This invention relates to an ion beam monitoring arrangement for use in an ion implanter where it is desirable to monitor the flux and/or a cross-sectional profile of the ion beam used for implantation. This invention also relates to an ion implanter process chamber and an ion implanter including such an ion beam monitoring arrangement, and to a method of monitoring an ion beam in an ion implanter.
Ion implanters are well known and generally conform to a common design as follows. An ion source produces a mixed beam of ions from a precursor gas or the like. Only ions of a particular species are usually required for implantation in a substrate, for example a particular dopant for implantation in a semiconductor wafer. The required ions are selected from the mixed ion beam using a mass-analysing magnet in association with a mass-resolving slit. Hence, an ion beam containing almost exclusively the required ion species emerges from the mass-resolving slit to be transported to a process chamber where the ion beam is incident on a substrate held in place in the ion beam path by a substrate holder.
It is often desirable to measure the flux and/or cross-sectional profile of an ion beam in an ion implanter in order to improve control of the implantation process. One example where such a desire exists is in ion implanters where the ion beam size is smaller than the substrate to be implanted. In order to ensure ion implantation across the whole of the substrate, the ion beam and substrate are moved relative to one another such that the ion beam scans the entire substrate surface. This may be achieved by (a) deflecting the ion beam to scan across the substrate that is held in a fixed position, (b) mechanically moving the substrate whilst keeping the ion beam path fixed or (c) a combination of deflecting the ion beam and moving the substrate. Generally, relative motion is effected such that the ion beam traces a raster pattern on the substrate.
To achieve uniform implantation, the ion beam flux and cross sectional profile in at least one dimension needs to be known and also need to be checked periodically to allow any variations to be corrected. For example, uniform doping requires adequate overlap between adjacent scan lines. Put another way, if the spacing between adjacent scan lines of the raster scan is too large (with respect to the ion beam width and profile), ‘striping’ of the substrate will result with periodic bands of increased and decreased doping levels. Dose uniformity problems in a raster-scanned ion implanter are discussed in WO03/088299.
Our co-pending U.S. patent application Ser. No. 10/119290 describes an ion implanter of the general design described above. A single substrate is held in a moveable substrate holder. While some steering of the ion beam is possible, the implanter is operated such that ion beam follows a fixed path during implantation. Instead, the substrate holder is moved along two orthogonal axes to cause the ion beam to scan over the substrate following a raster pattern. The substrate holder is provided with a Faraday with an entrance aperture of 1 cm2 that is used to sample the ion beam flux. Sampling at different positions within the ion beam is performed by moving the Faraday using the substrate holder. Accordingly, the ion beam flux can be sampled at an array of locations corresponding to the two axes of translation of the substrate holder and a two-dimensional profile of the ion beam flux can be accumulated.
This arrangement suffers from some disadvantages in certain applications. Firstly, it requires a Faraday to be placed on the substrate holder. This adds weight to the substrate holder that is supported in a cantilever fashion. Moreover, many ion implanters comprise a beamstop placed downstream of the substrate holder that includes a Faraday thereby leading to duplication of detectors with associated complexity and expense. Secondly, the entrance aperture of the Faraday is much smaller than the ion beam. As a result, the aperture can collect only a small signal leading to noisy data or long acquisition times. The total data collection is very slow as, in addition to lengthy acquisition times needed to produce an acceptable signal to noise ratio, the ion beam must be sampled at many points over a two-dimensional grid to provide a profile. Acquisition times may be reduced if a profile in only one dimension is required as only a single line of data points is required. However, careful alignment with the ion beam must be performed for the aperture to pass through the centre of the ion beam, otherwise the full width of the ion beam will not be measured.
According to a first aspect, the present invention resides in a method of measuring an ion beam flux profile in an ion implanter operable to generate an ion beam along an ion beam path for implanting in a substrate held at a target position by a substrate support, the ion implanter comprising an ion beam flux detector located downstream of the target position and a shield provided by the substrate support for shielding the detector from the ion beam when the shield is located in the ion beam path, the method comprising the steps of:
(a) causing a first relative motion between the substrate support and the ion beam such that the shield occludes the ion beam by a progressively changing amount;
(b) measuring the ion beam flux with the detector during said first relative motion; and
(c) determining the ion beam flux profile in a first direction by using changes in the measured ion beam flux.
