The present application claims the benefit under 35 U.S.C. §119 of German Patent Application No. DE 102015224480.6 filed on Dec. 8, 2015, which is expressly incorporated herein by reference in its entirety.
In a method described in PCT Application No. WO 2015/120939 A1, when a certain internal pressure is desired in a cavity of a micromechanical component or a gas mixture having a certain chemical composition is to be enclosed in the cavity, the internal pressure or the chemical composition is frequently adjusted during capping of the micromechanical component or during the bonding process between a substrate wafer and a cap wafer. During capping, for example, a cap is connected to a substrate, whereby the cap and the substrate together enclose the cavity. By adjusting the atmosphere or the pressure and/or the chemical composition of the gas mixture present in the surroundings during capping, it is thus possible to adjust the particular internal pressure and/or the particular chemical composition in the cavity.
With the aid of the method described in PCT Application No. WO 2015/120939 A1, an internal pressure may be adjusted in a targeted way in a cavity of a micromechanical component. It is in particular possible with the aid of this method to manufacture a micromechanical component including a first cavity, a first pressure and a first chemical composition being adjustable in the first cavity, which differ from a second pressure and a second chemical composition at the time of capping.
In the method for targeted adjusting of an internal pressure in a cavity of a micromechanical component described in PCT Application No. WO 2015/120939 A1, a narrow access channel to the cavity is created in the cap or in the cap wafer, or in the substrate or in the sensor wafer. Subsequently, the cavity is flooded with the desired gas and the desired internal pressure via the access channel. Finally, the area around the access channel is locally heated with the aid of a laser, the substrate material liquefies locally and hermetically seals the access channel during solidification.
It is an object of the present invention to provide a method for manufacturing a micromechanical component which is mechanically robust and has a long service life, in a simple and cost-effective manner. It is a further object of the present invention to provide a micromechanical component which is compact, mechanically robust and has a long service life. According to the present invention, this applies, in particular, to a micromechanical component that includes one (first) cavity. With the aid of the method according to the present invention and the micromechanical component according to the present invention, it is furthermore also possible to implement a micromechanical component in which a first pressure and a first chemical composition may be adjusted in the first cavity, and a second pressure and a second chemical composition may be adjusted in a second cavity. For example, such a method for manufacturing micromechanical components is provided, for which it is advantageous if a first pressure is enclosed in a first cavity and a second pressure is enclosed in a second cavity, the first pressure being different from the second pressure. This is the case, for example, when a first sensor unit for rotation rate measurement and a second sensor unit for acceleration measurement are to be integrated into a micromechanical component.
The object may be achieved, for example, by providing, in a fourth method step, that a layer is deposited or grown on a surface of the substrate or the cap in the area of the access opening to produce a second mechanical stress, which counteracts a first mechanical stress occurring in the case of sealed access opening.
In this way, a method for manufacturing a micromechanical component is provided in a simple and cost-effective manner, using which a second mechanical stress may be provided, which counteracts a first mechanical stress, which occurs in the case of sealed access opening. Therefore, for example, with the aid of a compensation stress, which is transmitted via the layer in the area of the access opening or via a boundary layer between the layer and the area of the access opening, a first mechanical stress, which is present without layer according to the present invention, may be reduced or at least partially compensated for. Therefore, for example, a tensile stress occurring in a material area which is solidified after the third method step and/or in the remaining substrate or remaining cap adjoining the solidified material area and/or at the interfaces between the solidified material area and the remaining substrate or the remaining cap may be reduced.
Furthermore, it is less problematic using the method according to the present invention if the substrate material is only locally heated and the heated material contracts in relation to its surroundings both during solidification and also during cooling, because the first mechanical stress produced by the contraction during solidification and also during cooling is counteracted with the aid of the layer and the second mechanical stress produced by the layer or the total mechanical stress or stress distribution prevailing in the area of the access opening may be reduced. It is also less problematic that tensile stresses may arise in the closure area, because these tensile stresses may be reduced with the aid of the layer in a targeted manner. Therefore, spontaneous cracking which occurs depending on stress and material and also cracking in the event of thermal or mechanical load of the micromechanical component are less probable during the further processing or in the field.
A method for manufacturing a micromechanical component or an arrangement is thus provided, in which a seal of a channel may be produced via local melting, the method enabling a possible low tendency toward cracking in the micromechanical component.
The term “micromechanical component” is to be understood in the context of the present invention to mean that the term includes both micromechanical components as well as microelectromechanical components.
