The present invention relates to the field of remotely actuated mechanical systems and more particularly to a mechanical teleoperated device for remote manipulation for use primarily in minimally invasive surgical procedures, using small size access incisions into the patient body. Specifically, the present invention relates to a mechanical teleoperated device with improved kinematics and arrangement of constraints allowing for better positioning of the device over a patient, increased workspace inside the patient and better integration into operating room workflow. This device is also adapted for any suitable remote actuated application requiring a dexterous manipulation with high stiffness, precision and quality force feedback such as assembly manipulation, manipulation in narrow places, manipulation in dangerous or difficult environments, and manipulation in contaminated or clean environments.
Open surgery is still the standard technique for most surgical procedures. It has been used by the medical community for several decades and consists of performing the surgical tasks by a long incision in the abdomen, through which traditional surgical tools are inserted. However, due to the long incision, this approach is extremely invasive for the patients, resulting in substantial blood loss during the surgery and long and painful recovery periods at the hospital.
In order to reduce the invasiveness of open surgery, laparoscopy, a minimally invasive technique, was developed. Instead of a single long incision, four to five small incisions are made in the patient through which long and thin surgical instruments and endoscopic cameras are inserted. Because of the low invasiveness, this technique reduces blood loss and shortens hospital stays and pain. When performed by experienced surgeons, this technique can attain clinical outcomes similar to open surgery. However, despite the above-mentioned advantages, laparoscopy requires extremely advanced surgeon skills to manipulate the rigid and long instrumentation. The entry incision acts as a point of rotation, decreasing the freedom for positioning and orientating the instruments inside the patient. The movements of the surgeon's hand about this incision are inverted and scaled-up relative to the instrument tip (“fulcrum effect”), which removes dexterity, sensibility and magnifies the tremors of the surgeon's hands. In addition, these long and straight instruments force the surgeons to work in a uncomfortable posture for hands, arms and body, which can be tremendously tiring during several hours of operation. Therefore, due to these drawbacks of the laparoscopic instrumentation, these minimally invasive techniques are mainly limited to use in simple surgeries, while only a small minority of surgeons is able to use them in complex procedures.
To overcome these limitations, surgical robotic systems were developed to provide an easier-to-use approach to complex minimally invasive surgeries. By means of a computerized robotic interface, these systems enable the performance of a remote laparoscopy where the surgeon sits at a console manipulating two master manipulators to perform the operation through several small incisions. Like laparoscopy, the robotic approach is also minimally invasive, bringing several advantages over open surgery in terms of pain, blood loss, and recovery time. In addition, it also offers better ergonomy for the surgeon compared to open and laparoscopic techniques. However, although being technically easier, Robotic Surgery brings several negative aspects. A major disadvantage of these systems is related with the extremely high complexity of the existing robotic devices, which are composed by complex mechatronic systems, leading to huge costs of acquisition and maintenance, which are not affordable for the majority of surgical departments worldwide. Another drawback of these systems comes from the fact that current surgical robots are voluminous, competing for precious space within the operating room environment and significantly increasing preparation time. Access to the patient is thus impaired, which, together with the lack of force-feedback, raises safety concerns.
WO9743942, WO9825666 and US2010011900 disclose a robotic tele-operated surgical instrument, designed to replicate surgeons' hand movements inside the patient's body. By means of a computerized, robotic interface, it enables the performance of a remote Laparoscopy where the surgeon sits at a console manipulating two joysticks to perform the operation through several small incisions. However, this system does not have autonomy or artificial intelligence, being essentially a sophisticated tool fully controlled by the surgeon. The control commands are transmitted between the robotic master and robotic slave by a complex computer-controlled mechatronic system, which is extremely costly to produce and maintain and difficult to use by the hospital staff.
WO 2008130235 discloses a less complex mechanical manipulator for an instrument for minimally invasive surgery, having at a proximal end a handle for operating the instrument connected at a distal end of the manipulator. A parallelogram construction is provided between the proximal end and the distal end for guaranteeing an unambiguous position relationship between the handle and the instrument. This parallelogram construction is coupled with a system of bars for controlling the position of the parallelogram construction. The bars of the system are connected to the parallelogram construction as well as to each other by means of cardan joints.