By “profile”, it will be understood that a cross-sectional profile in at least one dimension is intended. Most commonly, measuring the ion beam flux will comprise measuring a current produced by ions incident on a detector.
The arrangement described above is beneficial as it allows the cross-sectional profile of the ion beam to be measured using a Faraday or similar already provided as a beamstop. By occluding the ion beam by a progressively changing amount, i.e. moving the shield into the ion beam to cause progressive occlusion or moving the shield out of the ion beam to progressively uncover the ion beam, successive measurements may be taken and the ion beam profile calculated from changes in the successive measurements. This calculation may correspond to taking simple differences or may correspond to finding a derivative of the successive measurements.
Using the substrate support to provide the shield is particularly advantageous as it removes the need for providing a further component to the ion implanter. It also enjoys the benefit that the ion beam is occluded at a position at or close to the target position such that the ion beam profile at or close to the target position is obtained.
The measurements may be collected during the first relative motion such that the ion beam flux is measured for set time intervals before being dumped into bins. Although measured as a function of time, each measurement corresponds to a different position within the ion beam and so provides a spatial profile rather than a temporal profile. Alternatively, the first relative motion may comprise a number of successive movements between positions with measurements being collected whilst stationary at each position.
Optionally, the ion implanter comprises a further said shield provided by the substrate support and the method further comprises the steps of: causing a second relative motion between the substrate support and the ion beam such that the further shield occludes the ion beam by a progressively changing amount; measuring the ion beam flux with the detector during said second relative motion; and determining the ion beam flux profile in a second direction by using changes in the measured ion beam flux. The shield and further shield may be entirely separate or they may be different parts of the same structure.
Conveniently, this allows cross-sectional profiles to be collected in two directions. Preferably, the first and second directions are substantially orthogonal thereby providing cross-sectional profiles in two orthogonal directions. The shield and/or further shield may extend across the full extent of the ion beam. Alternatively, the shield and/or further shield may extend across only part of the ion beam.
From a second aspect the present invention resides in a method of measuring an ion beam flux profile in an ion implanter operable to generate an ion beam along an ion beam path for implanting in a substrate held at a target position by a substrate support, the ion implanter comprising an ion beam flux detector located downstream of the target position and a slot aperture provided in the substrate support for letting only a portion of the ion beam propagate to the detector when the aperture is located in the ion beam path, the method comprising the steps of: (a) causing a first relative motion between the substrate support and the ion beam such that the ion beam scans across the aperture; (b) using the detector to take measurements of the ion beam flux during the first relative motion through the ion beam; and (c) determining an ion beam flux profile from the ion beam flux measurements.
This arrangement allows successive portions of the ion beam flux to be measured and the ion beam profile determined therefrom. It requires only a minor adaptation of the substrate support and may use the Faraday that is often already present at the beamstop.
From a third aspect, the present invention resides in a method of measuring an ion beam flux profile in an ion implanter operable to generate an ion beam along an ion beam path for implanting in a substrate held at a target position by a substrate support, the substrate support providing a first elongate slot ion beam flux detector, the method comprising the steps of:
causing a first relative motion between the substrate support and the ion beam such that the ion beam scans across the first detector;
using the first detector to take measurements of the ion beam flux during the first relative motion through the ion beam; and
determining a first ion beam flux profile from the ion beam flux measurements.
The term “elongate slot ion beam flux detector” is intended to encompass detectors that measure ion beam flux over an elongate area. They may have an elongate active detecting area or the active detecting area may sit behind an elongate aperture.
Measuring the ion beam flux along using an elongate slot detector improves statistics as it simply provides an average flux along the elongate direction rather than discretely sampling the flux at a plurality of point-like positions. For example, the detector could measure the ion beam flux along a line spanning the ion beam. Then, the total flux for successive strips across the ion beam could be measured to yield a cross-sectional profile.
From a fourth aspect, the present invention resides in a method of measuring an ion beam path, comprising: performing the method of measuring an ion beam described above such that steps (a) and (b) are performed at a first position along the assumed ion beam path and step (c) is performed to determine a first ion beam flux profile at the first position; repeating steps (a) and (b) at a second position spaced along the assumed ion beam path from the first position and step (c) to determine a second ion beam flux profile at the second position; identifying a common feature in the first and second flux profiles; determining the positions of the common feature in the first and second flux profiles; and inferring the ion beam path from the positions so determined.
