductor chip 230 may be electrically connected to a second upper substrate pad 215 through a chip connection terminal 233. The chip pad 231 of the first semiconductor chip 230 may be used as a terminal for input/output data signal transmission of the first semiconductor chip 230 or a terminal for power and/or grounding of the first semiconductor chip 230.
An underfill material layer 235 surrounding the chip connection terminal 233 may be filled between the first semiconductor chip 230 and the first package substrate 210. The underfill material layer 235 may be formed of an epoxy resin formed by a capillary underfill method. According to some example embodiments of the inventive concepts, the underfill material layer 235 may be a non-conductive film. However, according to other example embodiments, the first molding layer 240 may directly fill the gap between the first semiconductor chip 230 and the first package substrate 210. In this case, the underfill material layer 235 may be omitted.
The interposer 100 may be stacked on the first package substrate 210. The board-interposer conductive connector 220 may be between the interposer substrate 101 and the first package substrate 210. The board-interposer conductive connector 220 may be, for example, a pillar of a conductive material extending between the lower conductive pad 130 of the interposer substrate 101 and the first upper substrate pad 213 of the first package substrate 210. The board-interposer conductive connector 220 may electrically connect the lower conductive pad 130 of the interposer substrate 101 to the first upper substrate pad 213 of the first package substrate 210.
The first molding layer 240 may be on the first package substrate 210. The first molding layer 240 may be formed to cover at least a part of each of the first package substrate 210, the first semiconductor chip 230, the board-interposer conductive connector 220, and the interposer 100. The first molding layer 240 may protect the first package substrate 210, the first semiconductor chip 230, the board-interposer conductive connector 220, and the interposer 100 from an external environment.
For example, a first part of the first molding layer 240 may be formed to fill in a gap between the interposer 100 and the first package substrate 210, such that the first part of the first molding layer 240 covers a lower surface of the interposer substrate 101, a side surface and an upper surface of the first semiconductor chip 230, and a side surface of the board-interposer conductive connector 220. In addition, a second part of the first molding layer 240 may cover a side surface of the interposer substrate 101. In addition, a third part of the first molding layer 240 may at least partially cover the upper surface 108 of the interposer substrate 101. The third part of the first molding layer 240 may fill the space between the first dam structures 150.
The first molding layer 240 may be formed by a molding process of molding both the first package substrate 210 and the interposer 100. For example, to form the first molding layer 240, an appropriate amount of a molding material may be supplied to the first package substrate 210 and the interposer 100 by an injection process, and the molding material may be hardened by a hardening process. According to example embodiments of the inventive concepts, the molding material forming the first molding layer 240 may include an epoxy-group molding resin, a polyimide-group molding resin, or the like. For example, the first molding layer 240 may include an epoxy molding compound (EMC).
According to some example embodiments of the inventive concepts, a part of the first molding layer 240 may cover the upper surface 108 of the interposer substrate 101 and an outer wall of the first dam structure 150. The first molding layer 240 may be formed on the upper surface 108 of the interposer substrate 101 so as to have a generally uniform thickness. For example, an upper surface 248 of the first molding layer 240 may be generally flat. The thickness of the first molding layer 240 covering the upper surface 108 of the interposer substrate 101 may be equal to or less than a height of the first dam structure 150. For example, a distance between the upper surface 248 of the first molding layer 240 and the upper surface 108 of the interposer substrate 101 in a vertical direction (e.g., the Z direction) may be equal to or less than a distance between the upper surface 151 of the first dam structure 150 and the upper surface 108 of the interposer substrate 101 in the vertical direction.
