The invention relates to electronic semiconductor devices and manufacturing. More particularly, the invention relates to microelectronic integrated circuit (IC) package assemblies and heat dissipation structures for IC packages and leadframes, and to methods for their manufacture.
Generally speaking, semiconductor devices such as integrated circuits (ICs) are manufactured by forming layered metallic circuit components and patterns on a semiconductor wafer. Numerous such ICs are formed on a single wafer. The individual ICs are separated from one another by a singulation process, such as sawing. Each IC is typically mounted on a metallic leadframe, and the IC-leadframe assembly is then encapsulated within a package. Package material, or “encapsulant” is commonly made from viscous or semi-viscous plastic or epoxy resin, which is cured to form a hardened protective cover to shield the IC assembly from environmental hazards such as dust, heat, moisture, mechanical shock, and external electricity.
Heat is generated during the operation of packaged ICs. Due to the continuous development of microelectronic circuit technology, ICs are being made smaller, denser, and capable of operating faster than previously. Therefore, the trend in the art is that the amount of heat generated increases as the heat-dissipating area diminishes. If the rate of heat dissipation is insufficient, the excess heat may be detrimental or even destructive to the IC. As a result, a common and direct approach for increasing heat dissipation from IC packages is to use a heat sink to dissipate heat produced by IC operations. A typical approach is to fasten a heat sink in direct contact with either the leadframe or the IC.
There are several techniques known in the arts for attaching the heat sink so that it makes contact with the IC chip, leadframe, or all or portions of each. Thermally conductive glue or other compounds, also called “heat sink jelly”, “heat sink compound”, “thermal goo”, “silicon compound”, or “thermal grease” are sometimes applied directly to a heat sink placed in contact with an IC or leadframe surface. A significant disadvantage of thermal compound is that it is quite messy to handle, sometimes contaminating nearby surfaces and tools, and therefore often not suitable for mass production processes. Thermal compounds can also tend to be highly electrically conductive as well thermally conductive. Thus, there is an additional hazard that any thermal compound that drips onto the board or adjacent electrical connections during assembly can cause a catastrophic failure. Similarly, the heat sink may be welded to the leadframe, forming a fused metal join to fuse the two together. This technique has problems similar to those encountered with using flowable compounds, e.g., it is relatively messy and expensive. Another approach sometimes used to overcome some of these problems is the use of double-sided adhesive tape between the heat sink and the surface to which it is applied, e.g., leadframe and/or IC chip. This approach necessitates precise handling of the materials involved, and results in relatively slow throughput and high expense.
Therefore, it is common in the arts to use rivets for fastening heat sinks to leadframes and in order to provide a package with a heat sink while avoiding the use of thermal compounds, welding, and double-sided tape. Referring to the representative example of a package 1 shown in
Due to these and other technological challenges, improved IC packages, leadframes, heat sinks, and manufacturing methods would be useful and advantageous in the arts. The present invention is directed to overcoming, or at least reducing the effects of one or more of the problems encountered in the prior art.
In carrying out the principles of the present invention, in accordance with preferred embodiments, the invention provides advances in the arts with novel methods and apparatus directed to providing improved heat sink arrangements on leadframes and within IC packages.
According to one aspect of the invention, a preferred embodiment of a semiconductor device leadframe array assembly includes a metal sheet having numerous leadframes with integrated circuit sites provided for receiving individual integrated circuit chips. Support strips are arranged adjacent to and supporting the integrated circuit sites in an array of one or more rows. A number of package areas each include at least one integrated circuit site for ultimate encapsulation in an integrated circuit package. Rivet points are located on the support strips outside of the package areas. An array of heat sinks having corresponding rivet points is riveted to the metal sheet.
According to another aspect of the invention, an integrated circuit package includes a leadframe having an integrated circuit site with an operably coupled integrated circuit chip. The leadframe also includes one or more support strips with numerous rivet points adjacent to the integrated circuit site. A heat sink is secured in coplanar contact with at least part of the leadframe, using rivets secured at the rivet points of the leadframe and corresponding rivet points of the heat sink.
According to another aspect of the invention, an integrated circuit package includes a leadframe having an integrated circuit site with an operably coupled integrated circuit chip. The leadframe also includes one or more support strips with numerous rivet points adjacent to the integrated circuit site. A heat sink is secured in coplanar contact with at least part of the leadframe using rivets secured at the rivet points of the leadframe and corresponding rivet points of the heat sink with at least a portion of the heat sink in coplanar contact with the integrated circuit chip.
