a depicts a cross-sectional view of portions of a phosphoresist material being exposed by short-wavelength electromagnetic energy through open patterns of an opaque mask layer according to an embodiment of the invention.
b depicts a cross-sectional view of portions of a phosphoresist material including activated phosphor material according to an embodiment of the invention.
c depicts a cross-sectional view of a phosphoresist material being exposed by a longer wavelength electromagnetic energy according to embodiments of the invention.
d depicts a cross-sectional view of a cured phosphoresist material according to embodiments of the invention.
e depicts a cross-sectional view of a phosphoresist material including portions where exposed phosphoresist has been removed by a developer according to embodiments of the invention.
For descriptive purposes within this specification, a phosphoresist is a resist material which includes a photostimulated phosphor material. A phosphoresist may be patterned in three operations. The first operation involves a patterning exposure of those areas intended to be patterned, using a low dosage energy at a relatively short wavelength exposure bandwidth. The second operation includes a flood exposure of the resist using a bandwidth of higher dosage, longer wavelength energy than that used for the patterning exposure. The last operation includes developing (clearing) those areas of the phosphoresist exposed by the patterning exposure (in the case of a positive tone system, or alternatively, in a negative tone system, clearing the non-patterned phosphoresist and leaving in place the patterned phosphoresist).
The patterning exposure of the first operation activates a phosphor material in the resist, such that it becomes reactive to electromagnetic energy in the longer wavelength bandwidth of the high dosage flood exposure. The nature of the reactivity is that, when exposed to the longer wavelength energy, luminescent centers of the phosphor material emit electromagnetic energy in a third bandwidth, generally at a different wavelength than either the patterning bandwidth or the flood exposure bandwidth. Electrons of the luminescent centers continually cycle between an excited state and a lower energy state for as long as the flood exposure continues, emitting luminescent energy with each return to the lower energy state.
The resist material, which generally is only marginally soluble (or even insoluble) to a developer in a positive tone system, and is relatively insensitive (transparent) to energy in the patterning and flood exposure wavelengths, is converted to a more developer-soluble state in a photochemical reaction driven by one or more wavelengths in the bandwidth of energy emitted by the luminescent centers. In addition to becoming more soluble, the converted resist material also bleaches, becoming more transparent to the emitted wavelength of energy from the luminescent centers and allowing that energy to penetrate farther through the resist. Thus, the longer the flood exposure continues, the farther the zone of converted resist extends away from each luminescent center. Although a phosphoresist is described relating to a positive tone system herein, the embodiments are not so limited. For example, a phosphoresist can also be used in a negative tone system according to alternative embodiments, wherein the luminescent energy drives a reaction that converts the patterned resist into a form that is more resistant to dissolution in a developer.
As described according to embodiments of the invention, patterns are defined in a resist material using a high resolution, low dose patterning energy, and development of the defined patterns may be tuned based on the density of a phosphor material included within the resist, and by varying the duration of the relatively high dose, longer wavelength flood exposure. By the materials and operations described herein, small, finely resolved features can be lithographically produced using existing lithographic equipment and materials, largely obviating the need for increased capital expenditure to develop new equipment and replace existing manufacturing lines.
With reference to
With reference to an embodiment depicted in
Other forms of pattern transfer, such as a reflective mask, are also used in alternative embodiments of the invention. Regarding a reflective mask, rather than patterning energy penetrating through transparent portions of a mask and exposing the phosphoresist, the patterning energy is reflected off reflective patterns of a mask to expose the resist. Energy striking portions of the mask which do not contain reflective patterns, correspondingly, do not reflect patterning energy onto the resist.
According to alternate embodiments, the patterning energy comprises a narrow beam of energy rather than a flood exposure, capable of high resolution exposure of very small areas of phosphoresist in a scanning or ‘step and repeat’ spot exposure, and a mask 209 is not used. However, it is also possible to use a mask in such alternate embodiments, as it may aid the high resolution patterning of some features in a phosphoresist.