Referring to
Referring to
Referring to
Referring to
Referring to
As a result of removing the molding film MF, the upper surface 248 of the first molding layer 240 and the upper surface 151 of the first dam structure 150 may be exposed. In this case, because the first molding layer 240 is formed to fill the spaced between the molding film MF and the upper surface 108 of the interposer substrate 101, a thickness of the first molding layer 240 covering the upper surface 108 of the interposer substrate 101 may be a height 150H of the first dam structure 150 or less. According to some example embodiments of the inventive concepts, a level of the upper surface 248 of the first molding layer 240 may be the same as a level of the upper surface 151 of the first dam structure 150. For example, the upper surface 248 of the first molding layer 240 may be coplanar with the upper surface 151 of the first dam structure 150. According to some example embodiments of the inventive concepts, the level of the upper surface 248 of the first molding layer 240 may be lower than the level of the upper surface 151 of the first dam structure 150
According to some example embodiments of the inventive concepts, with reference to the upper surface 108 of the interposer substrate 101, the height 150H of the first dam structure 150 may be about 5 micrometers to about 100 micrometers (including boundary values). When the height 150H of the first dam structure 150 is less than 5 micrometers, a thickness of the first molding layer 240 covering the upper surface 108 of the interposer substrate 101 may be too thin to protect the interposer substrate 101 from the first molding layer 240, or a gap between the molding film MF and the interposer substrate 101 may be too small such that the liquidity of the molding material 241 decreases, thereby causing a part of the upper surface 108 of the interposer substrate 101 not to be covered by the first molding layer 240. When the height 150H of the first dam structure 150 is greater than 100 micrometers, a conductive connector (e.g., 260 of
Referring to
The second dam structure 160 may have a ring shape continuously extending to enclose two or more first dam structures 150. The second dam structure 160 may provide a space in which the first dam structures 150 are disposed, and the space of the second dam structure 160 may be defined by an inner wall of the second dam structure 160. According to some example embodiments of the inventive concepts, the second dam structure 160 may have a quadrangular ring shape in a top view but is not limited thereto and may have a polygonal ring shape such as a triangular or a pentagonal shape. According to another example embodiment of the inventive concepts, the second dam structure 160 may have a circular ring shape in a top view.
According to some example embodiments of the inventive concepts, the second dam structure 160 may have the same height as the first dam structure 150. In this case, a distance between an upper surface of the second dam structure 160 and the upper surface 108 of the interposer substrate 101 may be the same as the distance between the upper surface 151 of the first dam structure 150 and the upper surface 108 of the interposer substrate 101.
The second dam structure 160 may be configured to primarily block a molding material from flowing toward the first dam structure 150 during a molding process for forming the first molding layer 240. A part of the molding material may flow over the second dam structure 160, but because an amount of the molding material flowing toward the first dam structure 150 is reduced by the second dam structure 160, it may more effectively reduce and/or prevent the molding material from flowing over the first dam structure 150 and on the upper conductive pad 120.
Referring to
Because a gap between the upper surface of the second dam structure 160 and the molding film MF is formed during the molding process for forming the first molding layer 240, the molding material may flow over the second dam structure 160 and toward the first dam structure 150, but because a flow rate of the molding material is reduced by the second dam structure 160, it may more effectively reduce and/or prevent the molding material from flowing over the first dam structure 150 and on the upper conductive pad 120.
Referring to
The trench part 170 may be configured to accommodate a molding material having flown over the second dam structure 160. During a molding process for forming the first molding layer 240, the molding material flowing over the second dam structure 160 and toward the first dam structure 150 may fill in the trench part 170.
Referring to
The second semiconductor chip 250 may be mounted on the interposer 100 by a face-down scheme. For example, the second semiconductor chip 250 may be mounted on the interposer substrate 101 such that one surface of the second semiconductor chip 250 having a chip pad 251 thereon faces the interposer substrate 101. The chip pad 251 of the second semiconductor chip 250 may be connected to a conductive connector 260 attached on the upper conductive pad 120. According to some example embodiments of the inventive concepts, the first semiconductor chip 230 and the second semiconductor chip 250 may be different types of semiconductor chips. For example, the first semiconductor chip 230 may be a memory chip, whereas the second semiconductor chip 250 may be a logic chip. According to some example embodiments of the inventive concepts, the semiconductor package 10a may be a system-in-package operating as a single system with different types of semiconductor chips and components such as other passive devices electrically connected to each other.
An underfill material layer 255 surrounding the conductive connector 260 may be between the second semiconductor chip 250 and the interposer substrate 101. For example, the underfill material layer 255 may include an epoxy resin formed by a capillary underfill method. However, according to another example embodiments of the inventive concepts, the second molding layer 270 may be directly filled in a gap between the second semiconductor chip 250 and the interposer substrate 101. In this case, the underfill material layer 255 may be omitted.
The second molding layer 270 may be on the first molding layer 240. The second molding layer 270 may come in contact with the upper surface 248 of the first molding layer 240 and with at least a part of the surface of the second semiconductor chip 250. According to some example embodiments of the inventive concepts, the second molding layer 270 may cover a side surface of the second semiconductor chip 250 but may not cover an upper surface of the second semiconductor chip 250. Alternatively, according to another example embodiments of the inventive concepts, the second molding layer 270 may cover both the side surface and the upper surface of the second semiconductor chip 250.
