Allen (1997), “Progress in 193 nm Photoresists,” Semiconductor International, pp. 72-79. |
Crawford et al. (2000), “New Materials for 157 nm Photoresists: Characterization and Properties,” Advances in Resist Technology and Processing XVII, Proceedings of SPIE 3999:357-364. |
Ito et al. (1984), “Radical Reactivity and Q-e Values of Methyl α-(Trifluoromethyl)Acrylate,” Macromolecules 17(10):2204-2205. |
Kunz et al. (1999), “Outlook for 157-nm Resist Design,” Part of the SPIE Conference on Advances in Resist Technology and Processing XVI, SPIE 3678:13-23. |
Matsuzawa et al. (2000), “Theoretical Calculations of Photoabsorption of Molecules in the Vacuum Ultraviolet Region”, Advances in Resist Technology and Processing XVII, Proceedings of SPIE 3999:375-384. |
Patterson et al. (2000), “Polymers for 157 nm Photoresist Applications: A Progress Report,” Advances in Resist Technology and Processing XVII, Proceedings of SPIE 3999:365-374. |
Pryzbilla et al. (1992), “Hexafluoroacetone in Resist Chemistry: A Versatile New Concept for Materials for Deep UV Lithography,” Advances in Resist Technology and Processing IX, SPIE 1672:500-512. |
Schmalijohann et al. (2000), “Design Strategies for 157 nm Single-Layer Photoresists: Lithographic Evaluation of a Poly(α-Trifluoromethyl Vinyl Alcohol) Copolymer,” Advances in Resist Technology and Processing XVII, Proceedings of SPIE 3999:330-334. |
Abe et al. (1995), “Study of ArF Resist Material in Terms of Transparency and Dry Etch Resistance,” Journal of Photopolymer Science and Technology 8(4):637-642. |
Allen et al. (1995), “Resolution and Etch Resistance of a Family of 193 nm Positive Resists,” Journal of Photopolymer Science and Technology 8(4):623-636. |
Endert et al. (1999), “Microstructuring with 157 nm Laser Light,” SPIE 3618:413-417, Part of the SPIE Conference on Laser Applications in Microelectronic and Optoelectronic Manufacturing IV. |
Kunz et al. (1999), “Outlook for 157-nm Resist Design,” SPIE 3678:13-23, Part of the SPIE Conference on Advancees in Resist Technology and Processing XVI. |
Onishi et al. (1991), “Acid Catalyzed Resist for KrF Excimer Laser Lithography,” Journal of Photopolymer Science and Technology 4(3):337-340. |
Robin (1974), Higher Excited States of Polyatomic Molecules, vol. 1, pp. 254-265. |
Sandorfy et al. (1985), “Valence-Shell and Rydberg Transitions in Large Molecules,” Photophysics and Photochemistry in the Vacuum Ultraviolet, pp. 819-840. |
Chiba et al. (2000), “157 nm Resist Materials: A Progress Report,” Journal of Photopolymer Science and Technology 13(4):657-664. |
Ito et al. (1981), “Methyl Alpha-Trifluoromethylacrylate, an E-Beam and UV Resist,” IBM Technical Disclosure Bulletin 24(2):991. |
Ito et al. (1982), “Polymerization of Methyl α-(Trifluoromethyl)Acrylate and α-(Trifluoromethyl)Acrylonitrile and Copolymerization of These Monomers with Methyl Methacrylate,” Macromolecules 15:915-920. |
Ito et al. (1987), “Anionic Polymerization of α-(Trifluoromethyl)Acrylate,” Recent Advances in Anionic Polymerization, T.E. Hogen-Esch and J. Smid, Editors, Elsevier Science Publishing Co., Inc., pp. 412-430. |
Ito et al. (1998), “Synthesis and Evaluation of Alicyclic Backbone Polymers for 193 nm Lithography,” ACS Symposium Series 706, Micro-and Nanopatterning Polymers, pp. 208-223. |
Willson et al. (1983), “Poly(Methyl α-Trifluoromethylacrylate) as a Positive Electron Beam Resist,” Polymer Engineering and Science 23(18):1000-1003. |