The parallelogram constraint imposed by this mechanical manipulator renders it difficult to obtain a scaled ratio other than 1:1 between the amplitude of the movements applied on the handle of this manipulator and the amplitude of the movements reproduced by the instrument connected at the distal end of the manipulator. This reduces the precision of the manipulator which is at the utmost importance for surgical intervention. In addition, due to the high inertia of the rigid elements of the parallelogram construction, this mechanical manipulator should provide poor haptic transparency to the user. Another issue of this system is related with the fact that the first degree of freedom of the parallelogram needs to be aligned with the incision, which limits the positioning of the manipulator over the surgical table and therefore reduces the number of surgical procedures that can potentially be performed.
Several other mechanical systems have been developed for remote manipulation in radioactive environments and are disclosed in several documents, such as U.S. Pat. No. 2,846,084. However, although the system disclosed in this document comprises a master-slave architecture, its dimensions, weight and kinematics are not suitable for minimally invasive surgical applications.
As disclosed in WO2013014621, the present inventors have already developed a surgical platform that overcomes many of the above-mentioned shortcomings in the known art. However, through continued development, the present inventors have become aware of possible improvements to their prior system that allow for better positioning of the surgical platform over the patient, increased workspace inside the patient and improved workflow in the operating room.
Accordingly, an aim of the present invention is to provide a mechanical teleoperated device preferably for minimally invasive surgical procedures capable of manipulating surgical instruments with higher precision, increased haptic transparency and which overcomes the aforementioned drawbacks of the prior art. The system of the present invention provides for greater maneuverability of the device and better workflow in the operating room even as compared to prior surgical platforms provided by the present inventors.
Another aim of the present invention is to provide a mechanical teleoperated device which can be easily adapted to be used for other forms of minimally invasive surgery as well as open surgery, microsurgery, brain surgery or procedures on MRi environments.
Theses aims and other advantages are achieved by a mechanical teleoperated device for remote manipulation, designed to naturally replicate the operator's hand movements in the vicinity where manipulations must occur. This mechanical teleoperated device comprises: i) a slave manipulator (referred hereafter as a “slave unit”) having a number of slave links interconnected by a plurality of slave joints; ii) an end-effector (instrument/tool or a gripper/holder) connected to the distal end of the slave unit; iii) a master maniplulator (referred hereafter as a “master unit”) having a corresponding number of master links interconnected by a plurality of master joints; and iv) a handle for operating the mechanical teleoperated device. The mechanical teleoperated device can also be described by considering the end-effector to be part of the slave unit and the handle to be part of the master unit. In a broader sense, the links and joints composing the end-effector can be considered distal slave links and joints, while the links and joints composing the handle can be considered distal master links and joints. The end-effector might be adapted to be releasable from the proximal part of the slave unit.
The mechanical teleoperated device further comprises first mechanical transmission means arranged to kinematically connect the slave unit with the master unit such that the movement (angle of joint) applied on each master joint of the master unit is reproduced by the corresponding slave joint of the slave unit at a predetermined scale ratio, which can advantageously be in the order of 2:1 or 3:1, if each master link is respectively two or three times longer than the corresponding slave link. A scaling down ration of this order of magnitude can significantly improve the precision of the device. In addition, second mechanical transmission means are arranged to kinematically connect the tool or the end-effector with the handle such that the movements applied on the handle are reproduced by the end-effector at a predetermined scaled ratio. The mechanical teleoperated device also comprises mechanical constraint means which are usually configured to ensure that one master link of said master unit is guided or constrained to move along its longitudinal axis so that the corresponding slave link of the slave unit always translates along a virtual axis parallel to the longitudinal axis of said guided master link in the vicinity of the remote manipulation when the mechanical teleoperated device is operated.
As compared to prior surgical platforms described by the present inventors in WO2013014621, the description of which is incorporated by reference herein as if presented herein in full, the mechanical teleoperated system of the present invention has a new kinematic model and a new arrangement of mechanical constraints, whose position in the 3D space can be tuned with respect to the mechanical teleoperated system, allowing for much more flexibility in positioning the mechanical teleoperated system over the patient, while allowing shorter distances between a master and slave manipulator, which results in a lighter and more compact system that can be more easily integrated in the operating room workflow.
