Field of the Invention
The invention relates to a line layout and a line layout method and more particularly relates to a spacer self-aligned quadruple patterning (SAQP) process and a line layout.
2. Description of Related Art
Due to the decreasing sizes of semiconductor devices, exposure technology that uses extreme ultraviolet (EUV) having a short wavelength of 13.5 nm has been proposed. However, such exposure technology requires high equipment costs and is not applicable for mass production. Therefore, it is expected to use the spacer self-aligned double patterning (SADP) technology to overcome the problems of the EUV exposure technology.
The spacer self-aligned double patterning is a technique that forms spacers on the sidewall of the first mask pattern, forms the second mask pattern between the spacers, and then removes the spacers. Through self-aligned double patterning, the spacing can be reduced to half of the spacing of the general lithography and etching process.
In addition, spacer self-aligned quadruple patterning technology has been proposed for further reducing the spacing on the basis of the self-aligned double patterning. The spacer self-aligned quadruple patterning is a technique that performs the self-aligned double patterning twice. However, the lines fabricated by the self-aligned quadruple patterning technique usually have much smaller spacing between the line ends, which may result in improper electrical connection between the lines. As an attempt to solve the above problem, currently the lithography and etching process is carried out several times in the spacer self-aligned quadruple patterning process in most cases. The lithography and etching processes effectively increase the spacing between line ends but raise the production costs and the fabrication complexity.
In view of the above, a technique that can effectively increase the spacing between line ends with fewer lithography processes is desired.
The invention provides a line layout and a line layout method adapted for effectively increasing spacing between line ends with use of fewer lithography processes.
The invention provides a spacer self-aligned quadruple patterning method of a line layout. The spacer self-aligned quadruple patterning method includes the following. A core layer is formed, wherein the core layer includes: a body layer including an end portion extending in a first direction; a first auxiliary layer connected with the end portion of the body layer; and two second auxiliary layers connected with two sides of the first auxiliary layer and extending in a second direction. A first spacer is formed on a sidewall of the core layer. The core layer is removed. A second spacer and a third spacer are formed on sidewalls of the first spacer, wherein the second spacer is disposed in the third spacer and includes two first protrusion portions corresponding to the second auxiliary layers. The first spacer is removed. A portion of the second spacer and a portion of the first protrusion portions are removed to form a first line and a second line. A portion of the third spacer is removed and a pattern transfer process is performed to form a third line and a fourth line, wherein the first line and the second line are disposed between the third line and the fourth line.
In an embodiment of the invention, a spacing between an endpoint of an end segment of the first line and an endpoint of an end segment of the second line in the second direction and a spacing between an endpoint of an end segment of the third line and an endpoint of an end segment of the fourth line in the second direction are respectively greater than or equal to a sum of a width of the first spacer and a width of the third spacer.
In an embodiment of the invention, the double of a width of the second spacer is greater than or equal to a length of each of the second auxiliary layers in the first direction.
In an embodiment of the invention, the step of removing the portion of the second spacer and the portion of the first protrusion portions and the step of removing the portion of the third spacer include: removing the second spacer, the third spacer, and the first protrusion portions located in a predetermined area that has a U shape. The predetermined area covers the portion of the second spacer corresponding to a bottom portion and a lower sidewall of the first auxiliary layer, the portion of the third spacer around the portion of the second spacer, and the portion of the first protrusion portions.
In an embodiment of the invention, the second auxiliary layers includes: two first extension portions connected with two sides of the first auxiliary layer and extending in the second direction; and two second extension portions connected with two sides of the first auxiliary layer and extending in the second direction, wherein the second extension portions are located at the bottom portion of the first auxiliary layer.
In an embodiment of the invention, a spacing between each of the first extension portions and the adjacent second extension portion in the first direction is smaller than or equal to a sum of the double of the width of the first spacer and the double of the width of the third spacer.
In an embodiment of the invention, a length of the second extension portions in the first direction is greater than or equal to a length of the first extension portions in the first direction.
