Semiconductor device geometries have dramatically decreased in size since their introduction several decades ago. Modern semiconductor fabrication equipment routinely produces devices with 250 nm, 180 nm, and 65 nm feature sizes, and new equipment is being developed and implemented to make devices with even smaller geometries. The decreasing feature sizes result in structural features on the device having decreased spatial dimensions. The reduced dimensions, in turn, require the use of conductive materials having a very low resistivity and insulation materials having a very low dielectric constant.
Low dielectric constant films are particularly desirable for premetal dielectric (PMD) layers and intermetal dielectric (IMD) layers to reduce the RC time delay of the interconnect metalization, to prevent cross-talk between the different levels of metalization, and to reduce device power consumption. Undoped silicon oxide films deposited using early CVD techniques typically had a dielectric constant (k) in the range of 4.0 to 4.2. In contrast, various carbon-based dielectric layers that are now commonly used in the semiconductor industry have dielectric constants below 3.0. Many of these carbon-based layers are relatively unstable when initially deposited and are subsequently cured in an oxygen environment and/or annealed to increase the films stability.
Embodiments of the present invention pertain to a chamber adapted to simultaneously cure a batch of wafers. The chamber includes first and second batch processing areas that are each serviced by a wafer transport that supports a plurality of substrates, each positioned on dedicated wafer supports arranged in a parallel stack. In one embodiment the first batch processing area is directly below the second batch processing area and the wafer transport is operatively coupled to a rotating pedestal that raises and lowers the transport between the first and second processing areas.
While a variety of different processing operations can be performed in the first and second batch processing areas, some embodiments of the invention allow for a high temperature (e.g., 100-200 degrees Celsius), pressurized (e.g., 200-700 Torr) ozone cure process in the second batch processing area and a N2O steam anneal process in the first batch processing area. Additionally, the first batch processing area is used for loading and unloading wafers into the chamber.
In one embodiment, the invention pertains to a chamber for processing a plurality of wafers in batch mode. The chamber includes a vertically aligned housing having first and second processing areas separated by an internal divider, the first processing area positioned directly over the second processing area; a multi-zone heater operatively coupled to the housing to heat the first and second processing areas independent of each other; a wafer transport adapted to hold a plurality of wafers within the processing chamber and move vertically between the first and second processing areas; a gas distribution system adapted to introduce ozone into the second area and steam into the first processing area; and a gas exhaust system configured to exhaust gases introduced into the first and second processing areas.
In another embodiment, a substrate curing chamber for processing a plurality of wafers in batch mode is provided that includes a vertically aligned housing having first and second processing areas separated by an internal divider, the first processing area positioned directly over the second processing area; a multi-zone heater operatively coupled to the housing to heat the first and second processing areas independent of each other; a wafer transport adapted to hold a plurality of wafers within either the first or second processing area for processing; a first gas distribution system adapted to introduce a process gas through the first processing area and a second gas distribution system adapted to introduce a process gas through the second processing area; a gas exhaust system configured to exhaust process gases introduced into the first and second processing areas; a pedestal, operatively coupled to the wafer transport, to move the wafer transport into an upper position in which the plurality of wafers are positioned in the second processing area and a lower position in which the plurality of wafers are positioned in the first processing area; and an access door that can be moved between an open position in which wafers can be loaded onto and removed from the wafer transport and a closed sealed position.
Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the invention. Additionally, a further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings wherein like reference numerals are used throughout the several drawings to refer to similar components.
Pedestal 22 is further operatively coupled to a vertical actuator 24 that lifts and withdraws wafer transport 20 into and out of processing area 40 as described below. A slit valve 45 allows a robot (not shown) that is coupled to an indexer (also not shown) to load and unload individual wafers from wafer transport 20 when it is positioned within area 40. To load wafers into transport 20, the indexer raises or lowers the robot to a desired position and the robot then extends through slit valve 45 and places an individual wafer on a wafer support within transport 20. In one embodiment wafers are loaded (and unloaded) one wafer at a time onto empty wafer supports within wafer transport 20 until the transport is full. In another embodiment, the robot includes a plurality of separate arms, each holding a wafer, and can load (and unload) multiple wafers into transport 20 at a time.