The invention will be better understood according to the following detailed description of several embodiments with reference to the attached drawings, in which:
The mechanical telemanipulator 34, according to an embodiment of the present invention, is intended to be used in a surgical platform, like the mechanical telemanipulator 1 shown in
One of the key features of this type of mechanical telemanipulators consists of its master-slave architecture, which enables a natural replication of the user hand movements, on a proximal handle 2, by a distal end-effector 3 on a remote location.
According to
Referring still to
The configuration of the mechanical telemanipulator 1 can also be described by considering the end-effector 3 to be part of the slave manipulator 5 and the handle 2 to be part of the master manipulator 4. In a broader sense, the links and joints composing the end-effector 3 can be considered distal slave links and joints, while the links and joints composing the handle 2 can be considered distal master links and joints.
The mechanical telemanipulator 1 further comprises mechanical transmission systems arranged to kinematically connect the slave manipulator 5 with the master manipulator 4 such that the movement (angle of joint) applied on each master joint of the master manipulator 4 is reproduced by the corresponding slave joint of the slave manipulator 5.
For each degree of freedom of the mechanical telemanipulator 1, different types of mechanical transmissions can be used. In order to minimize the system's overall friction, the mechanical transmission between the majority of the master and slave joints is essentially in the form of pulley-routed flexible elements, where each driven pulley of the slave joint is connected to the respective driving pulley of the master joint, by a multi-stage closed cable loop transmission. However, other types of mechanical transmission can be used, comprising rigid and/or geared elements.
Another key feature of the mechanical telemanipulator 1 disclosed in WO2013014621 lies in the mechanical constraint 28 of the mechanical telemanipulator which is configured to constraint movements of the slave manipulator 5 in correspondence with the constraints imposed by an incision realized on a patient. Referring to
Therefore, the movement applied on the handle 2, forces the movement of the master joints 12, 13, 14, 15, 16 of the master manipulator 4, by the direct mechanical transmission system and the mechanical constraint 28, to drive the respective movement of the slave joints 22, 23, 24, 25, 26 of the slave manipulator 5. As a result, the multi-articulated end-effector 3 connected to the distal end of the slave manipulator 5 is moved in an equivalent movement of the handle 2, while the slave link 21 always translates along and rotates about the RCM 29.
During a minimally invasive surgical procedure, the RCM 29 is brought in coincidence with the surgical incision point, reducing trauma to the patient and improving cosmetic outcomes of the surgery.
Some embodiments of the invention disclosed in WO2013014621 may have a few limitations in terms of its positioning over the patient. As can be seen in
To overcome the above mentioned set of limitations, another embodiment of WO2013014621 can be formulated, as can be seen in
A key feature of this invention consist in the possibility to move the constraint 28 (and therefore the RCM 29) in the 3D space in relation to the ground 27, to which the mechanical telemanipulator 34 is fixed by the first joint 12 (
A surgical platform 45, which comprises at least one mechanical telemanipulator 34, can be seen in
According to