According to some example embodiments of the inventive concepts, the second molding layer 270 may include an epoxy-group molding resin, a polyimide-group molding resin, or the like. For example, the second molding layer 270 may include a molding compound. According to some example embodiments of the inventive concepts, the second molding layer 270 may include the same material as the first molding layer 240. According to another example embodiment of the inventive concepts, the second molding layer 270 may include a different material from that of the first molding layer 240.
According to some example embodiments of the inventive concepts, when the second semiconductor chip 250 is mounted on the interposer 100, a reflow process on the conductive connector 260 such as a microbump may be performed to physically and electrically connect the chip pad 251 of the second semiconductor chip 250 to the upper conductive pad 120. When foreign substances such as a molding material remain on the upper conductive pad 120, the connection reliability between the conductive connector 260 and the upper conductive pad 120 may decrease. However, according to some example embodiments of the inventive concepts, because the semiconductor package 10a includes the first dam structure 150 blocking a molding material from flowing toward the upper conductive pad 120 during a molding process, the connection reliability between the conductive connector 260 and the upper conductive pad 120 may increase. Furthermore, while a reflow process on the conductive connector 260 is performed, the first dam structure 150 supports a lower part of the conductive connector 260, and thus, the conductive connector 260 may be formed to have a uniform shape and height.
Referring to
The second package substrate 310 may be, for example, a PCB. The second package substrate 310 may include a substrate base 311 formed of at least one material selected from among a phenol resin, an epoxy resin, and polyimide. In addition, the second package substrate 310 may include an upper substrate pad 313 on an upper surface of the substrate base 311 and a lower substrate pad 315 on a lower surface of the substrate base 311. Internal interconnect layers configured to electrically connect the upper substrate pad 313 to the lower substrate pad 315 may be formed inside the substrate base 311.
The second package substrate 310 may be mounted on the interposer through the conductive connector 260. The conductive connector 260 may be between the upper conductive pad 120 on the interposer substrate 101 and the lower substrate pad 315 of the second package substrate 310. The conductive connector 260 may overflow the opening in the first dam structure 150. For example, the conductive connector 250 may cover an upper surface and the inner sidewall of the first dam structure 150. The conductive connector 260 may include, for example, a pillar of conductive material. The conductive material of the conductive connector 260 may be, for example, a metal that wets the first dam structure 150 and/or the upper conductive pad 120 when in a liquid state.
The second semiconductor chip 330 may be on the second package substrate 310. For example, a chip pad 331 of the second semiconductor chip 330 may be electrically connected to the upper substrate pad 313 of the second package substrate 310 through a conductive wire 340. According to some example embodiments of the inventive concepts, the first semiconductor chip 230 and the second semiconductor chip 330 may be different types of semiconductor chips. For example, the first semiconductor chip 230 may be a memory chip, whereas the second semiconductor chip 330 may be a logic chip. According to some example embodiments of the inventive concepts, the semiconductor package 10b may be a system-in-package operating as a single system with different types of semiconductor chips and components such as other passive devices electrically connected to each other.
According to some example embodiments of the inventive concepts, when a package unit including the second package substrate 310, the second semiconductor chip 330, and the second molding layer 270 is mounted on the interposer 100, a reflow process on the conductive connector 260 is performed to physically and electrically connect the second package substrate 310 to the upper conductive pad 120 of the interposer 100. When foreign substances such as a molding material remain on the upper conductive pad 120, the connection reliability between the conductive connector 260 and the upper conductive pad 120 may decrease. However, according to example embodiments of the inventive concepts, because the semiconductor package 10b includes the first dam structure 150 blocking a molding material from flowing toward the upper conductive pad 120 during a molding process, the connection reliability between the conductive connector 260 and the upper conductive pad 120 may increase. Furthermore, while a reflow process on the conductive connector 260 is performed, the first dam structure 150 supports a lower part of the conductive connector 260, and thus, the conductive connector 260 may be formed to have a uniform shape and height.
While the inventive concepts have been particularly shown and described with reference to embodiments thereof, it will be understood that various changes in form and details may be made therein without departing from the spirit and scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0044782 | Apr 2020 | KR | national |