In an embodiment of the invention, the third spacer further includes two second protrusion portions that extend in the second direction and protrude toward the second spacer.
In an embodiment of the invention, the step of removing the portion of the second spacer and the portion of the first protrusion portions and the step of removing the portion of the third spacer include: removing the second spacer, the third spacer, and the second protrusion portions located in a predetermined area that has a U shape, wherein the predetermined area covers the portion of the second spacer corresponding to the bottom portion and the lower sidewall of the first auxiliary layer, the portion of the third spacer around the portion of the second spacer, and the portion of the second protrusion portions, and extends in the first direction to an edge of the first protrusion portions.
In an embodiment of the invention, a material of the second spacer and the third spacer includes silicon oxide, silicon nitride, or a combination thereof.
The invention further provides a line layout that includes: a first line, a second line, a third line, and a fourth line respectively extending in a first direction, wherein the second line and the third line are disposed between the first line and the fourth line, and wherein an end segment of the second line and an end segment of the third line respectively comprise a first protrusion portion that extend in a second direction. The first protrusion portion of the end segment of the second line protrudes toward the first line. The first protrusion portion of the end segment of the third line protrudes toward the fourth line
In an embodiment of the invention, a spacing between an endpoint of an end segment of the first line and an endpoint of an end segment of the second line in the second direction is greater than or equal to a sum of a width of the first line and a spacing between an endpoint of an initial segment of the first line and an endpoint of an initial segment of the second line; and a spacing between an endpoint of an end segment of the fourth line and an endpoint of an end segment of the third line in the second direction is greater than or equal to a sum of a width of the fourth line and a spacing between an endpoint of an initial segment of the fourth line and an endpoint of an initial segment of the third line.
In an embodiment of the invention, a spacing between the endpoint of the end segment of the second line and the endpoint of the end segment of the third line in the second direction is greater than the spacing between the endpoint of the end segment of the first line and the endpoint of the end segment of the second line in the second direction and greater than the spacing between the endpoint of the end segment of the third line and the endpoint of the end segment of the fourth line in the second direction.
In an embodiment of the invention, the line layout further includes two islands. A first one of the two islands is between the first line and the first protrusion portion of the end segment of the second line. A second one of the two islands is between the fourth line and the first protrusion portion of the end segment of the third line.
In an embodiment of the invention, the end segment of the first line and the end segment of the fourth line respectively include two second protrusion portions that extend in the second direction. The two second protrusion portions of the end segment of the first line protrudes toward the second line. The two second protrusion portions of the end segment of the fourth line protrudes toward the third line.
In an embodiment of the invention, a length of the first protrusion portions in the second direction is greater than a length of the second protrusion portions in the second direction.
In an embodiment of the invention, the line layout further includes two islands. A first one of the two islands is between the second line and one of the two second protrusion portions of the end segment of the first line. A second one of the two islands is between the third line and one of the two second protrusion portions of the end segment of the fourth line.
The invention further provides a line layout that includes: a first line, a second line, a third line, and a fourth line each including an end segment having a stepped shape, wherein the second line and the third line are disposed between the first line and the fourth line is less than the number of steps of the end segments of the first line and the fourth line respectively, and the number of steps of the end segments of the second line and the third line is less than the number of steps of the end segments of the first line and the fourth line respectively.
In an embodiment of the invention, the steps of the end segment of the first line and the steps of the end segment of the second line are in the same trend, and the steps of the end segment of the second line and the steps of the end segment of the third line are in opposite trends.
In an embodiment of the invention, the first line, the second line, the third line, and the fourth line respectively extend in a first direction. The end segment of the second line and the end segment of the third line respectively include two first protrusion portions that extend in a second direction. The two first protrusion portions of the end segment of the second line protrudes toward the first line and the two first protrusion portions of the end segment of the third line protrudes toward the fourth line. The end segment of the first line and the end segment of the fourth line respectively comprise two second protrusion portions that extend in the second direction. The two second protrusion portions of the end segment of the first line protrudes toward the second line and the two second protrusion portions of the end segment of the fourth line protrudes toward the third line.