Such a method allows the path of the ion beam to be determined. This is useful, for example, where control of the angle of incidence between substrate and ion beam is required. The common feature used for determining the ion beam path may be the centroid of the ion beam, for example. More than the common feature may be used to determine the ion beam path. In fact, the entire profile of the ion beam may be mapped between the first and second positions.
Variation in the angle of incidence of the ion beam about the Y axis is particularly important for control during high tilt implants. This corresponds to rotating the support arm to cause a high-tilt of the wafer (and hence larger angle of incidence of the ion beam) so that dopants can be implanted underneath high aspect ratio structures. (e.g. source extension halo implants). Any variation from a required beam angle about the Y-axis will change the extent to which the ions penetrate the structure, thereby changing the performance characteristics of the device being implanted.
From a fifth aspect, the present invention resides in an ion beam monitoring arrangement for use in an ion implanter operable to generate an ion beam along an ion beam path for implanting in a substrate held at a target position, the ion beam monitoring arrangement comprising:
a substrate support arranged to hold the substrate at the target position;
a detector located in the ion beam path downstream of the target position and operable to take measurements of the ion beam flux incident on the detector;
a shield provided by the substrate support in a position to occlude the ion beam from the detector by a progressively changing amount during a first relative motion between the substrate support and the ion beam; and
processing means operable to determine an ion beam flux profile in a first direction by using changes in the ion beam flux measurements.
Such an arrangement may be used with the method described above and so enjoys the same benefits.
Optionally, the substrate support comprises a support arm with an edge for occluding the ion beam. Another arrangement includes a substrate support including a chuck with a first edge for occluding the ion beam during the first relative motion. Optionally, the substrate support is rotatable about its longitudinal axis and the shield is located on the chuck to be eccentric with respect to the longitudinal axis. Such an arrangement is beneficial as the position of the shield along the ion beam path can be changed by rotating the substrate support. Thus, ion beam flux profiles may be taken at two or more positions along the assumed ion beam path and the exact path of the ion beam determined.
The edge is preferably straight, although other shapes are possible. Where a straight edge is employed, the edge may advantageously extend substantially perpendicular to the direction of the first relative motion. This is advantageous as it simplifies the mathematical treatment required to obtain the profile. For example, where a curved edge is employed, the shape of the curve must be known to allow a deconvolution of that shape from the ion beam flux measurements. Optionally, the substrate support comprises a chuck with a first face for receiving a substrate and a second, opposed face having the shield projecting therefrom. The shield may have edges to provide the shield and further shield.
From a sixth aspect, the present invention resides in an ion beam monitoring arrangement for use in an ion implanter operable to generate an ion beam along an ion beam path for implanting in a substrate held at a target position, the ion beam monitoring arrangement comprising: a substrate support arranged to hold the substrate at the target position; a detector located in the ion beam path downstream of the target position and operable to take measurements of the ion beam flux incident thereon; a slot aperture provided in the substrate support in a position to allow portions of the ion beam to propagate to the detector during a first relative motion between the substrate support and the ion beam; and processing means operable to determine a first ion beam flux profile from the ion beam flux measurements. From a seventh aspect, the present invention resides in an ion beam monitoring arrangement for use in an ion implanter operable to generate an ion beam along an ion beam path for implanting in a substrate held at a target position, the ion beam monitoring arrangement comprising:
a substrate support arranged to hold the substrate at the target position; a first elongate slot ion beam flux detector provided by the substrate support operable to take measurements of the ion beam flux incident thereon during a first relative motion between the substrate support and the ion beam; and
processing means operable to determine a first ion beam flux profile from the ion beam flux measurements.
Such an arrangement may be used with the method described above and so enjoys the same benefits.
Optionally, the first detector may comprise a recess detecting element located behind a deep recess. Advantageously, this limits the acceptance angle of the detector and allows angular measurements of the ion beam profile to be collected. For example, the detector may be tilted with respect to the ion beam to determine the exact angle of propagation of the ion beam along the ion beam path.
Optionally, the first detector comprises an elongate array of discrete detecting elements, being operable to take measurements of the ion beam flux incident thereon during the first relative motion, and the processing means are operable to determine an ion beam flux profile by summing concurrent ion beam flux measurements taken by detecting elements within the array and to determine a further ion beam flux profile from the ion beam flux measurements taken by a detecting element.