Each articulated positioning manipulator 40 should be gravity-compensated (together with the mechanical telemanipulator 34 that is being carried) by means of systems of counterweights and/or springs. In addition, each articulated positioning manipulator 40 should be provided with a system of clutches/brakes on each one of the joints so that they are blocked by default and can be released and moved when a switch 43 is pressed. By pressing the switch 43, the mechanical telemanipulator 34 can be moved in the 3D space to be positioned over the patient or to be removed from the surgical area 42 to a remote location 44, in particular during a surgical procedure (
In order to be precisely positioned over the patient and aligned with the body incision of the patient, an incision pointer 47 (
As shown in
While this invention has been shown and described with reference to particular embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. For instance, knowing that each master joint 12, 13, 14, 35, 15, 16 is kinematically connected with the corresponding slave joint 22, 23, 24, 36, 25, 26 another embodiment of the current invention can be achieved by placing the constraint 28 on a slave link 21 to have the RCM 29 on the master manipulator 4, around which the master link 11 would always rotate about and translate along (
This application is a national phase of International PCT Patent Application No. PCT/IB2016/000543, filed Apr. 11, 2016, which claims priority to U.S. Provisional Patent Application No. 62/145,452, filed Apr. 9, 2015, the entire contents of each of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2016/000543 | 4/11/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/162752 | 10/13/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2764301 | Goertz et al. | Sep 1956 | A |
2771199 | Jelatis | Nov 1956 | A |
2774488 | Goertz | Dec 1956 | A |
2846084 | Goertz et al. | Aug 1958 | A |
3065863 | Saunders, Jr. | Nov 1962 | A |
3095096 | Chesley | Jun 1963 | A |
3212651 | Specht et al. | Oct 1965 | A |
3261480 | Haaker et al. | Jul 1966 | A |
3297172 | Haaker et al. | Jan 1967 | A |
3391801 | Haaker | Jul 1968 | A |
3425569 | Haaker | Feb 1969 | A |
4221516 | Haaker et al. | Sep 1980 | A |
4756655 | Jameson | Jul 1988 | A |
5147357 | Rose et al. | Sep 1992 | A |
5176352 | Braun | Jan 1993 | A |
5207114 | Salisbury et al. | May 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5304203 | El-Mallawany et al. | Apr 1994 | A |
5308358 | Bond et al. | May 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5368606 | Marlow et al. | Nov 1994 | A |
5383888 | Zvenyatsky et al. | Jan 1995 | A |
5484435 | Fleenor et al. | Jan 1996 | A |
5599151 | Daum et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5631973 | Green | May 1997 | A |
5649956 | Jensen et al. | Jul 1997 | A |
5710870 | Ohm et al. | Jan 1998 | A |
5716352 | Viola et al. | Feb 1998 | A |
5735874 | Measamer et al. | Apr 1998 | A |
5784542 | Ohm et al. | Jul 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5810716 | Mukherjee et al. | Sep 1998 | A |
5810805 | Sutcu et al. | Sep 1998 | A |
5828813 | Ohm | Oct 1998 | A |
5908436 | Cuschieri et al. | Jun 1999 | A |
5931832 | Jensen | Aug 1999 | A |
5951587 | Qureshi et al. | Sep 1999 | A |
5976122 | Madhani et al. | Nov 1999 | A |
6026701 | Reboulet | Feb 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6197017 | Brock et al. | Mar 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
6233504 | Das et al. | May 2001 | B1 |
6281651 | Haanpaa et al. | Aug 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6358249 | Chen et al. | Mar 2002 | B1 |
6361534 | Chen et al. | Mar 2002 | B1 |
6364879 | Chen et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6435794 | Springer | Aug 2002 | B1 |
6459926 | Nowlin et al. | Oct 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6554844 | Lee et al. | Apr 2003 | B2 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6671581 | Niemeyer et al. | Dec 2003 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6786896 | Madhani et al. | Sep 2004 | B1 |
6788999 | Green | Sep 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6850817 | Green | Feb 2005 | B1 |
6852107 | Wang et al. | Feb 2005 | B2 |
6879880 | Nowlin et al. | Apr 2005 | B2 |
6902560 | Morley et al. | Jun 2005 | B1 |