The present invention is preferably provided for a micromechanical component including a cavity or for its manufacture. However, the present invention is also provided, for example, for a micromechanical component including two cavities or including more than two, i.e., three, four, five, six or more than six, cavities.
The access opening is preferably sealed with the aid of a laser by introducing energy or heat into a part of the substrate or of the cap that absorbs this energy or this heat. In this case, energy or heat is preferably introduced chronologically in succession into the respective absorbing part of the substrate or of the cap of multiple micromechanical components, which are manufactured together, for example, on one wafer. Alternatively, however, a chronologically parallel introduction of the energy or heat into the respective absorbing part of the substrate or of the cap of multiple micromechanical components is also provided, for example, using multiple laser beams or laser devices.
Advantageous embodiments and refinements of the present invention are described herein with reference to the figures.
According to one preferred refinement, it is provided that the cap, together with the substrate, encloses a second cavity, a second pressure prevailing and a second gas mixture having a second chemical composition being enclosed in the second cavity.
According to one preferred embodiment, it is provided that the layer is deposited or grown on the surface of the substrate or the cap facing away from the first cavity. In this way, it is advantageously possible that the second mechanical stress may be introduced into the area of the access opening via the surface of the substrate or the cap facing away from the first cavity. It is therefore advantageously possible in particular that the second mechanical stress may be introduced particularly on a side of the access opening facing away from the first cavity, and therefore a particularly advantageous stress distribution is enabled in the area of the sealed access opening.
According to one preferred embodiment, it is provided that the layer is removed over the access opening to be formed or sealed and/or directly adjacent to the access opening to be formed, opened, or sealed. In this way, it is possible that the access opening may be opened and sealed again essentially independently of the layer. In particular, it is therefore advantageously possible to deposit or grow the layer on the surface before or after the first method step and also before or after the third method step. Furthermore, it is therefore also possible to enable a particularly advantageous transmission of the second stress in or via the surface, in particular not above the access opening and/or not directly adjacent to the access opening.
According to one preferred refinement, it is provided that the fourth method step is carried out chronologically before the first method step or chronologically after the third method step. In this way, it is advantageously possible to either firstly adjust the first pressure and/or the first chemical composition in the first cavity and then deposit or grow the layer or, alternatively, to first deposit or grow the layer and subsequently adjust the first pressure and/or the first chemical composition in the first cavity.
A further subject matter of the present invention is a micromechanical component having a substrate and a cap connected to the substrate and, together with the substrate, enclosing a first cavity, a first pressure prevailing and a first gas mixture having a first chemical composition being enclosed in the first cavity, the substrate or the cap including a sealed access opening, the micromechanical component including a layer deposited or grown on a surface of the substrate or the cap in the area of the access opening to produce a second mechanical stress, which counteracts a first mechanical stress occurring in the case of sealed access opening. This advantageously provides a compact, mechanically robust, and cost-effective micromechanical component having an adjusted first pressure. The aforementioned advantages of the method according to the present invention also apply correspondingly to the micromechanical component according to the present invention.
According to one preferred refinement, it is provided that the layer is situated on a surface of the substrate or the cap facing away from the first cavity. In this way, it is advantageously possible that the second mechanical stress may be introduced into the area of the access opening via the surface of the substrate or the cap facing away from the first cavity. It is therefore advantageously possible in particular that the second mechanical stress may be introduced particularly on a side of the access opening facing away from the first cavity and therefore a particularly advantageous stress distribution is enabled in the area of the sealed access opening.
According to one preferred refinement, it is provided that the first mechanical stress is essentially tensile stress and the second mechanical stress is essentially compressive stress or the first mechanical stress is essentially a compressive stress and the second mechanical stress is essentially a tensile stress. Therefore, a tensile stress may be counteracted with the aid of a compressive stress or a compressive stress may be counteracted with the aid of a tensile stress.
According to one preferred refinement, it is provided that the layer is formed as essentially ring-shaped and/or rotationally-symmetrical in relation to the access opening. The second mechanical stress may therefore be introduced particularly advantageously in the surface or via the surface into the micromechanical component. A particularly advantageous stress distribution is thus enabled in the area of the sealed access opening.
According to one preferred refinement, it is provided that the cap, together with the substrate, encloses a second cavity, a second pressure prevailing and a second gas mixture having a second chemical composition being enclosed in the second cavity. In this way a compact, mechanically robust, and cost-effective micromechanical component having an adjusted first pressure and second pressure is advantageously provided.