The use of discrete detecting elements allows the determination of cross-sectional profiles in two directions at the same time. Preferably, the detecting elements are disposed in two adjacent, parallel lines in an alternating zig-zag pattern. This allows an array of detectors whose active detecting area may extend across a full width of the ion beam, as any dead areas (that may otherwise separate detecting elements disposed along a single line) to be overlapped across the two lines.
From an eighth aspect, the present invention resides in an ion beam monitoring arrangement for use in an ion implanter operable to generate an ion beam along an ion beam path for implanting in a substrate, the ion beam monitoring arrangement comprising (a) first measurement means operable to measure a first ion beam flux profile at a first position along the assumed path of the ion beam; (b) second measurement means operable to measure a second ion beam profile at a second position spaced along the assumed path of the ion beam from the first position; and (c) processing means operable to identify a common feature in the first and second flux profiles, to determine the positions of the common feature in the first and second flux profiles and to infer the ion beam path from the position so determined.
The present invention also extends to an ion implanter process chamber including an ion beam monitoring arrangement as described above and to an ion implanter including an ion beam monitoring arrangement as described above.
Other preferred, but optional, features are set out in the appended claims.
Examples of the invention will now be described with reference to the accompanying drawings, in which:
a shows a schematic side view of an ion implanter in which a substrate is mounted on a substrate support;
b shows a part section along line AA of
a to 2c are schematic representations of three scanning patterns performed by the ion implanter of
a and 12b show a shield arrangement akin to that of
a and 13b are two perspective views of an end piece of a substrate support that includes a pair of Faraday detectors; and
c is a section through line AA of
A schematic side view of an ion implanter 20 is shown in
The ion beam 28 exiting the mass analyser 26 may be subject to electrostatic acceleration or deceleration of the ions, depending upon the type of ions to be implanted and the desired implantation depth. Downstream of the mass analyser 26 is a vacuum chamber (hereinafter referred to as the process chamber 30) containing a wafer 32 to be implanted, as may be seen in
The ion beam 28 that exits the mass analyser 26 has a beam width and beam height substantially smaller than the diameter of the wafer 32 to be implanted. The scanning arrangement of
The wafer 32 is mounted electrostatically upon a wafer holder or chuck 36 of a substrate support that also comprises an elongate support arm 38 to which the chuck 36 is connected. The support arm 38 extends out through the wall of the process chamber 30 in a direction generally perpendicular with the direction of the ion beam 28. The support arm 38 passes through a slot 40 (see
To effect mechanical scanning in the orthogonal, X-direction (that is, into and out of the plane of the paper in
The support structure also includes a slide 48 which is mounted in fixed relation to the sledge 44. Movement of the linear motors 46 along tracks (not shown in
With this arrangement, the wafer 32 is movable in two orthogonal directions (X and Y) relative to the axis of the ion beam (Z) such that the whole wafer 32 can be passed across the fixed direction ion beam 28.
a shows the sledge 44 in a vertical position such that the surface of the wafer 32 is perpendicular to the axis of the incident ion beam 28. However, it may be desirable to implant ions into the wafer 32 at an angle to the ion beam 28. For this reason, the rotor plate 42 is rotatable about an axis defined through its centre, relative to the fixed wall of the process chamber 30. In other words, the rotor plate 42 is able to rotate in the direction of the arrows R shown in
Further details of the above arrangement can be found in our co-pending U.S. patent application Ser. No. 10/119290, the contents of which are incorporated herein in their entirety.