Chamber 10 includes an outer wall 12 that encloses processing areas 30 and 40 and an interior divider 14 that marks a separation boundary between processing areas 30 and 40. Divider 14 has an interior gap that allows wafer transport 20 to be raised and lowered past the divider. As will be discussed later, when a top portion or bottom portion of wafer transport 20 aligns with divider 14, a pseudo seal is created that inhibits but does not completely prevent the flow of gases from area 30 to area 40 and vice versa. In one embodiment, a pressure equalization line (not shown) extends between the first and second batch processing areas to avoid large forces that might otherwise be induced on the wafer transport due to pressure gradients that might be created as it is moved by vertical actuator 24 from one processing region to the other.
Gases can be introduced into batch processing area 30 through a gas plenum 32 and exhausted from batch processing area 30 through an exhaust plenum 34. Similarly, gases can be introduced into batch processing area 40 through a gas plenum 42 and exhausted from batch processing area 40 through an exhaust plenum 44. Each of the gas plenums 32 and 42 include multiple gas inlets both horizontally and vertically along the interior surface of chamber 10 as discussed below. Similarly, each of the exhaust plenums 34 and 44 include multiple exhaust outlets arranged both horizontally and vertically along the opposing interior surface of chamber 10. In one embodiment, batch processing area 30 is particularly adapted for a batch ozone cure operation and sources of ozone (O3), oxygen (O2) and nitrogen (N2) are coupled to gas plenum 32, while batch processing area 40 is particularly adapted to a steam anneal operation and sources of molecular nitrogen (N2), oxygen (O2) and steam (H2O) are coupled to gas plenum 42.
A vacuum pump and sealed nature of chamber 10 enables vacuum processing within each of areas 30 and 40 at desired pressures selected based upon the substrate processing operation performed in each area. As particular examples, in one embodiment the vacuum pump evacuates the chamber to about 600 Torr for an ozone cure and between 1-5 Torr for a chamber clean step.
Additionally, a remote plasma system 50 can be mounted to an upper surface of chamber 10 and operatively coupled to one or more sources of cleaning gases (e.g., nitrogen trifluoride). The remote plasma system can be fluidly coupled to processing areas 30 and 40 in order to introduce activated cleaning species into each of processing areas 30 and 40 during a chamber cleaning operation to remove particles that may deposit on the interior surfaces of chamber 10 during processing. The chamber cleaning operation may occur, for example, at regular intervals after one or many batch curing steps and/or batch annealing steps in chambers 30 and 40, respectively. In one embodiment, during a clean step, a plasma of argon and NF3 is formed within remote plasma system 50 and activated clean species may flow directly into processing area 30 from the remote plasma system. Additional cleaning gases (e.g., more NF3) may also be introduced into area 30 by gas lines within gas plenum 32.
A heater (not shown) is operatively coupled to heat chamber 10 for curing and annealing operations (and for clean operations if desired). The heater includes at least first and second independently controlled heating zones that allow the temperature within processing area 30 to be set to a different temperature than that of processing area 40. Independent temperature sensors (not shown) are positioned to sense the temperature within each of processing areas 30 and 40 and can be used by a computer control system (not shown) to independently adjust the temperature of each of areas 30 and 40 as needed. In one embodiment, the heater includes a cylindrical band heater coupled to outer wall 12 along with heating elements coupled to top wall 12a and bottom wall 12b of the chamber. Other types of heaters can be used in other embodiments as would be understood by a person of ordinary skill in the art. Also, a thermal blanket may be wrapped around chamber 10 and its heating elements to minimize heat loss in some embodiments.