As discussed, the phosphoresist 202 includes a phosphor material that is sensitive to activation energies in the short wavelengths, including energies in any one of the VUV, EUV, and X-ray bandwidths. One example of a photostimulated phosphor material is BaFBr, with trace amounts of Eu2+ luminescent centers, which absorbs energy in the short wavelengths of the patterning energy. Exposure to a patterning energy induces ‘excited’ valence electrons to move toward the halogen ions from the Eu2+ ions, forming localized, metastable color centers. Excitation of the Eu2+ luminescent centers has been shown to take place with activation energies as low as 6.9 eV, which can be provided by a low dosage, short wavelength exposure that would otherwise be insufficient to expose the full thickness of a conventional PAC (photoactive compound) or PAG (photo-acid generator) containing resist. Therefore, exposing luminescent centers to patterning energies exceeding an excitation energy threshold (e.g., 6.9 eV) will activate the luminescent centers of the phosphor material. The more Eu2+ ions are present in the phosphoresist, the more luminescent centers may be formed by the patterning exposure, potentially improving the resolution of subsequently developed patterns in the resist. Further, luminescent centers remain in an activated state for up to several days, providing a sufficient time window to accomplish subsequent exposure operations in a high volume manufacturing environment.
With reference to
Referring again to
In response to exposure to the amplification energy 227, electrons in the luminescent centers cycle between an excited state and a lower energy state, emitting luminescence with each return to the lower energy state. Cycling between states continues as long as exposure to the amplification energy continues, providing a method to control the extent of exposure of the resist material to the emitted luminescent energy by controlling the duration of exposure to the amplification energy. The emitted luminescence, or luminescent energy, generally comprises energy at a third bandwidth, which includes a different wavelength of energy from either the patterning energy or the amplification energy. In one example, the bandwidth of the emitted luminescence includes energy at the 400 nm wavelength.
As the amplification energy penetrates throughout the thickness of the resist material, substantially all of the activated luminescent centers throughout the resist thickness emit luminescence simultaneously. At least a portion of the bandwidth of the luminescent energy includes energy at an operative wavelength, that is, a wavelength or bandwidth of wavelengths capable of initiating conversion of the resist, as discussed below. The luminescent energy travels outward through the resist from the luminescent centers until it is absorbed by a molecule of a PAC in the resist material (when the resist is a non-chemically amplified resist) (e.g., novolac) or a PAG molecule in the resist material (when the resist is a chemically amplified resist). The resist material generally also includes a polymer which may be transparent to the luminescent energy, so the polymer does not substantially impede the transmission of the luminescent energy through the resist material. PAC molecules normally act as a dissolution inhibitor for a resist polymer material. However, upon absorbing the luminescent energy, the PAC molecules undergo a photochemical process which alters the solubility of the resist material (referred to hereinafter as ‘conversion’ of the resist), rendering it more soluble to a conventional developer solution (when part of a positive tone system, or, rendering the patterned resist less soluble to a developer solution when part of a negative tone system). Luminescence from a single luminescent center can affect numerous PAC molecules in numerous directions substantially simultaneously. Therefore, conversion takes place in multiple directions outward from each luminescent center throughout the duration of exposure to amplification energy.
With reference to
A primary regulating measure is simply to terminate exposure of the luminescent centers to the amplification energy. By removing the amplification energy, the luminescent centers will cease to cycle between the excited and lower energy states, and ceasing to emit luminescence. Without the luminescent energy in the operative wavelength (e.g., 400 nm), additional PAC molecules are not activated, and already existing PAC-based photochemical reactions quickly exhaust themselves, ending conversion of resist. Thus, although terminating exposure to amplification energy may not immediately terminate resist conversion, it removes the driving mechanism for the electronic cycling of the luminescent centers, and the subsequent chain of events leading to resist conversion is not sustained.