In a preferred arrangement, the chuck 36 is controlled to move according to a sequence of linear movements across the ion beam 28 in the X-coordinate direction, with each linear movement separated by a stepwise movement in the Y-coordinate direction. The resulting scan pattern is illustrated in
As can be seen, the reciprocating scanning action of the wafer 32 ensures that all parts of the wafer 32 are exposed to the ion beam 28. The movement of the wafer 32 causes the ion beam 28 to make repeated scans over the wafer 32 with the individual scan lines 54 being parallel and equally-spaced apart, until the ion beam 28 makes a full pass over the wafer 32. Although the line 50 in
In the example shown in
Assuming the beam flux of atomic species to be implanted is constant over time, the dose of the desired species delivered to the wafer 32 is maintained constant over the wafer 32 in the X-coordinate direction of the scan lines 54 by maintaining a constant speed of movement of the wafer 32 in that direction. Also, by ensuring that the spacing between the scan lines 54 is uniform, the dose distribution along the Y-coordinate direction is also maintained substantially constant. In practice, however, there may be some progressive variation in the ion beam flux during the time taken for the wafer 32 to perform a complete pass over the ion beam 28, that is to complete one of the scan lines 54 illustrated in
In order to reduce the effect of such beam flux variations during a scan line 54, the beam flux may be measured periodically (as will be described in more detail below) and the speed at which the wafer 32 is moved over subsequent scan lines 54 adjusted accordingly. That is to say, the wafer 32 is driven along subsequent scan lines 54 at a slower speed if the beam flux decreases so as to maintain a desired rate of implant of the required atomic species per unit distance of travel, and vice versa. In this way, any variations in the ion beam flux during scan lines 54 leads to only minimal variation in the dose delivered to the wafer 32 in the scan line spacing direction.
In the scanning system described above with reference to
Furthermore,
Staggering scan lines 54 across multiple passes can be beneficial in reducing the thermal load placed on the wafer 32 by the impinging ion beam 28. So, if a particular recipe requires a spacing of T in the scan lines 54 to achieve the desired dose, four passes could be made with each scan line in any particular pass being separated by 4T. Each of the passes is arranged to shift the phases of the scans of the pass spatially by the amount T, so that the composite raster drawn by the four passes has lines with pitch T as shown in
In order to ensure adequate uniformity of dose delivered to the wafer 32 in the direction of the scan line spacing (along the Y-axis), this spacing or line pitch must be less than the cross-sectional dimension of the ion beam 28 in the same direction. This is because the ion flux is not uniform throughout the ion beam 28, but tends to increase from the beam edge to the centre. Overlapping adjacent scan lines 54 are used to overcome this lack of uniformity in the ion beam 28. The degree of overlap (and the number of passes) must be determined in accordance with the overall dosing requirement of the recipe.
Determining the optimum line spacing requires knowledge of the ion beam flux profile of the ion beam 28 along the Y-coordinate direction. This is because the spacing required to achieve uniformity to within a specified tolerance will vary according to this profile. Once the ion beam profile has been measured, Fourier transform analysis is used to determine the required line spacing. Further details of this procedure can be found in our co-pending U.S. patent application Ser. No. 10/251,780, the contents of which are incorporated herein in its entirety.
It may also be advantageous to measure the flux profile of the ion beam 28 in the X-coordinate direction. This allows the beam profile to be tuned to avoid certain problems, e.g. ion beam misalignment that may occur in the dispersion plane of the mass analysing magnet and cause the ion beam 28 to strike the wafer 32 at an incorrect angle of incidence or cause an offset during ion beam scanning. In addition, the beam profile in both X- and Y-coordinate directions may be tuned to avoid problems such as hot-spots in the ion beam 28 that may result in wafer 32 charging or to optimize the ion implantation process, e.g. to ensure an optimum beam size or optimum beam shape to achieve uniformity at the correct doping concentration over one of more scans. Obtaining beam profiles quickly allows rapid retuning of the ion beam to correct any problems.
Monitoring the angle of incidence of the ion beam 28 in both X- and Y-coordinate directions is also useful to ensure the desired implantation conditions are met. The path the ion beam 28 is following may be determined by measuring the ion beam profile at two locations spaced in the Z-coordinate direction as will be described in more detail below.
In a first set of embodiments of the present invention, the profile of the ion beam 28 is measured using the Faraday that acts as a beamstop 34. The Faraday 34 is a single detector that measure the ion beam current incident thereupon. The Faraday 34 has an entrance aperture 56 that is larger than the ion beam size and so can measure the current of the entire ion beam at an instant. In order to allow measurement of the flux profile across the ion beam 28, the ion beam 28 is progressively occluded by moving a shield 58 into the ion beam 28 or progressively uncovering the ion beam 28 by moving the shield 58 out of the ion beam 28. This can be performed in either the X- or Y-coordinate direction according to the profile being measured. Moving the shield 58 will lead to either a progressive increase or decrease in measured flux depending upon whether the shield 58 is being moved into or out of the ion beam 28. This arrangement is shown in
Exemplary embodiments of substrate supports will now be described and their mode of operation will be explained with reference to progressive occlusion of the ion beam 28. The skilled person will appreciate that the following embodiments may work just as well when the ion beam 28 is progressively exposed such that the ion flux steadily increases.