Additionally, some embodiments of the invention provide a dedicated gas line at the bottom portion of processing area 30 and/or at the bottom of processing area 40 that can be used to provide heated nitrogen (N2) to those processing areas to compensate for differences in temperature directly below the areas. As an example, in some instances, processing operations that are implemented in processing area 40 may occur at a temperature that is 100 degrees Celsius or more higher than the temperature that a processing operation implemented in area 30 is set to. Even though divider 14 and plates 26 and 28 provide thermal insulation between the two processing areas, to better compensate for this temperature difference, a plurality of dedicated gas inlets are located around the inner periphery of chamber 10 directly above divider 14. Gas may be heated and introduced through these inlets to provide additional heat in this area of the chamber when wafers are being processed in region 30 at a temperature higher than that of region 40. Alternatively, gas at room temperature or cooled may be introduced through these inlets to provide additional cooling in this area of the chamber when wafers are being processed in region 40 at a temperature lower than that of region 30. In another embodiment, the gas inlets can be located within either or both of plates 26 and 28.
Referring to
Wafer transport 20 further includes an upper thermal isolation plate 26 and a lower thermal isolation plate 28. Each of the thermal isolation plates 26 and 28 have a diameter that is slightly larger than that of wafers positioned within the transport.
Similarly, when wafer transport 20 is raised by pedestal 22 and vertical actuator to the position for processing the wafers 25 in upper processing area 30, an upper surface of lower thermal isolation plate 28 comes in contact with divider 14 to generally isolate the environment within upper processing area 30 from lower processing area 40. Furthermore, each of the isolation plates 26 and 28 can be made from a material with low thermal conductivity (e.g., a thermal plastic material or stainless steel) to thermally isolate the wafers 25 from the heaters in the top and bottom surfaces 12a and 12b of the chamber wall. Dividers 14 are also made from a similar low thermal conductivity material. Thus, the combination of dividers 14 and either upper or lower thermal isolation plate 26, 28 helps to thermally isolate processing areas 30 and 40 so they can be maintained at different operational temperatures.
Referring to
As previously mentioned, embodiments of the invention are particularly well suited for performing an ozone cure operation. Wafers can be transferred directly from a film deposition or formation chamber (e.g., where a carbon doped oxide or other film that needs to be cured is deposited) to batch processing area 40. If wafers are transferred into processing area one wafer at a time every 90 seconds and transport 20 holds 30 wafers, it will take over 30 minutes to completely fill the transport. In some instances, outgassing may still occur shortly after film deposition, so processing area 40 may also serve as a holding area where the wafers sit until outgassing has stabilized to a point where the amount of outgassing from the last wafer transferred to transport 20 is very close or identical to the amount of outgassing from the first wafer that may have had a layer deposited over it 30 minutes prior to the last wafer. In other embodiments, wafers are held in a separate holding area to allow for the equalization of outgassing and then transferred into processing area 40.
Once the wafers are ready, transport 20 is then moved up to processing area 40 where plate 28 forms a pseudo seal with divider 14. The wafers may then be subject to an ozone cure process. In one embodiment, nitrogen is first introduced into area 40 to heat the wafers to a desired temperature of between 105-200 degrees Celsius. Then, ozone is introduced to perform an ozone cure at a pressure of between 200-700 Torr (in one particular embodiment at 600 Torr). When the cure step is completed, the wafer transport can be lowered back to processing area 30 and the wafers can be subject to a lower temperature steam anneal or other post cure treatment process or may be transferred out of chamber 10 to another chamber altogether.
Curing chamber 10 can be operatively coupled to a multichamber substrate processing system such as a Centura™ or Producer™ system manufactured by Applied Materials. In such a system, the access door 45 (e.g., a slit valve) may open to an interior chamber of the multichamber system. Wafers may be moved into and out of chamber 10 through access door 45 by a robot.
