1. Field of the Invention
The invention generally relates to an irradiating device in the art of radiation processing, and a method for controlling the same.
2. Description of Related Art
Radiation processing is now used to prepare macromolecular materials, keep foods fresh, sterilize medical products and drugs, protect products from contaminating, color crystals and pearls, and treat environmental contaminants with high energy electron beams, X-ray generated by a target hit by electron beams or Gamma ray radiated by a radionuclide. The radiation processing, as an economic, energy saving, manpower saving and harmless new processing method, is widely applied to various fields such as agriculture, industry and medicine, and becomes increasingly important.
Generally, high energy electron beams are generated by accelerators such as traveling or standing wave linear accelerators, and DC high voltage accelerators, which further include static accelerators, transformer type accelerators with insulating core, electron curtain accelerators, high frequency and high voltage accelerators, etc. As shown in
Therefore, an irradiating device outputting X-rays is typically used to irradiate big articles that cannot be separated into smaller ones. As shown in
In conventional accelerator irradiating devices, the radiation is implemented by either electron beams or X-rays generated by a target hit by electron beams. The articles suitable for being irradiated by these devices are limited.
An object of the present invention is to overcome the above disadvantages of the prior arts by providing an irradiating device capable of outputting two radiation sources, both the electron beams and X-rays.
To achieve the above object, an aspect of the present invention provides an irradiating device comprising an electron accelerator, a scanning box connected to the electron accelerator, and a scanning magnet for controlling electron beams generated by the electron accelerator, wherein the scanning box is provided with both a target and an electron beam exit window, so that when the scanning magnet is not in operation, the electron beams impinge on the target and X-rays are generated to be output, and when the scanning magnet is in operation, the scanned electron beams are output via the electron beam exit window.
The target can be positioned right in a direction of the electron beams generated by the electron accelerator.
The electron beam exit window can be positioned at a left or right side of the target.
The target can be positioned at an inner side of the electron beam exit window, forming an inner target structure.
The scanning box can further be provided with a cooling fluid loop for cooling the target and the electron beam exit window.
When the scanning magnet is in operation, the scanning center of the scanned electron beams can be deflected with respect to the direction of the electron beams generated by the electron accelerator by controlling a scanning current supplied to the scanning magnet.
Another aspect of the present invention includes providing a method for controlling an irradiating device, which comprises an electron accelerator, a scanning box connected to the electron accelerator, and a scanning magnet for controlling electron beams generated by the electron accelerator, wherein the scanning box is provided with both a target and an electron beam exit window, the method comprising steps of: a) when the scanning magnet is not in operation, the electron beams impinge on the target to generate X-rays, so that the irradiating device outputs the X-rays; and b) when the scanning magnet is in operation, the scanned electron beams are deflected and pass through the electron beam exit window by supplying deflecting scanning current to the scanning magnet, so that irradiating device outputs the electron beams.
The irradiating device capable of outputting both electron beams and X-rays of the present invention has many advantages. The configuration comprising an electron accelerator, a scanning box, a target and an electron beam exit window according to the invention integrates the functions of both the existing irradiating device outputting electron beams and those outputting X-rays. When the scanning magnet is in operation, the irradiating device outputs electron beams; and when the scanning magnet is not in operation, the irradiating device outputs X-rays. Therefore, an aspect of the device of the invention is to provide a system that is capable of outputting two radiation sources of electron beams and X-rays, so as to meet requirements for radiation-processing articles with different sizes. With such a device, much more applications are supported at substantially no additional cost. On the other hand, even when the scanning magnet fails in directing the electron beams, i.e., does not work, the electron beams will travel to impinge the target to generate X-rays, without any damage to the electron beam exit window. The safety of the system is improved, which assists in increasing the life and efficiency of the irradiating device of the present invention.
These and other features, advantages and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims and appended drawings.
The foregoing and/or further objects, features and advantages of the invention will become more apparent from the following description of exemplary embodiments with reference to the accompanying drawings, in which like numerals are used to represent like elements and wherein:
Referring to
In the irradiating device capable of outputting both electron beams and X-rays of the invention, the scanning magnet 3 is scanning in a unidirectional manner, that is, the scanning current supplied thereto is always positive/negative. This scanning current may be obtained by superposing an original bidirectional scanning current with a positive or negative current. The target 7 is positioned right in front of the electron beams 5, while the electron beam exit window 10 is positioned right in front of the electron beams 6. The illustrated scanning box 4 is one with two different outputs from two outlets respectively. When the scanning magnet 3 is not in operation, the electron beams 5 travel in the original direction out of the accelerator, and impinge on the target 7 so as to generate X-rays, which are then output by the irradiating device. When the scanning magnet 3 is in operation, the electron beams are deflected from the direction of the electron beams 5 to be spread on one side of the beams 5, thereby forming pencil shaped electron beams 6. The electron beams 6 pass through the electron beam exit window 10 and are finally output by the irradiating device.
A cooling fluid loop 9 is provided at bottom of the scanning box 4 for cooling the target 7 and the electron beam exit window 10. The cooling fluid loop 9 is externally connected to a cooling fluid system via an inlet 8 and an outlet 12.
Referring to
While some embodiments of the invention have been described above, for the illustrative purpose only, it is to be understood that the invention is not limited to the details of the illustrated embodiments, but may be embodied with various changes, modifications or improvements, which may occur to those skilled in the art without departing from the spirit and scope of the invention.
The above description is considered that of the preferred embodiments only. Modification of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the following claims as interpreted according to the principles of patent law, including the doctrine of equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2006 1 0098857 | Jul 2006 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
2993120 | Emannelson | Jul 1961 | A |
3013154 | Trump | Dec 1961 | A |
3158745 | Stanhope | Nov 1964 | A |
3176137 | Helmut et al. | Mar 1965 | A |
3287584 | Pinel | Nov 1966 | A |
3398307 | Brown et al. | Aug 1968 | A |
3676673 | Coleman | Jul 1972 | A |
3780305 | Free | Dec 1973 | A |
3876373 | Glyptis | Apr 1975 | A |
3902097 | Offermann | Aug 1975 | A |
4075496 | Uehara | Feb 1978 | A |
4159436 | Ely | Jun 1979 | A |
4295048 | Cleland et al. | Oct 1981 | A |
4484341 | Luniewski | Nov 1984 | A |
4726046 | Nunan | Feb 1988 | A |
4845370 | Thompson et al. | Jul 1989 | A |
5401973 | McKeown et al. | Mar 1995 | A |
5461656 | Golovanivsky et al. | Oct 1995 | A |
5847401 | McKeown et al. | Dec 1998 | A |
6113851 | Soloshenko et al. | Sep 2000 | A |
6180951 | Joehnk et al. | Jan 2001 | B1 |
6327339 | Chung et al. | Dec 2001 | B1 |
6628750 | Korenev | Sep 2003 | B1 |
6653641 | Lyons et al. | Nov 2003 | B2 |
6683319 | Koenck et al. | Jan 2004 | B1 |
7067822 | Lyons et al. | Jun 2006 | B2 |
7133493 | Avnery | Nov 2006 | B2 |
20030089862 | Jongen | May 2003 | A1 |
20050230640 | Loda et al. | Oct 2005 | A1 |
20060256925 | Virshup et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
07051395 | Feb 1995 | JP |
2003079753 | Mar 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20080067406 A1 | Mar 2008 | US |