Computing devices (“computers”) have become increasingly technically complex since their inception. Computers, even those capable of being carried in a single hand (such as a mobile phone or personal digital assistant), can perform many more functions at much greater speed than the computers of the 1950s and 1960s. Many of these expanded functions rely on interconnecting a computer with an accessory, another computer or other electronic device (collectively, “peripherals”). For example, peripherals may use a variety of standards to connect to a computer, including: universal serial bus (USB); FireWire; serial; digital video interface (DVI); various audio standards; parallel; and so forth. Different peripherals may employ different connectors or connection standards.
Traditionally, input/output ports occupy a fixed, stationary position in a computer. By maintaining a static position for the input/output ports (“I/O ports”), engineering of the computer case is simplified. However, fixed I/O ports may be inconveniently placed. Further, fixed I/O ports often are susceptible to dust and/or debris entering the ports and interfering with their functions.
Further, I/O ports are generally contained within a Faraday cage defined by the case of the computer. The Faraday cage generally prevents electrical noise from outside the cage entering the interior and vice versa. Thus, the computer case (be it the shell of a desktop or laptop computer, the casing of a mobile telephone or PDA, or other case/cage) prevents noise or extraneous signals from exiting the computer via the I/O ports and reaching a peripheral connected to the port(s). Similarly, the computer case may also prevent noise and/or extraneous signals generated by the peripheral, or another electronic device outside the case, from entering the case via the I/O port and internal associated connector cable. Further, the case may prevent or reduce noise generated by the interior I/O cabling or internal systems from exiting the case. In short, the computer case electrically isolates its interior from its exterior.
Because the I/O ports are typically located within the barrier of a Faraday cage, they are stationary; moving ports might break or exit the electrical barrier. I/O ports may be, for example, recessed within the case to place them within the cage. It may be inconvenient to access such recessed ports.
Accordingly, there is a need in the art for an improved I/O port that places the I/O ports outside of the computer case for ease of access while still electrically insulating the computer from external noise and likewise electrically isolating the exterior from internal noise generated by various electrical components and systems of the computer itself.
One embodiment of the present invention takes the form of an apparatus that may provide one or more I/O connections to a computer. The embodiment includes a Faraday cage generally about a flex cable (or other internal computing element) that may translate and bend when the I/O ports to the computer are utilized. The embodiment maintains the Faraday cage for the flex cable as the I/O port housing opens or closes.
To maintain the Faraday cage for the flex cable, the embodiment may include a gasket located on either side of the cable. The gaskets may electrically connect to a conductive sock that surrounds the flex cable and thus, in turn, electrically connect to the ground plane(s) of the flex cable. This configuration permits the flex cable to move and slide between the gaskets while maintaining the Faraday cage to protect against interference generated by external electrical equipment.
Another embodiment may take the form of an apparatus for electrically shielding an interior element, including: a chassis defining a notch; a first gasket electrically coupled to a first portion of the notch; a second gasket electrically coupled to a second portion of the notch; and a conductive sock placed between the first gasket and the second gasket and electrically coupled to both the first gasket and the second gasket; wherein the chassis, the first gasket, the second gasket and the conductive sock collectively prevent at least some noise from entering or exiting an interior of the chassis.
Still another embodiment may take the form of an apparatus for electrically shielding an interior element of a computer, including: a computer body defining an aperture therein; a first gasket electrically coupled to a first portion of the aperture; a second gasket electrically coupled to a second portion of the aperture and to the first gasket; wherein the computer body, the first gasket, the second gasket and the conductive sock collectively prevent at least some noise from entering or exiting an interior of the computer body.
Yet another embodiment may be a method for electrically shielding an interior element, including the operations of: providing a chassis defining a notch; electrically coupling a first gasket to a first portion of the notch; electrically coupling a second gasket to a second portion of the notch; placing a conductive sock between the first gasket and the second gasket; and electrically coupling the conductive sock to both the first gasket and the second gasket; wherein the chassis, the first gasket, the second gasket and the conductive sock collectively prevent at least some noise from exiting or entering an interior of the chassis.