It is convenient to use the substrate support to move the shield 58 as it already has the ability to move along the X- and Y-coordinate directions. A first embodiment is shown in
The ion beam 28 striking the support arm 38 will cause localised heating and also possibly ablation of material. In either event, the result is the possibility of contamination of a wafer 32 positioned on the chuck 36 by molecules and ions derived from the support arm 38. To this end, the portion of the support arm 38 used to occlude the ion beam is coated with semiconductor material so that the adverse effects of any sputtering are mitigated. The support arm 38 may be covered or coated with materials which either do not sputter readily or that will not cause contamination, such as graphite.
The effects of contamination of the wafer 32 may be further reduced by using the back of the support arm 38 to occlude the ion beam 28. In this way, the support arm 38 is rotated about 180° or so that the wafer 32 faces the beamstop 34 rather than the ion beam 28 and the back of the support arm 38 faces the ion beam 28, prior to driving the support arm 38 into the ion beam 28. of course, the back of the support arm 38 may be covered or coated with semi-conductor material or with graphite in this arrangement.
Alternatively, the side of the support arm 38 may be used to occlude the ion beam 28. This is advantageous as the wafer 32 faces neither the ion beam 23 nor the beamstop 34 when the ion beam is being occluded. This reduces further the chances of contaminating the wafer 32 as it alleviates the problem of back-sputtered material coming from the beamstop 34. As before, the side of the support arm 38 may be coated with semi-conductor material or graphite.
Movement of the substrate support is indexed and effected by a controller. This controller is used to move the support arm 38 through the ion beam 28. The reading from the Faraday 34 is acquired by the controller at a series of support arm positions that it of course knows. Accordingly, the controller builds up a data set of positions and ion beam flux values. If the support arm 38 is being driven into the ion beam 28, each successive flux will decrease by an amount corresponding to the flux received over the area occluded since the previous flux measurement. As each measurement corresponds to a complete slice across the ion beam 28, data collection can be performed far more quickly without sacrificing any count rate when compared with the prior art arrangement previously described where a 1 cm2 Faraday aperture is used to measure the ion beam flux.
As the straight edge of the support arm 38 extends in the X-coordinate direction, the flux of slices taken in the X-coordinate direction are found. Hence the controller can be used to calculate and to plot ion beam flux against position thereby producing a flux profile in the Y-coordinate direction.
Advantageously, use of the support arm 38 to occlude the ion beam 28 ensures that the profile of the ion beam 28 at the location usually occupied by the wafer 32 during implantation. This is clearly a benefit when compared to using a dedicated shield 58 provided on its own drive mechanism, but that most likely will be located away from the implanting location to avoid interfering with operation of the substrate support.
If the height of the support arm 38 (its dimension in the Y-coordinate direction) is greater than the ion beam height, the profile may be collected in one pass of the support arm 38. However, a support arm 38 having a height less than the height of the ion beam 28, but greater than half the height of the ion beam 28, may be used. This is because the support arm 38 may be driven into the ion beam 28 first from above and then from below, allowing the two halves of the ion beam 28 to be measured in two passes. This is most easily achieved by providing the support arm 38 with upper and lower straight edges: a design with only a single straight edge may be used although this would require rotating the support arm 38 through 180° between the two passes (and perhaps covering or coating both front and back faces with semiconductor material or graphite as both faces will be exposed to the ion beam). If the support arm 38 has two straight edges, the profile may be collected in one pass. This is because the leading edge may collect the first half of the profile by progressive occlusion as the support arm 38 is driven into the ion beam 28 and the trailing edge may collect the second half of the profile by progressively uncovering the ion beam 28 as the support arm is driven out of the ion beam 28.
While the embodiment of
The edges 60 may be driven into the ion beam 28 from either side of the ion beam 28 or from above the ion beam 28 to cause progressive occlusion. As per the embodiment of
A further embodiment is shown in
The shield 62 is covered or coated in a semiconductor material or graphite (or similar) to reduce the adverse effects of contamination. In fact, this embodiment is particularly beneficial in terms of avoiding contamination of a wafer 32. This is because the wafer 32 is rotated away from the ion beam 28 and the beamstop 34: the ion beam 28 striking the beamstop 34 can cause back-sputtering and hence contamination of a wafer 32 facing the beamstop 34.