According to yet another aspect of the invention, a method for assembling an integrated circuit chip package includes steps for providing numerous metal leadframes arranged in an array. Package areas provided on the leadframes each have one or more integrated circuit site. In further steps, an integrated circuit chip is operably coupled to each of the integrated circuit sites. The leadframe array is also provided with support strips adjacent to and supporting the leadframes in one or more rows. Rivet points are provided on the support strips. In additional steps, a heat sink array is riveted to the leadframe array using rivet points corresponding to the leadframe array rivet points. Each package area of the leadframe is subsequently encapsulated and singulated to form individual integrated circuit chip packages.
According to another aspect of the invention, an integrated circuit package assembly in a preferred embodiment includes a metal leadframe with an integrated circuit chip operably coupled to the leadframe. A heat sink is secured in coplanar contact with at least a portion of the leadframe by encapsulant encapsulating the integrated circuit chip, at least a portion of the leadframe, and at least a portion of the heat sink, such that no glue, thermal compound, weld, tape, or rivets are included within the package.
The invention has advantages including but not limited to one or more of; increased pin count, reduced manufacturing complexity, higher manufacturing yield, and reduced cost. These and other sometimes unexpectedly advantageous features and benefits of the present invention can be understood by one of ordinary skill in the arts upon careful consideration of the detailed description of representative embodiments of the invention in connection with the accompanying drawings.
The present invention will be more clearly understood from consideration of the following detailed description and drawings in which:
References in the detailed description correspond to like references in the various drawings unless otherwise noted. Descriptive and directional terms used in the written description such as first, second, top, bottom, upper, side, et cetera, refer to the drawings themselves as laid out on the paper and not to physical limitations of the invention unless specifically noted. The drawings are not to scale, and some features of embodiments shown and discussed are simplified or amplified for illustrating principles and features, as well as anticipated and unanticipated advantages of the invention.
While the making and using of various exemplary embodiments of the present invention are discussed herein, it should be appreciated that the present invention provides inventive concepts which can be embodied in a wide variety of specific contexts. It should be understood that the invention may be practiced with semiconductor device packages of various types, configurations, and materials without altering the principles of the invention. For purposes of clarity, detailed descriptions of functions and systems familiar to those skilled in the semiconductor manufacturing equipment and processing arts are not included. In general, the invention provides apparatus and methods for attaching heat sinks and leadframes for use in semiconductor device packages.
Referring initially to
An example of the formation of a rivet 24 in the implementation of a preferred embodiment of the invention is shown in the series of figures,
An alternative view of an exemplary embodiment of a leadframe array assembly 10 is depicted in the side view of
In
In practicing the invention, in applications where it is desirable to locate the heat sinks on the bottom of the leadframes, the heat sink and leadframe arrays are preferably riveted together before attaching chips to their positions on the leadframes. In other applications, it is desirable to position the heat sink on the chip. in such cases the chips are affixed to the leadframes prior to riveting the heat sinks in place. The assembled leadframe array, heat sink array, and chips, are then encapsulated, preferably using block molding techniques. Subsequent to encapsulation, the array assemblies may be singulated as generally known in the arts to separate the individual packages. The heat sinks are secured immovably in place by the encapsulant, thus it is acceptable to singulate without regard to the rivet locations, sacrificing some or all of the rivets in some cases. Thus, integrated circuit packages may be provided without the use of rivets inside the finished package, and without the use of thermal compounds, welds, or tapes where avoidance of such materials is desired.
The methods and systems of the invention provide one or more advantages including but not limited to improved leadframe and IC package assembly methods, and improved apparatus advantageous in terms of thermal performance and cost. While the invention has been described with reference to certain illustrative embodiments, those described herein are not intended to be construed in a limiting sense. For example, variations or combinations of steps or materials in the embodiments shown and described may be used in particular cases without departure from the invention. Various modifications and combinations of the illustrative embodiments as well as other advantages and embodiments of the invention will be apparent to persons skilled in the arts upon reference to the drawings, description, and claims.
This application is entitled to priority based on Provisional Patent Application Ser. No. 60/896,141 filed on Mar. 21, 2007, which is incorporated herein for all purposes by this reference. This application and the Provisional Patent Application have at least one common inventor and are assigned to the same entity.
Number | Date | Country | |
---|---|---|---|
60896141 | Mar 2007 | US |