These and other embodiments, features and alternatives will be apparent to those of ordinary skill in the art upon reading this disclosure and the appended claims.
a depicts a cross-sectional view of one embodiment of the present invention with the I/O port housing in the closed position.
b depicts a perspective view of one embodiment of the flex cable and connectors removed from the I/O port housing.
One embodiment of the present invention takes the form of an apparatus that may provide one or more I/O connections to a computer. The embodiment includes a Faraday cage generally about a flex cable that may translate when the I/O ports to the computer are utilized. The embodiment maintains the Faraday cage for the flex cable as the I/O port housing opens or closes.
To maintain the Faraday cage for the flex cable, the embodiment may include a gasket located on either side of the cable. The gaskets may electrically connect to a conductive sock that surrounds the flex cable and thus, in turn, electrically connect to the ground plane(s) of the flex cable. This configuration permits the flex cable to move between the gaskets while maintaining the Faraday cage to protect against interference generated by external electrical equipment.
Generally, a Faraday cage is an enclosure formed by conducting material, contains internal electrical fields, and blocks out external electrical fields. External electrical fields, or noise, can disrupt electrical signals transmitted within a conducting material and may cause the signals to be degraded or canceled. Faraday cages are utilized in cables to prevent the electrical signals being sent through the cable from being interfered with by external noise. A typical example of a Faraday cage in a cable is a coaxial cable. In a coaxial cable, the conducting material on which the electrical signals are sent is surrounded by a hollow, flexible conductor. This outside flexible conductor acts as a Faraday cage to prevent external noise from corrupting the electrical signals being sent through the coaxial cable. In many coaxial cables, the outside conductor is connected to a ground. By connecting the outside conductor of the cable to a ground, external electrical fields that may interfere with the electrical signals being sent on the interior conductor (e.g., signal wire) are collected by the outside conductor and bled to ground to prevent corruption of the interior signal. This also serves to prevent the signal from radiating outside the cable and thereby becoming noise for external electrical components. The theory, construction and purpose of Faraday cages are well known in the art.
Generally, a Faraday cage for a laptop computer (or other computing device) is formed by the computer body or case housing the internal components. The typically metal body surrounding the internal components of the computer provides a shield against external electrical signals, preventing those external signals from interfering with the computer's internal signals. However, in one embodiment of the present invention, such as the one shown in
The embodiment shown in the cross-sectional view of
In particular, the Faraday cage may be partially composed of the computer body 308, including the top, bottom, and sides of the body. However, the inclusion of the I/O port provides a notch 312 in one side of the computer body 308. To complete the Faraday cage, the cage extends into the notch 312 and past the I/O connectors to a top and bottom gasket 316, 318. Thus, the top, bottom, and sides of the I/O port housing, combined with the top gasket 316, a conductive sock 320 placed about a portion of the flex cable, and the bottom gasket 318 may form the portions of the Faraday cage within the notch 312 of the computer body 308. Generally, the body 308 connects to both the top and bottom gaskets 316, 318. The gaskets are in turn electrically connected to one another by the conductive sock 320. It should be noted that the electrical connection between the sock and gaskets persists regardless of any motion of the I/O housing.
By surrounding at least the majority of the flex cable 300 with these components, the components act as a Faraday cage for the flex cable 300. The component arrangement permits the flex cable 300 to extend between the gaskets 316, 318 and, optionally, move at least slightly as the I/O port housing 302 is opened or closed, without losing the effect of the Faraday cage. The operation of the present invention when the I/O port housing is open is described in further detail in
A second Faraday cage may be electrically connected to the main Faraday cage formed by the case 308, top and bottom gaskets 316, 318 and conductive sock 320. Each individual I/O connector shell 350 (as shown in
It should be noted that the computer 100 shown in
a depicts a cross-sectional view of one embodiment of the present invention. The embodiment is shown with the I/O port housing 302 in the closed position. While this embodiment permits the I/O port housing 302 to transition between an open and a closed position, it should be appreciated that other embodiments may employ a static or fixed I/O port housing. In such an embodiment, the I/O port housing 302 may mount directly to the computer body 308 and may be continuously externally exposed, thereby providing constant external access to the I/O connectors 310.