While not shown in any of
After processing one or more batches of wafers in chamber 10, the chamber can be cleaned by flowing activated fluorine radicals generated in remote plasma system 50 into the chamber 10. Wafer transport 20 is generally placed in an intermediary position such neither top isolation plate 26 or bottom isolation plate 28 is in contact with divider 14 during the clean phase. In such a position an upper portion of the wafer transport is in processing area 30 while a lower portion of the transport is in processing area 40 and clean gases flow freely from area 30 around top plate 26 into area 40 to effect cleaning in both the upper and lower portions of chamber 10.
Having described several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the invention. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the precursor” includes reference to one or more precursor and equivalents thereof known to those skilled in the art, and so forth. Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.
This application claims the benefit of U.S. Provisional Patent Application No. 61/355,527, filed Jun. 16, 2010, which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4147571 | Stringfellow et al. | Apr 1979 | A |
4816098 | Davis et al. | Mar 1989 | A |
4818326 | Liu et al. | Apr 1989 | A |
4931354 | Wakino et al. | Jun 1990 | A |
5016332 | Reichelderfer et al. | May 1991 | A |
5110407 | Ono et al. | May 1992 | A |
5271972 | Kwok et al. | Dec 1993 | A |
5393708 | Hsia et al. | Feb 1995 | A |
5426076 | Moghadam | Jun 1995 | A |
5558717 | Zhao et al. | Sep 1996 | A |
5587014 | Leychika et al. | Dec 1996 | A |
5622784 | Okaue et al. | Apr 1997 | A |
5635409 | Moslehi | Jun 1997 | A |
5665643 | Shin | Sep 1997 | A |
5691009 | Sandhu | Nov 1997 | A |
5786263 | Perera | Jul 1998 | A |
5853607 | Zhao et al. | Dec 1998 | A |
5935340 | Xia et al. | Aug 1999 | A |
5937308 | Gardner et al. | Aug 1999 | A |
5937323 | Orczyk et al. | Aug 1999 | A |
6008515 | Hsia et al. | Dec 1999 | A |
6009830 | Li et al. | Jan 2000 | A |
6024044 | Law et al. | Feb 2000 | A |
6087243 | Wang | Jul 2000 | A |
6090723 | Thakur et al. | Jul 2000 | A |
6114219 | Spikes et al. | Sep 2000 | A |
6140242 | Oh et al. | Oct 2000 | A |
6146970 | Witek et al. | Nov 2000 | A |
6156394 | Yamasaki et al. | Dec 2000 | A |
6156581 | Vaudo et al. | Dec 2000 | A |
6165834 | Agarwal et al. | Dec 2000 | A |
6180490 | Vassiliev et al. | Jan 2001 | B1 |
6207587 | Li et al. | Mar 2001 | B1 |
6287962 | Lin | Sep 2001 | B1 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6383954 | Wang et al. | May 2002 | B1 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6406677 | Carter et al. | Jun 2002 | B1 |
6448187 | Yau et al. | Sep 2002 | B2 |
6503557 | Joret | Jan 2003 | B1 |
6506253 | Sakuma | Jan 2003 | B2 |
6508879 | Hashimoto | Jan 2003 | B1 |
