The present invention relates to a liquid cooling system, and more particularly, to a liquid cooling module with independent liquid cooling circulation loop.
In electric vehicle batteries, fast charging or high load electron flow generates a large amount of heat, and excessive heat may damage the battery. In order to increase efficiency of the electric vehicle battery and maximize battery life, cooling system is required. According to different cooling designs, it can be classified into an air-cooled type, or a liquid cooling type, where liquid glycol is used as a coolant.
For liquid cooling type, the heat of the batteries is transferred to a liquid cooling circulation loop. That is, the glycol coolant is distributed throughout the battery pack to cool the battery cell, which may be realized by a strip-shaped metal cooling tube that runs through the entire battery pack and directly contacts the wall of the cylindrical core to remove heat, or by cooling plates placed between the battery cells, where separate coolant paths in the cooling plate that pass in parallel through the cooling plates, each of which is housed in a plastic frame, and then the frames with the cooling plates are stacked longitudinally to form the battery pack.
However, the applicant notices that there are some problems in the abovementioned cooling system. For example, the strip-shaped metal cooling tube is designed for a single large battery pack. In other words, it cannot be applied to the modularized battery module, which results in maintenance difficulties. Cooling plates placed between the battery cells for dissipating heat are required of pipelines for connection, so as to form a complete liquid cooling circulation loop. However, if a single battery cell is needed to be repaired, liquid coolant leakage problem may be occurs because of unwiring the pipelines for maintenance. In addition, the pipeline wiring is complicated and thus increasing difficulties of maintenance. Besides, liquid cooling circulation loop requires an external pump or a heat exchanger for heat dissipation, which takes up extra space in vehicle.
It is therefore an objective to provide a liquid cooling module to solve the above problem.
The present invention discloses a liquid cooling module. The liquid cooling module comprises a cooling plate, including a plurality of cooling channels for liquid flowing, and a pump block, integrated with the cooling plate and including a pump and a heat exchange chamber connecting to the plurality of cooling channels of the cooling plate, to form a circulation loop.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Reference is made to
Reference is made to
In an embodiment, the pump P1 is a miniature pump, and is complied with fluid dynamics principle, to realize liquid circulation for heat dissipation. For example, the piezoelectric pump in the heat exchange chamber 202 is powered by a single battery, wherein the battery is placed on the pump block 20, so as to save installation space.
Reference is made to
Note that, with the liquid cooling module HMD, it is convenient to repair a single battery of the battery system since there is no need of considering piping, water block, pump, heat exchanger deployment, etc., and thus extra space for water block installation, leakage problem or complex pipeline wiring is solved. That is, since every batteries is equipped with an independent circulating heat-dissipating unit (i.e. the liquid cooling module HMD), problems in the conventional liquid cooling system has be solved.
In conclusion, the present invention addresses the liquid cooling module an electric vehicle requiring high power output or a fast-charging in-vehicle battery system. In detail, the liquid cooling module includes a pump block integrated with the cooling plate to form a self-liquid cooling circulation loop. With the integrated design the space occupied by these components, such as water block, pipeline, etc., is reduced and battery maintenance is improved.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6203291 | Stemme | Mar 2001 | B1 |
20130209856 | Lev | Aug 2013 | A1 |
20150318587 | Kim | Nov 2015 | A1 |
20160211558 | Ma | Jul 2016 | A1 |
20170235350 | Tsai | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
10232692 | Feb 2004 | DE |
Number | Date | Country | |
---|---|---|---|
20200198496 A1 | Jun 2020 | US |