Conversion can also be slowed by including a dye that absorbs energy in the operative wavelength, for example, 400 nm, in the resist material. While the bleaching of PAC molecules allows luminescent energy to pass through the resist relatively unimpeded, inclusion of a dye in the resist provides an impediment to luminescent energy transmission. Depending on the amount of such dye included in the resist, the distance that emitted luminescence can travel beyond the luminescent centers and through the resist may be limited to varying degrees. Therefore, the amount of dye can be adjusted to regulate the range of transmission, as well as to tune the absorbance of the resist to a specific wavelength or bandwidth of energy. Likewise, although perhaps less preferred, the structure of a polymer or PAG in the resist can be modified to adjust or tune the overall energy absorbance of the resist. These methods are useful for regulating expansion of the range of PAC activation and resist conversion.
Alternatively, the density of luminescent centers provided in the resist can be kept fairly low. While this helps to regulate the rate and range of resist conversion, it can negatively impact the resolution of patterns, and necessitate longer amplification exposure to assure sufficient clearing (development) of resist in the patterned areas. For example, luminescent centers generally emit luminescent energy outward in all directions, in a roughly spherical pattern outward from the centers. As the luminescent energy causes PAC photochemical reactions, the subsequent bleaching of PAC molecules progresses outward from each luminescent center, increasing the size of each ‘sphere’ of luminescent energy transmission. Therefore, the ‘surface’ of each sphere defines an expanding curve through the resist material as long as amplification energy continues to be provided. When the density of luminescent centers in a resist material is low, each sphere of luminescent energy transmission generally will expand until it intersects with the similarly expanding transmission spheres of adjacent luminescent centers. Eventually, substantially all of the resist material between the luminescent centers and within the boundaries of the exposure pattern 203 is converted. However, in that situation, the convergence of the curved surfaces of numerous expanded transmission spheres at the outer limit of an area of converted resist will form a boundary defined by relatively large curves, rather than a boundary defined by, or defining, a smooth and straight line. When the converted resist is developed away, the resulting patterns will exhibit substantial line edge roughness.
In an alternate situation, however, the density of luminescent centers provided in a phosphoresist material is relatively high. In this alternate situation, the outwardly expanding spheres of transmitted luminescent energy from each luminescent center will intersect those of adjacent centers while the spheres are still relatively small, and a relatively short duration amplification exposure is sufficient to convert substantially all of the resist within the patterned areas. As a result, the boundary or line edge of a pattern is defined by a large number of relatively small curves, rather than a small number of relatively large curves, and will yield a smoother line edge in the developed patterns. Therefore, a relatively higher density of luminescent centers in a phosphoresist can provide better image resolution and improved line edge roughness.
Other embodiments of a phosphoresist include a PAG, or photo-acid-generator, rather than a PAC as described above. When using a PAG-containing phosphoresist, the emitted luminescence energy from the luminescent centers causes the PAG to release acid into the resist in the exposed areas. Referring to
With reference to
As described, a phosphoresist can include a polymer, which is generally substantially transparent to energy in the patterning, amplification, and luminescent energy wavelengths. It may also include either a PAG or a PAC which is substantially transparent at the patterning and amplification wavelengths, but absorbs energy in a wavelength of the luminescent energy. A phosphoresist also includes a phosphor material, such as BaFBr:Eu2+, from which the Eu2+ are activated at the patterning wavelength, and which emit energy at a luminescent wavelength when exposed to energy at an amplification wavelength. A phosphoresist may also, in embodiments, include a dye that is relatively opaque to energy at a luminescent wavelength, in an amount tuned to prevent excessive conversion of resist material beyond the patterned areas. A phosphoresist may include other materials in alternate embodiments, as may be useful for preparing, coating/applying, curing, or developing the resist material. Further, a phosporesist according to embodiments of this invention can be formulated for an aqueous developer, an organic solvent developer, or another form of developer, without departing from the spirit of the embodiments described herein. Nor are the embodiments limited by the exact source of the patterning or amplification energies, nor by the method by which those energies are caused to encounter the resist.
The foregoing detailed description and accompanying drawings are only illustrative and not restrictive. They have been provided primarily for a clear and comprehensive understanding of the embodiments of the invention, and no unnecessary limitations are to be understood therefrom. Numerous additions, deletions, and modifications to the embodiments described herein, as well as alternative arrangements, may be devised by those skilled in the art without departing from the spirit of the embodiments and the scope of the appended claims.