6509283 | Thomas | Jan 2003 | B1 |
6524931 | Perera | Feb 2003 | B1 |
6528332 | Mahanpour et al. | Mar 2003 | B2 |
6544900 | Raaijmakers et al. | Apr 2003 | B2 |
6548416 | Han et al. | Apr 2003 | B2 |
6548899 | Ross | Apr 2003 | B2 |
6559026 | Rossman et al. | May 2003 | B1 |
6566278 | Harvey et al. | May 2003 | B1 |
6589868 | Rossman | Jul 2003 | B2 |
6596654 | Bayman et al. | Jul 2003 | B1 |
6602806 | Xia et al. | Aug 2003 | B1 |
6614181 | Harvey et al. | Sep 2003 | B1 |
6624064 | Sahin et al. | Sep 2003 | B1 |
6630413 | Todd | Oct 2003 | B2 |
6645303 | Frankel et al. | Nov 2003 | B2 |
6660391 | Rose et al. | Dec 2003 | B1 |
6676751 | Solomon et al. | Jan 2004 | B2 |
6683364 | Oh et al. | Jan 2004 | B2 |
6716770 | O'Neill et al. | Apr 2004 | B2 |
6756085 | Waldfried et al. | Jun 2004 | B2 |
6762126 | Cho et al. | Jul 2004 | B2 |
6787191 | Hanahata et al. | Sep 2004 | B2 |
6794290 | Papasouliotis et al. | Sep 2004 | B1 |
6818517 | Maes | Nov 2004 | B1 |
6819886 | Runkowske et al. | Nov 2004 | B2 |
6830624 | Janakiraman et al. | Dec 2004 | B2 |
6833052 | Li et al. | Dec 2004 | B2 |
6833322 | Anderson et al. | Dec 2004 | B2 |
6835278 | Selbrede et al. | Dec 2004 | B2 |
6858523 | Deboer et al. | Feb 2005 | B2 |
6867086 | Chen et al. | Mar 2005 | B1 |
6872323 | Entley et al. | Mar 2005 | B1 |
6890403 | Cheung | May 2005 | B2 |
6900067 | Kobayashi et al. | May 2005 | B2 |
6955836 | Kumagai et al. | Oct 2005 | B2 |
6958112 | Karim et al. | Oct 2005 | B2 |
7018902 | Visokay et al. | Mar 2006 | B2 |
7084076 | Park et al. | Aug 2006 | B2 |
7109114 | Chen et al. | Sep 2006 | B2 |
7115419 | Suzuki | Oct 2006 | B2 |
7122222 | Xiao et al. | Oct 2006 | B2 |
7129185 | Aoyama et al. | Oct 2006 | B2 |
7148155 | Tarafdar et al. | Dec 2006 | B1 |
7176144 | Wang et al. | Feb 2007 | B1 |
7183177 | Al-Bayati et al. | Feb 2007 | B2 |
7192626 | Dussarrat et al. | Mar 2007 | B2 |
7205248 | Li et al. | Apr 2007 | B2 |
7220461 | Hasebe et al. | May 2007 | B2 |
7297608 | Papasouliotis et al. | Nov 2007 | B1 |
7335609 | Ingle et al. | Feb 2008 | B2 |
7399388 | Moghadam et al. | Jul 2008 | B2 |
7419903 | Haukka et al. | Sep 2008 | B2 |
7435661 | Miller et al. | Oct 2008 | B2 |
7456116 | Ingle et al. | Nov 2008 | B2 |
7498273 | Mallick et al. | Mar 2009 | B2 |
7524735 | Gauri et al. | Apr 2009 | B1 |
7524750 | Nemani et al. | Apr 2009 | B2 |
7541297 | Mallick et al. | Jun 2009 | B2 |
7745352 | Mallick et al. | Jun 2010 | B2 |
7790634 | Munro et al. | Sep 2010 | B2 |
7803722 | Liang | Sep 2010 | B2 |
7825038 | Ingle et al. | Nov 2010 | B2 |
7825044 | Mallick et al. | Nov 2010 | B2 |
7867923 | Mallick et al. | Jan 2011 | B2 |
7902080 | Chen et al. | Mar 2011 | B2 |
7935643 | Liang et al. | May 2011 | B2 |
7943531 | Nemani et al. | May 2011 | B2 |
7989365 | Park et al. | Aug 2011 | B2 |
7994019 | Kweskin et al. | Aug 2011 | B1 |