According to one preferred refinement, it is provided that the first pressure is lower than the second pressure, a first sensor unit for rotation rate measurement being situated in the first cavity, and a second sensor unit for acceleration measurement being situated in the second cavity. In this way, a mechanically robust micromechanical component for rotation rate measurement and acceleration measurement, having optimal operating conditions for both the first sensor unit and the second sensor unit, is advantageously provided.
Identical parts are always denoted by the same reference numerals in the various figures and are therefore generally also cited or mentioned only once.
For example, a first pressure prevails in first cavity 5, in particular when access opening 11 is sealed, as shown in
It is provided, for example, that the first pressure in first cavity 5 is lower than the second pressure in the second cavity. It is also provided, for example, that a first micromechanical sensor unit for rotation rate measurement, which is not shown in
Chronologically after third method step 103, it is possible for mechanical stresses to occur in a lateral area 15, shown by way of example in
As shown by way of example in
As shown by way of example in
For example, it is also provided that
For example, it is also provided that the layer has no significant compressive stress or does not transmit it via the surface to substrate 3 or cap 7 directly after the application or growth or deposition. For example, it is also provided that the layer has a tensile stress or transmits it via the surface to substrate 3 or cap 7. It is provided in this case, for example, that the layer is chronologically conditioned after fourth method step 104 in such a way that the layer changes its stress state. For example, in this case the layer is conditioned in such a way that the layer changes its stress state in the direction of compressive stress.
Conditioning of the layer or the additional layer, for example, in such a way that the layer or additional layer changes its stress state in the direction of compressive stress, is provided as follows, for example:
For example, a layer is deposited which develops in its stress state in the direction of compressive stress during the third method step via a temperature strain or temperature treatment during heating using the laser in the area around the liquefied area or around material area 13 which is in the liquid aggregate state. This method is advantageous in two ways. On the one hand, a stress compensation layer is manufactured exactly around melted area or around material area 13 in the liquid aggregate state in a self-adjusting manner using this approach. On the other hand, higher temperatures for conditioning may be achieved locally using this method in comparison to the related art. In particular, this is advantageous if otherwise entire micromechanical component or larger areas of the micromechanical component would have to be warmed or heated or tempered alternatively in the temperature step.
For example, a layer is deposited which develops in its stress state in the direction of compressive stress during a fifth method step via a further temperature strain or temperature treatment. In other words, in this case the local conditioning of the layer or additional layer is carried out in an additional step. For example, it is provided that a laser is used for the local conditioning. It is advantageously provided in particular in this case that a laser or laser radiation or a laser pulse or a plurality of laser pulses of short wavelength, in particular having a wavelength of less than 1000 nm, and short pulse duration is used. For example, it is additionally provided that the layer or the additional layer reacts with a stress change in the direction of compressive stress due to interaction with the laser pulse or pulse, but the laser pulse is only coupled slightly into substrate 3 or cap 7, so that substrate 3 or cap 7 may not respond or react with a relaxation to the produced stress.
A micromechanical component 1 manufactured using the method according to the present invention includes, for example, a layer deposited or grown on the surface of substrate 3 or cap 7 in the area of access opening 11 to produce a second mechanical stress, which counteracts a first mechanical stress occurring in the case of sealed access opening 11. For example, for this purpose the layer is situated on a surface of substrate 3 or cap 7 facing away from first cavity 5. However, it is also possible that the layer is situated on a surface of substrate 3 or cap 7 facing toward first cavity 5. In this way, second mechanical stress may be introduced into micromechanical component 1 in particular on a side of sealed access opening 11 facing toward first cavity 5. In addition, for example, it is provided that the first mechanical stress is essentially tensile stress and the second mechanical stress is essentially compressive stress. Alternatively, it is also provided that the first mechanical stress is essentially a compressive stress and the second mechanical stress is essentially a tensile stress. According to the present invention, this means that the layer is formed in such a way that the second stress is a stress or a stress distribution which essentially counteracts the first stress or stress distribution. It is therefore also provided according to the present invention that the first stress and the second stress are at least partially a normal stress and/or a bending stress and/or a shear stress and/or a compressive stress and/or a tensile stress. Furthermore, it is also provided according to the present invention that the layer is formed, for example, essentially ring-shaped and/or rotationally-symmetrical in relation to access opening 11.
Number | Date | Country | Kind |
---|---|---|---|
102015224480.6 | Dec 2015 | DE | national |