It should also be noted that the flex cable 300 described herein with respect to one embodiment of the present invention is flexible, at least a portion of the cable may bend as the I/O port housing 302 is opened or closed. However, it should be appreciated that other embodiments may use a flex cable that is more rigid in its construction.
When the I/O port housing 302 is in the closed position shown in
The I/O connectors 310 of the embodiment may be any device capable of receiving electrical signals from a cable. Exemplary I/O connectors include Fire Wire, Universal Serial Bus (USB), Video Graphics Array (VGA), DB25, S-Video, Bayonet Neill-Concelman (BNC)-type connectors and so on. The construction of the connector 310 is known to those of ordinary skill in the art. As such, the operation and construction of the connector 310 will not be described further.
Referring to
The flex cable 300 may extend from the rigid section 350, through the I/O port housing 302 and into the computer body 308. In one embodiment, the flex cable 300 provides electrical signals between the computer system and the I/O connectors 310. This allows the computer to interface with components located outside the computer body 308. The external components may use cables to connect to the I/O connectors 310 and provide communication between the computer and the external components.
Referring back to
As mentioned above, the gaskets 316, 318 of the present embodiment may be constructed from a flexible and hollow rubber tube. Surrounding the piece of rubber may be a flexible wire mesh of conductive material. The combination of the flexible rubber tube and wire mesh forms a flexible gasket 316, 318 capable of conducting electricity. The gaskets 316, 318 may be directly or otherwise operably connected to the computer body 308 directly above and below the flex cable 300. The gaskets 316, 318 may be mounted adjacent the I/O port housing 302 such that the gaskets 316, 318 run the width (but not the length) of the flex cable 300.
Referring to
Referring to
It should be noted that one or both of the gaskets 416, 418 may be U-shaped, C-shaped or V-shaped in cross section instead or circular, elliptical or solid. For example, forming the top gasket 416 in A U- or V-shape may deflect force exerted on the gasket during opening or closing of the I/O port inward (or outward) with respect to the case, rather than up or down onto the flex cable 400. This, in turn, may reduce the chances of the cable 400 crimping or failing to translate as the I/O port moves.
Similar to
The flex cable 300 may extend from the rigid section 350, through the I/O port housing 302 and into the computer body 308. In one embodiment, the flex cable 300 provides electrical signals between the computer system and the I/O connectors 310. This allows the computer to interface with components located outside the computer body 308. The external components may use cables to connect to the I/O connectors 310 and provide communication between the computer and the external components.
Gaskets 416, 418 similar to those described in
Referring to
The sock 420 may be electrically connected to an exposed portion of the flex cable 400 underlying the sock. That is, a portion of the flex cable's copper ground layer may be electrically connected to the sock. This not only maintains the same ground potential for the sock and flex cable, but also ultimately electrically connects each I/O connector shell 350 to the flex cable ground. In this manner, the connector shells need not be directly connected to any I/O cable. This, in turn, permits the I/O port housing 402 to open and close without interference from mechanical aspects of the connector shells 350 that would otherwise be required to properly ground the connector shells.
In addition, it should be noted that certain connector shells, such as those for DVI and USB I/O connectors, may be structured in a different manner from typical connector shells in order to take advantage of particular features of the flex cable 400 and/or printed circuit board 350. For example, such connector shells may include a number of connector pins extending through the cable or board. A secondary shield may be installed on the underside of the board/cable to electrically shield the pins from external noise and prevent signals carried on those pins from radiating as electrical noise. This shield may be installed after the connection of the pins is verified during manufacture.
The Faraday cage created by the embodiment of
Further, as the I/O port housing 402 pivots into the open position, the gasket 418 below the cable 400 may be pinched against the flex cable 400 providing a better electrical connection between the gasket 418 and the conductive sock 420. Similarly, the gasket 416 above the cable 400 may be pinched against the cable 400 when the I/O port housing 402 is closed, providing a better electrical connection between the gasket 416 above the cable 400 and the conductive sock 420. However, it should be appreciated that it is not necessary for the present invention for either the gasket 418 below the cable 400 or the gasket 416 above the cable to pinch the cable 400 as the I/O port housing 402 is opened and closed. The gaskets 416,418 complete the Faraday cage as long as they maintain contact with the conductive sock 420 of the flex cable 400.