20010021595 | Jang et al. | Sep 2001 | A1 |
20010029114 | Vulpio et al. | Oct 2001 | A1 |
20010038919 | Berry et al. | Nov 2001 | A1 |
20010054387 | Frankel et al. | Dec 2001 | A1 |
20020048969 | Suzuki et al. | Apr 2002 | A1 |
20020081817 | Bhakta et al. | Jun 2002 | A1 |
20020127350 | Ishikawa et al. | Sep 2002 | A1 |
20020142585 | Mandal | Oct 2002 | A1 |
20020146879 | Fu et al. | Oct 2002 | A1 |
20020164891 | Gates et al. | Nov 2002 | A1 |
20030040199 | Agarwal | Feb 2003 | A1 |
20030064154 | Laxman et al. | Apr 2003 | A1 |
20030118748 | Kumagai et al. | Jun 2003 | A1 |
20030124873 | Xing et al. | Jul 2003 | A1 |
20030143841 | Yang et al. | Jul 2003 | A1 |
20030159656 | Tan et al. | Aug 2003 | A1 |
20030172872 | Thakur et al. | Sep 2003 | A1 |
20030199151 | Ho et al. | Oct 2003 | A1 |
20030232495 | Moghadam et al. | Dec 2003 | A1 |
20040008334 | Sreenivasan et al. | Jan 2004 | A1 |
20040020601 | Zhao et al. | Feb 2004 | A1 |
20040048492 | Ishikawa et al. | Mar 2004 | A1 |
20040065253 | Pois et al. | Apr 2004 | A1 |
20040079118 | M'Saad et al. | Apr 2004 | A1 |
20040146661 | Kapoor et al. | Jul 2004 | A1 |
20040152342 | Li et al. | Aug 2004 | A1 |
20040161899 | Luo et al. | Aug 2004 | A1 |
20040175501 | Lukas et al. | Sep 2004 | A1 |
20040180557 | Park et al. | Sep 2004 | A1 |
20040185641 | Tanabe et al. | Sep 2004 | A1 |
20040219780 | Ohuchi | Nov 2004 | A1 |
20040231590 | Ovshinsky | Nov 2004 | A1 |
20040241342 | Karim et al. | Dec 2004 | A1 |
20050001556 | Hoffman et al. | Jan 2005 | A1 |
20050019494 | Moghadam et al. | Jan 2005 | A1 |
20050026443 | Goo et al. | Feb 2005 | A1 |
20050062165 | Saenger et al. | Mar 2005 | A1 |
20050087140 | Yuda et al. | Apr 2005 | A1 |
20050118794 | Babayan et al. | Jun 2005 | A1 |
20050142895 | Ingle et al. | Jun 2005 | A1 |
20050153574 | Mandal | Jul 2005 | A1 |
20050181555 | Haukka et al. | Aug 2005 | A1 |
20050186731 | Derderian et al. | Aug 2005 | A1 |
20050186789 | Agarwal | Aug 2005 | A1 |
20050196533 | Hasebe et al. | Sep 2005 | A1 |
20050227499 | Park et al. | Oct 2005 | A1 |
20050250340 | Chen et al. | Nov 2005 | A1 |
20050260347 | Narwankar et al. | Nov 2005 | A1 |
20060011984 | Curie | Jan 2006 | A1 |
20060014399 | Joe | Jan 2006 | A1 |
20060030165 | Ingle et al. | Feb 2006 | A1 |
20060046506 | Fukiage | Mar 2006 | A1 |
20060055004 | Gates et al. | Mar 2006 | A1 |
20060068599 | Baek et al. | Mar 2006 | A1 |
20060075966 | Chen et al. | Apr 2006 | A1 |
20060096540 | Choi | May 2006 | A1 |
20060110943 | Swerts et al. | May 2006 | A1 |
20060121394 | Chi | Jun 2006 | A1 |
20060162661 | Jung et al. | Jul 2006 | A1 |
20060178018 | Olsen | Aug 2006 | A1 |
20060223315 | Yokota et al. | Oct 2006 | A1 |
20060228903 | McSwiney et al. | Oct 2006 | A1 |
20060252240 | Gschwandtner et al. | Nov 2006 | A1 |
20060281496 | Cedraeus | Dec 2006 | A1 |
20060286776 | Ranish et al. | Dec 2006 | A1 |