Rather than occluding the ion beam by a progressively changing amount using a shield or edge provided on the substrate support, ion beam flux profiles may be collected using a shield 62 with a slot aperture 63 extending therethrough as shown in
The slot aperture extends on the Y-coordinate direction and is wider than the full width of the ion beam 23. The shield 62 is sized to be bigger than the ion beam 23 such that all the ion beam 23 is occluded other than that portion passing through the slot 63. As per the embodiments of FIGS. 3 to 6, the shield 62 is driven through the ion beam 23 to vary the ion beam flux reaching the Faraday provided at the beamstop 34. At each position, the flux corresponding to a slice through the ion beam 23 is measured by the Faraday 34. Driving the substrate support in the Y-coordinate direction allows the ion beam flux of successive slices to be measured. Simply plotting the fluxes measured yields a flux profile in the Y-direction.
As will be appreciated, a similar slot 63 that extends in the Y-coordinate direction may be used to collect a flux profile along the X-coordinate direction. This second type of slot may be provided on a shield 62 either as an alternative to or in combination with the first type of slot 63. Slots 63 may be located in other positions, e.g. through the support arm, such as to corresponds to the appearance of
A second set of embodiments will now be described in which one or more Faradays 68 provided on the substrate support of
Advantageously, the profile of the ion beam 28 at the location the wafer 32 usually occupies during implantation is obtained. Providing a Faraday 68 on a dedicated drive arm would not produce as useful a profile because the drive arm would need to be offset from the wafer's implanting position to avoid interfering with operation of the substrate support.
The area of the support arm 38 surrounding the aperture 70 may be covered or coated in a semiconductor material or graphite (or similar) to reduce contamination problems.
The embodiments of FIGS. 8 to 10 require the substrate support to be moved through the ion beam 28 progressively for a profile to be obtained.
Placing the Faradays 68 at the centre of the ion beam 28 allows the profile of the ion beam 28 in the Y-coordinate direction to be captured in one instant. The profile in the X-coordinate direction can be acquired by driving the chuck 36 horizontally through the ion beam 28, and summing the measurements taken from the Faradays 68 at each position. Alternatively a second set of Faradays 68 could be provided that are arranged in an orthogonal direction. As before, the back of the chuck 36 may be coated in semiconductor material or graphite (or similar) to lessen the effects of contamination.
As mentioned previously, it is advantageous to be able to determine the exact path of the ion beam 28 around the implanting position. This is because it may diverge slightly from the envisaged ion beam path 28, and this may lead to incorrect angles of incidence with the wafer 32. A particularly simple method of finding the angle of incidence is to measure the ion beam flux profile at two or more positions along the Z-coordinate direction, and then use the centroid of the ion beam profiles to determine the ion beam path 28. In addition, measuring the ion beam flux profile reveals the extent of the ion beam 28, and so determination of any ion beam divergence or convergence along the Z-coordinate direction is also possible.
One way of measuring the ion beam flux profile along the Z axis is to provide two shields 58 or two slot Faradays 68, akin to those already described, at different positions along the Z axis. Two shields 58 may be used to occlude the ion beam 28 whilst measuring the ion beam flux with a Faraday provided at the beamstop 34. Both shields 58 or Faradays 68 could be provided on their own supports, mounted on a linear drive to allow translation in the X-coordinate direction. Alternatively, a single support could be mounted on a linear drive attached to a two-axis table. Thus would allow movement in and out of the ion beam 28 along X- and Y-coordinate directions, and would also allow a range of positions along the Z axis to be selected.
Where two separate shields 58 or Faradays 68 are used, the support structure could provide one of the shields 58 or Faradays 68 to be used in combination with a shield 58 or Faraday 68 provided on a separate structure, such as one of those previously described. Alternatively, a single shield 62 of the support arm 38 may be used to provide flux profiles at two positions along the Z axis will now be described.
a and 12b show a modification of the arrangement of
To measure the ion beam flux profile at a first position Z1, the support arm 38 is moved such that the edge 66 of the shield 62 is located immediately above the ion beam 28. The support arm 38 is then moved down in the Y-coordinate direction so that the shield 62 progressively occludes the ion beam 28 and the flux profile in the Y-coordinate direction is obtained, as shown in
In addition to obtaining ion beam flux profiles in the Y-coordinate direction, profiles may be obtained in the X-coordinate direction at the two positions Z1 and Z2. This is achieved by driving one of the two vertical edges 64 across the ion beam 28 in the X-coordinate direction at the Z1 position, rotating the support arm 38 through 180° and then driving the shield 62 through the ion beam 28 in the X-coordinate direction at the Z2 position.