The end segment of the first line and the end segment of the fourth line respectively include two second protrusion portions that extend in the second direction and protrude toward the second line and the third line.
Based on the above, the invention utilizes the core layer formed with auxiliary layers that protrude toward two sides to effectively increase the spacing between the line ends with use of fewer lithography processes.
To make the aforementioned and other features and advantages of the invention more comprehensible, several embodiments accompanied with drawings are described in detail as follows.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the invention and, together with the description, serve to explain the principles of the invention.
In the first and the second embodiments of the invention, a spacer self-aligned quadruple patterning method is performed for forming the line layout.
With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
The first predetermined area 28 has a U shape, for example, which corresponds to first ends of the loops of the second spacer 22 and the third spacer 24 and a portion of the first protrusion portions 26. More specifically, the first predetermined area 28 includes a bottom area 28a and an extension area 28b. The bottom area 28a extends in the second direction D2 and the extension area 28b extends in the first direction D1. The bottom area 28a of the first predetermined area 28 needs to completely cover the second spacer 22 corresponding to a bottom portion of the first auxiliary layer 16 (
With reference to
With reference to
With reference to
The end segments of the first line 30 to the fourth line 36 connected with the pads 38 respectively have a stepped shape. The number of steps of the end segments of the second line 32 is less than the number of steps of the end segments of the first line 30 and the number of steps of the fourth line 36, and the number of steps of the third line 34 is less than the number of steps of the end segments of the first line 30 and the number of steps of the fourth line 36. The number of steps of the end segments of the second line 32 and the third line 34 is one respectively, and the number of steps of the end segments of the first line 30 and the fourth line 36 is two respectively, for example. In other words, the number of steps of the end segments of the second line 32 and the third line 34 is less than the number of steps of the end segments of the first line 30 and the fourth line 36 for one step. In addition, the steps of the end segments of the first line 30 and the second line 32 are connected with the pads 38 in a −X direction; and the steps of the end segments of the third line 34 and the fourth line 36 are connected with the pads 38 in an X direction. Simply put, the steps of the end segment of the first line 30 and the steps of the end segment of the second line 32 are in a trend while the steps of the end segment of the third line 34 and the steps of the end segment of the fourth line 36 are in another trend. However, the trend of the former two steps is opposite to the another trend of the latter two steps. It should be noted that the trend of the steps of the end segment of the second line 32 is opposite to the trend of the steps of the end segment of the third line 34. Therefore, a spacing P23 between the endpoint of the end segment of the second line 32 and the endpoint of the end segment of the third line 34 in the second direction D2 is greater than the spacing P1a between the endpoint of the end segment of the first line 30 and the endpoint of the end segment of the second line 32 in the second direction D2, and greater than the spacing P2a between the endpoint of the end segment of the third line 34 and the endpoint of the end segment of the fourth line 36 in the second direction D2. Thus, sufficient space is provided for disposing the pad 38 connected with the second line 32 and the pad 38 connected with the third line 34, and the fabrication tolerance is increased.
In addition, the spacing P1a between the endpoint of the end segment of the first line 30 and the endpoint of the end segment of the second line 32 in the second direction D2 is greater than or equal to a sum of the width of the first line 30 and a spacing P1b between an endpoint of an initial segment of the first line 30 and an endpoint of an initial segment of the second line 32. The spacing P2a between the endpoint of the end segment of the fourth line 36 and the endpoint of the end segment of the third line 34 in the second direction D2 is greater than or equal to a sum of the width of the fourth line 36 and a spacing P2b between an endpoint of an initial segment of the fourth line 36 and an endpoint of an initial segment of the third line 34. The spacing P1a is in a range of 65 nm to 465 nm, for example. The spacing P2a is in a range of 65 nm to 465 nm, for example. The spacings P1b and P2b are respectively in a range of 15 nm to 30 nm, for example. Because the spacings P1a and P2a are greater than the spacings P1b and P2b, when the pads 38 are formed, sufficient fabrication tolerance is provided.