20070020392 | Kobrin et al. | Jan 2007 | A1 |
20070026689 | Nakata et al. | Feb 2007 | A1 |
20070031598 | Okuyama et al. | Feb 2007 | A1 |
20070049044 | Marsh | Mar 2007 | A1 |
20070077777 | Gumpher | Apr 2007 | A1 |
20070092661 | Ryuzaki et al. | Apr 2007 | A1 |
20070128864 | Ma et al. | Jun 2007 | A1 |
20070134433 | Dussarrat et al. | Jun 2007 | A1 |
20070166892 | Hori | Jul 2007 | A1 |
20070173073 | Weber | Jul 2007 | A1 |
20070181966 | Watatani et al. | Aug 2007 | A1 |
20070232071 | Balseanu et al. | Oct 2007 | A1 |
20070232082 | Balseanu et al. | Oct 2007 | A1 |
20070275569 | Moghadam et al. | Nov 2007 | A1 |
20070281495 | Mallick et al. | Dec 2007 | A1 |
20070281496 | Ingle et al. | Dec 2007 | A1 |
20080000423 | Fukiage | Jan 2008 | A1 |
20080085607 | Yu et al. | Apr 2008 | A1 |
20080102223 | Wagner et al. | May 2008 | A1 |
20080102650 | Adams et al. | May 2008 | A1 |
20080188087 | Chen et al. | Aug 2008 | A1 |
20080206954 | Choi et al. | Aug 2008 | A1 |
20080260969 | Dussarrat et al. | Oct 2008 | A1 |
20080318429 | Ozawa et al. | Dec 2008 | A1 |
20090035917 | Ahn et al. | Feb 2009 | A1 |
20090053901 | Goto et al. | Feb 2009 | A1 |
20090061647 | Mallick et al. | Mar 2009 | A1 |
20090104755 | Mallick et al. | Apr 2009 | A1 |
20090104790 | Liang | Apr 2009 | A1 |
20090203225 | Gates et al. | Aug 2009 | A1 |
20090325391 | De Vusser et al. | Dec 2009 | A1 |
20100221925 | Lee et al. | Sep 2010 | A1 |
20110014798 | Mallick et al. | Jan 2011 | A1 |
20110034035 | Liang et al. | Feb 2011 | A1 |
20110034039 | Liang et al. | Feb 2011 | A1 |
20110045676 | Park et al. | Feb 2011 | A1 |
20110111137 | Liang et al. | May 2011 | A1 |
20110129616 | Ingle et al. | Jun 2011 | A1 |
20110136347 | Kovarsky et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
19654737 | Jul 1997 | DE |
0892083 | Jan 1999 | EP |
1717848 | Nov 2006 | EP |
01241826 | Sep 1989 | JP |
10-2004-0091978 | Nov 2004 | KR |
10-2005-0003758 | Jan 2005 | KR |
10-2005-0094183 | Sep 2005 | KR |
WO 02077320 | Oct 2002 | WO |
WO 03066933 | Aug 2003 | WO |
WO 2005078784 | Aug 2005 | WO |
WO 2007040856 | Apr 2007 | WO |
WO 2007140376 | Dec 2007 | WO |
WO 2007140424 | Dec 2007 | WO |
Entry |
---|
Aylett, B. J. et al., “Silicon-Nitrogen Compounds. Part V. Diphenylamino-derivatives of Silane,” J. Chem. Soc. (A), 1969, pp. 636-638. |
Aylett, B. J. et al., “Silicon-Nitrogen Compounds. Part VI. The Preparation and Properties of Disilazane,” J. Chem. Soc. (A), 1969, pp. 639-642. |
Aylett, B. J. et al., “The Preparation and Some Properties of Disilyiamine-Correspondence,” Inorganic Chemistry, 1966, p. 167. |
Beach, David B., “Infrared and Mass Spectroscopic Study of the Reaction of Silyl Iodide and Ammonia. Infrared Spectrum to Silylamine,” Inorganic Chemistry, 1992, pp. 4174-4177, vol. 31 No. 20. |
Burg, Anton B. et at “Silyl-Amino Boron Compounds,” J. Amer. Chem. Soc., Jul. 1950, pp. 3103- 3107, vol. 72. |