Hence, ion beam flux profiles are obtained for two positions Z1 and Z2. The positions of Z1 and Z2 will be known from the geometry of the substrate support and, hence, the ion beam path 28 can be extrapolated from these profiles (assuming the ion beam 28 to follow a straight path, an acceptable approximation for the short distance of interest around the implanting position).
The embodiment of
The Faraday arrangement of
A further alternative design is shown in
The recess 89 has a depth of 22.5 mm and terminates with a second aperture 88b of corresponding shape, size and orientation. The active detecting area 87 of the Faraday 68 is located behind the lower aperture. The walls defining the recess 89 are electrically isolated from the active detecting area 87 to allow them to be grounded. The active detecting area 87 and lower aperture 88b form a Faraday 68 of the common design.
Hence, this Faraday 68 is fronted by a pair of apertures 88 that act to collimate the incident ion beam. This allows the ion beam angle to be measured (i.e. the angle of the exact ion beam path 28 away from the Z-axis). The deeply recessed Faraday 68 allows only ions entering substantially perpendicular to the front aperture 88a to travel through the rear aperture 88b and be detected at 87. Any off-axis ions will strike the internal wall and are most likely absorbed. Cutting back the walls between the apertures 88a,b minimises the chance that off-axis ions can be reflected onto the active detecting area 87 and spoil the measurement. The active detecting area 87 is magnetically suppressed to account for secondary electrons.
A combination of rotating the support arm 38 about its axis to change the acceptance angle of the slot aperture 88 and translation of the support arm 38 in X- and Y-coordinate directions to scan the slot aperture 88 across the entire ion beam 28 allows a detailed flux profile of the ion beam 28 to be determined. The deep slot aperture 88 can be used with any of the slot Faradays 68 previously described.
As will be appreciated by the skilled person, variations may be made to the above embodiments without departing from the scope of the present invention.
For example, all of the above embodiments relate to operation of the ion implanter 20 of
The above embodiments may be used as alternatives or may even be used in combination. For example, a straight edge 60, 64, 66 in the X-coordinate direction may be combined with a slot aperture 63 or Faraday aperture 70 extending in the Y-coordinate direction. Moreover, complimentary features may be included such that a substrate support comprises both an edge 60, 64, 66 and a slot 63 or Faraday 70 aperture extending in the X-coordinate direction. Such an arrangement would provide a degree of redundancy.
Clearly, the skilled person can make a choice between whether to measure the ion beam profile in the X- or Y-coordinate direction or even to measure the ion beam profile in both directions. This will be dictated largely by the needs of the particular application.
Whilst the above embodiments have been described from the context of driving an edge 60, 64, 66, slot aperture 63 or Faraday aperture 70 into the ion beam 28, it is of course straightforward to reverse the situation and have the edge 60, 64, 66, slot aperture 63 or Faraday aperture 70 being driven out of the ion beam 28.
The above embodiments describe measuring the ion beam profile by recording one dimensional profiles which effectively integrate the flux intensity along a straight line, either in the X-coordinate or Y-coordinate direction. This relies on the use of straight edges 60, 64, 66 or a straight slot aperture 63/70. However, whilst this is the optimum arrangement, variations can be made such that straight edges 60, 64, 66 or straight apertures 70 are used that are not exactly aligned with the X-or Y-coordinate directions. Furthermore, edges and Faraday apertures that are not straight could also be used. In addition, straight edges 60, 64, 66 and apertures 70 need not be arranged orthogonal to the directions of motion, but may be disposed at other angles.
The use of a controller to effect movement of the chuck 36 and to acquire data from the Faraday detector 34, 68 or detectors 68 is but merely one implementation of the present invention. Alternative implementations include using the controller to supply the positional information of the chuck 36 to a further computing means that also collects information relating to the measured ion flux. In addition, the calculations required to relate differences in ion flux measurements and generate an ion beam profile may be implemented in hardware or software.
Number | Date | Country | Kind |
---|---|---|---|
0400185.5 | Jan 2004 | GB | national |