The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. From the above description and drawings, it will be understood by those of ordinary skill in the art that the particular embodiments shown and described are for purposes of illustration only and are not intended to limit the scope of the present invention. References to details of particular embodiments are not intended to limit the scope of the invention.
This application claims priority under 37 C.F.R. §119(e) to U.S. Provisional Patent Application No. 61/019,540, filed on Jan. 7, 2008 and entitled “I/O Connectors with Extendable Faraday Cage,” which is incorporated by reference herein as if fully set forth in its entirety. This application is related to 1) U.S. Provisional Patent Application No. 61/019,530, filed Jan. 7, 2008 and entitled “Input/Output Connector and Housing;” 2) U.S. Provisional Patent Application No. 61/019,538, filed Jan. 7, 2008 and entitled “Flexible Data Cable;” 3) U.S. Nonprovisional patent application Ser. No. 12/201,867, filed Aug. 29, 2008 and entitled “Input/Output Connector and Housing”; and 4) U.S. Nonprovisional patent application Ser. No. 12/201,975, filed Aug. 29, 2008 and entitled “Flexible Data Cable”; all of which are incorporated by reference herein as if set forth in their entireties. This application is also related to 1) U.S. Provisional Patent Application No. 61/019,278, filed Jan. 6, 2008, and entitled “MicroDVI Connector;” 2) U.S. Provisional Patent Application No. 61/019,280, filed Jan. 6, 2008, and entitled “USB Connector and Housing;” 3) U.S. Provisional Patent Application No. 61/010,116, filed Jan. 6, 2008, and entitled “Mag Safe Connector;” 4) U.S. Nonprovisional patent application Ser. No. 12/242,784, filed Sep. 30, 2008, entitled “MicroDVI Connector;” 5) U.S. Nonprovisional patent application Ser. No. 12/242,712, filed Sep. 30, 2008, entitled “Data Port Connector and Housing;” and 6) U.S. Nonprovisional patent application Ser. No. 12/239,662, filed Sep. 26, 2008, now U.S. Pat. No. 7,762,817, entitled “System for Coupling Interfacing Parts.”
Number | Name | Date | Kind |
---|---|---|---|
3060790 | Ward | Oct 1962 | A |
3754209 | Molloy et al. | Aug 1973 | A |
4814552 | Stefik et al. | Mar 1989 | A |
4845311 | Schreiber et al. | Jul 1989 | A |
4855740 | Muramatsu et al. | Aug 1989 | A |
5040479 | Thrash | Aug 1991 | A |
5081482 | Miki et al. | Jan 1992 | A |
5245734 | Issartel | Sep 1993 | A |
5317105 | Weber | May 1994 | A |
5342991 | Xu et al. | Aug 1994 | A |
5365461 | Stein et al. | Nov 1994 | A |
5371901 | Reed et al. | Dec 1994 | A |
5583560 | Florin et al. | Dec 1996 | A |
5726645 | Kamon et al. | Mar 1998 | A |
5770898 | Hannigan et al. | Jun 1998 | A |
5815379 | Mundt | Sep 1998 | A |
5831601 | Vogeley et al. | Nov 1998 | A |
5951908 | Cui et al. | Sep 1999 | A |
5975953 | Peterson | Nov 1999 | A |
6130822 | Della Fiora et al. | Oct 2000 | A |
6180048 | Katori | Jan 2001 | B1 |
6337678 | Fish | Jan 2002 | B1 |
6347882 | Vrudny et al. | Feb 2002 | B1 |
6525929 | Carr | Feb 2003 | B2 |
6532446 | King | Mar 2003 | B1 |
6611253 | Cohen | Aug 2003 | B1 |
6713672 | Stickney | Mar 2004 | B1 |
6717073 | Xu et al. | Apr 2004 | B2 |