Coltrin, M.E., et al., “Chemistry of AlGaN Particulate Formation,” National Nuclear Security Administration, Physical, Chemical, & Nano Sciences Center, Research Briefs, 2005, pp. 42-43. |
Davison, A et al., “The Raman Spectra of Manganese and Rhenium Carbonyl Hydrides and Some Related Species,” Inorganic Chemistry, Apr. 1967, pp. 845-847, vol. 6 No. 4. |
Dussarrat, C. et al., “Low Pressure Chemical Vapor Deposition of Silicon Nitride Using Mono- and Disilyiamine,” Chemical Vapor Deposition XVI and EUROCVD 14 vol. 2 Proceedings of the International Symposium, Part of the 203rd Electrochemical Society Meeting in Paris France, Apr. 27-May 2, 2003, 11 pages. |
Gulleri, G. et al., “Deposition Temperature Determination of HDPCVD Silicon Dioxide Films,” 2005, Microelectronic Engineering, vol. 82, pp. 236-241. |
Kang, Hun, “A Study of the Nucleation and Formation of Multi-functional Nanostructures using GaN-Based Materials for Device Applications,” Georgia Institute of Technology, Doctor of Philosophy in the School of Electrical & Computer Engineering Dissertation, Dec., 2006, p. 14. |
Lee, Eun Gu, et at “Effects of Wet Oxidation on the Electrical Properties of sub-10 nm thick silicon nitride films”, Thin Solid Films, Elsevier-Sequoia S.A. Lausanne, Ch. vol. 205, No. 2, Dec. 1, 1991, pp. 246-251. |
Lucovsky, G. et al., “Deposition of silicon dioxide and silicon nitride by remote plasma enhanced chemical vapor deposition,” Journal of Vacuum Science & Technology, vol. 4, No. 3, May-Jun. 1986, pp. 681-688. |
Norman, Arlan D. et al., “Reaction of Silylphosphine with Ammonia,” Inoragnic Chemistry, 1979, pp. 1594-1597, vol. 18 No. 6. |
Sujishi, Sei et al., “Effect of Replacement of Carbon by Silicon in Trimethylamine on the Stabilities of the Trimethylboron Addition Compounds. Estimation of the Resonance Energy for Silicon-Nitrogen Partial Double Bond,” Amer. Chem. Soc., Sep. 20, 1954, pp. 4631-4636, vol. 76. |
Tsu, D. V. et al., “Silicon Nitride and Silicon Diimide Grown by Remote Plasma Enhanced Chemical Vapor Deposition”, Journal of Vacuum Science and Technology: Part A, AVS/AIP, Melville, NY.; US, vol. 4, No. 3, Part 01, May 1, 1986, pp. 480-485. |
Ward, L. G. L. et al., “The Preparation and Properties of Bis-Disilanyl Sulphide and Tris-Disilanylamine,” J. Inorg. Nucl. Chem., 1961, pp. 287-293, vol. 21, Pergamon Press Ltd., Northern Ireland. |
Ward, Laird G. L., “Bromosilane, Iodosilane, and Trisilylamine,” Inorganic Syntheses, 1968, pp. 159-170, vol. 11. |
Zuckerman, J.J., “Inorganic Reactions and Methods,” Formation of Bonds to N, P, As, Sb, Bi (Part 1), ISBN-0-89573-250-5, 1998, 5 pages, vol. 7, VCH Publishers, Inc., New York. |
Number | Date | Country | |
---|---|---|---|
20120145079 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61355527 | Jun 2010 | US |