The second embodiment of the invention is explained below. In the following paragraphs, descriptions of components identical to or similar to those of the first embodiment will not be repeated.
With reference to
With reference to
With reference to
What differentiates the second embodiment from the first embodiment is that, in the second embodiment, the second spacer 122, the third spacer 124, and the second protrusion portion 127 that are located in a U-shaped first predetermined area 128 and the second spacer 122 and the third spacer 124 that are located in a second predetermined area 129 are removed. More specifically, the U-shaped first predetermined area 128 includes a bottom area 128a and an extension area 128b. The bottom area 128a extends in the second direction D2 and the extension area 128b extends in the first direction D1. The bottom area 128a of the first predetermined area 128 needs to completely cover a portion of the second spacer 122 corresponding to the bottom portion of the first auxiliary layer 116 and a portion of the third spacer 124 around the portion of the second spacer 122, so as to ensure that the lines are formed with sufficient spacing therebetween. The extension area 128b of the first predetermined area 128 covers a portion of the second spacer 122 corresponding to the bottom portion and the lower sidewall of the first auxiliary layer 116 and a portion of the second protrusion portion 127 around the portion of the second spacer 122, and extends to an edge of the first protrusion portion 126 in the first direction D1. It should be noted that the extension area 128b of the first predetermined area 128 is disposed at least across the second protrusion portion 127 in the first direction D1 or even extends over a portion of the first protrusion portion 126, so as to ensure that the second protrusion portion 127 is cut in the second direction D2, thereby preventing short between the lines due to errors in the subsequent process of forming the pads. The size of the first predetermined area 128 may be varied as required as long as the first predetermined area 128 satisfies the aforementioned condition. By forming the first protrusion portion 126 and the second protrusion portion 127, tolerance of errors in the process of removing the portion of the second spacer 122, the portion of the third spacer 124, and the portion of the second protrusion portion 127 is enhanced effectively. A length L16 of the bottom area 128a of the first predetermined area 128 in the first direction D1 is in a range of 150 nm to 300 nm, and a length L17 thereof in the second direction D2 is in a range of 355 nm to 2455 nm, for example. A length L18 of the extension area 128b of the first predetermined area 128 in the first direction D1 is in a range of 120 nm to 150 nm, and a length L19 thereof in the second direction D2 is in a range of 50 nm to 450 nm, for example. The size range of the second predetermined area 129 in the second embodiment is the same as the size range of the second predetermined area 29 in the first embodiment. Thus, details thereof are not repeated here.
With reference to
With reference to
With reference to
Since the spacing respectively between the endpoints of the end segments of the first line 130, the second line 132, the third line 134, and the fourth line 136 connected with the pads 138 is much greater than the spacing respectively between the endpoints of the initial segments of the first line 130, the second line 132, the third line 134, and the fourth line 136 that are not connected with the pads 138, and the end segments of the first line 130 to the fourth line 136 are all in the stepped shape and the steps of the end segments of the second line 132 and the third line 134 have different trends form those of the steps of the end segments of the first line 130 and the fourth line 136, even in the case of erroneous alignment, sufficient fabrication tolerance is obtained in both the longitudinal and the lateral directions.
To sum up, the invention utilizes the core layer formed with auxiliary layers that protrude toward two sides to effectively increase the spacing between the line ends with use of fewer lithography processes, such that the production costs and fabrication complexity are reduced. By forming the auxiliary layers that protrude toward two sides on the core layer, sufficient distances are maintained in the lateral direction, and thus the tolerance for patterning of the lines and formation of the pads is enhanced. Moreover, when multiple sets of auxiliary layers that protrude toward two sides are formed in the extension direction of the core layer, in addition to the fabrication tolerance in the lateral direction, the fabrication tolerance in the longitudinal direction is also improved.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the invention covers modifications and variations provided that they fall within the scope of the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
20080299465 | Bencher | Dec 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20160099217 A1 | Apr 2016 | US |