6794992 | Rogers | Sep 2004 | B1 |
6834294 | Katz | Dec 2004 | B1 |
6836651 | Segal et al. | Dec 2004 | B2 |
6914551 | Vidal | Jul 2005 | B2 |
6995752 | Lu | Feb 2006 | B2 |
6998594 | Gaines et al. | Feb 2006 | B2 |
7088261 | Sharp et al. | Aug 2006 | B2 |
7133030 | Bathiche | Nov 2006 | B2 |
7167083 | Giles | Jan 2007 | B2 |
7196273 | Tanaka et al. | Mar 2007 | B2 |
7211734 | Bracaleone | May 2007 | B2 |
7274303 | Dresti et al. | Sep 2007 | B2 |
7315908 | Anderson | Jan 2008 | B2 |
7347712 | O'Connell et al. | Mar 2008 | B2 |
7417624 | Duff | Aug 2008 | B2 |
7446303 | Maniam et al. | Nov 2008 | B2 |
7453441 | Iorfida et al. | Nov 2008 | B1 |
7489308 | Blake et al. | Feb 2009 | B2 |
7557690 | McMahon | Jul 2009 | B2 |
7598686 | Lys et al. | Oct 2009 | B2 |
7634263 | Louch et al. | Dec 2009 | B2 |
7646379 | Drennan et al. | Jan 2010 | B1 |
7683263 | Chiang | Mar 2010 | B2 |
7710397 | Krah et al. | May 2010 | B2 |
20030174072 | Salomon | Sep 2003 | A1 |
20030210221 | Aleksic | Nov 2003 | A1 |
20040118582 | Deguchi | Jun 2004 | A1 |
20040230912 | Clow et al. | Nov 2004 | A1 |
20040238195 | Thompson | Dec 2004 | A1 |
20050110777 | Geaghan et al. | May 2005 | A1 |
20050162411 | Berkel van | Jul 2005 | A1 |
20050200286 | Stoschek et al. | Sep 2005 | A1 |
20060042820 | Lin et al. | Mar 2006 | A1 |
20060103081 | Dietrich et al. | May 2006 | A1 |
20070050054 | Sambandam Guruparan et al. | Mar 2007 | A1 |
20070124772 | Bennett et al. | May 2007 | A1 |
20070174058 | Burns et al. | Jul 2007 | A1 |
20070195068 | Kable et al. | Aug 2007 | A1 |
20070285405 | Rehm | Dec 2007 | A1 |
20080001787 | Smith et al. | Jan 2008 | A1 |
20080060842 | Barringer et al. | Mar 2008 | A1 |
20080150917 | Libbey et al. | Jun 2008 | A1 |
20080291620 | DiFonzo et al. | Nov 2008 | A1 |
20090002328 | Ullrich et al. | Jan 2009 | A1 |
20090009489 | Lee | Jan 2009 | A1 |
20090104898 | Harris | Apr 2009 | A1 |
20090167704 | Terlizzi et al. | Jul 2009 | A1 |
20090173533 | Brock et al. | Jul 2009 | A1 |
20090176391 | Brock et al. | Jul 2009 | A1 |
20090222270 | Likens et al. | Sep 2009 | A2 |
20090277763 | Kyowski et al. | Nov 2009 | A1 |
20090283342 | Schediwy et al. | Nov 2009 | A1 |
20100044067 | Wong et al. | Feb 2010 | A1 |
20100053468 | Harvill | Mar 2010 | A1 |
20100081375 | Rosenblatt et al. | Apr 2010 | A1 |
20100214226 | Brown et al. | Aug 2010 | A1 |
20100300856 | Pance et al. | Dec 2010 | A1 |
20100301755 | Pance et al. | Dec 2010 | A1 |
20100302169 | Pance et al. | Dec 2010 | A1 |
20100306683 | Pance et al. | Dec 2010 | A1 |
20110037734 | Pance et al. | Feb 2011 | A1 |
20110038114 | Pance et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
1881513 | Jan 2008 | EP |
2017694 | Jan 2009 | EP |
2801402 | May 2001 | FR |
2433211 | Jun 2007 | GB |
58112263 | Jul 1983 | JP |
2002013984 | Feb 2002 | KR |
20030035305 | May 2003 | KR |
WO 01069567 | Sep 2001 | WO |
WO 02073587 | Sep 2002 | WO |
WO2005065034 | Jul 2005 | WO |
WO2009059479 | May 2009 | WO |
WO 09136929 | Nov 2009 | WO |
WO 201005837 6 | May 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20090173534 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
61019540 | Jan 2008 | US |