6913613 | Schwarz et al. | Jul 2005 | B2 |
6951535 | Ghodoussi et al. | Oct 2005 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
7048745 | Tierney et al. | May 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7101363 | Nishizawa et al. | Sep 2006 | B2 |
7204836 | Wagner et al. | Apr 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7241289 | Braun | Jul 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7316681 | Madhani et al. | Jan 2008 | B2 |
7338513 | Lee et al. | Mar 2008 | B2 |
7364582 | Lee | Apr 2008 | B2 |
7373219 | Nowlin et al. | May 2008 | B2 |
7398707 | Morley et al. | Jul 2008 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7549998 | Braun | Jun 2009 | B2 |
7594912 | Cooper et al. | Sep 2009 | B2 |
7608039 | Todd | Oct 2009 | B1 |
7615002 | Rothweiler et al. | Nov 2009 | B2 |
7615067 | Lee et al. | Nov 2009 | B2 |
7674255 | Braun | Mar 2010 | B2 |
7699855 | Anderson et al. | Apr 2010 | B2 |
7756036 | Druke et al. | Jul 2010 | B2 |
7819894 | Mitsuishi et al. | Oct 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7828798 | Buysse et al. | Nov 2010 | B2 |
7833156 | Williams et al. | Nov 2010 | B2 |
7890211 | Green | Feb 2011 | B2 |
7914521 | Wang et al. | Mar 2011 | B2 |
7976458 | Stefanchik et al. | Jul 2011 | B2 |
8048084 | Schneid | Nov 2011 | B2 |
8105320 | Manzo | Jan 2012 | B2 |
8114017 | Bacher | Feb 2012 | B2 |
8137263 | Marescaux et al. | Mar 2012 | B2 |
8142447 | Cooper et al. | Mar 2012 | B2 |
8224485 | Unsworth | Jul 2012 | B2 |
8246617 | Welt et al. | Aug 2012 | B2 |
8267958 | Braun | Sep 2012 | B2 |
8287469 | Stefanchik et al. | Oct 2012 | B2 |
8292889 | Cunningham et al. | Oct 2012 | B2 |
8306656 | Schaible et al. | Nov 2012 | B1 |
8308738 | Nobis et al. | Nov 2012 | B2 |
8332072 | Schaible et al. | Dec 2012 | B1 |
8336751 | Scirica | Dec 2012 | B2 |
8347754 | Veltri et al. | Jan 2013 | B1 |
8353898 | Lutze et al. | Jan 2013 | B2 |
8357161 | Mueller | Jan 2013 | B2 |
8382742 | Hermann et al. | Feb 2013 | B2 |
8388516 | Sholev | Mar 2013 | B2 |
8403832 | Cunningham et al. | Mar 2013 | B2 |
8414475 | Sholev | Apr 2013 | B2 |
8418904 | Wenchell et al. | Apr 2013 | B2 |
8423186 | Itkowitz et al. | Apr 2013 | B2 |
8435171 | Sholev | May 2013 | B2 |
8496152 | Viola | Jul 2013 | B2 |
8518024 | Williams et al. | Aug 2013 | B2 |
8523900 | Jinno et al. | Sep 2013 | B2 |
8540748 | Murphy et al. | Sep 2013 | B2 |
8562592 | Conlon et al. | Oct 2013 | B2 |
8568444 | Cunningham | Oct 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8591397 | Berkelman et al. | Nov 2013 | B2 |
8602287 | Yates et al. | Dec 2013 | B2 |
8603077 | Cooper et al. | Dec 2013 | B2 |
8617203 | Stefanchik et al. | Dec 2013 | B2 |
8663270 | Donnigan et al. | Mar 2014 | B2 |
8668689 | Dumbauld et al. | Mar 2014 | B2 |
8668702 | Awtar et al. | Mar 2014 | B2 |
8690755 | Sholev | Apr 2014 | B2 |
8696666 | Sanai et al. | Apr 2014 | B2 |
8709000 | Madhani et al. | Apr 2014 | B2 |
8761930 | Nixon | Jun 2014 | B2 |
8768509 | Unsworth | Jul 2014 | B2 |
8792688 | Unsworth | Jul 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8816628 | Nowlin et al. | Aug 2014 | B2 |
8818560 | Kishi | Aug 2014 | B2 |
8821480 | Burbank | Sep 2014 | B2 |
8827135 | Amid et al. | Sep 2014 | B2 |
8828046 | Stefanchik et al. | Sep 2014 | B2 |
8845517 | Russo | Sep 2014 | B2 |
8845622 | Paik et al. | Sep 2014 | B2 |
8870049 | Amid et al. | Oct 2014 | B2 |
8870867 | Walberg et al. | Oct 2014 | B2 |
8887979 | Mastri et al. | Nov 2014 | B2 |
8894674 | Balanev et al. | Nov 2014 | B2 |
8919348 | Williams et al. | Dec 2014 | B2 |
8930027 | Schaible et al. | Jan 2015 | B2 |
8945098 | Seibold et al. | Feb 2015 | B2 |
8961499 | Paik et al. | Feb 2015 | B2 |
8961514 | Garrison | Feb 2015 | B2 |
8968187 | Kleyman et al. | Mar 2015 | B2 |
8989844 | Cinquin et al. | Mar 2015 | B2 |
8992564 | Jaspers | Mar 2015 | B2 |
9023015 | Penna | May 2015 | B2 |
9033998 | Schaible et al. | May 2015 | B1 |
9044238 | Orszulak | Jun 2015 | B2 |
9084606 | Greep | Jul 2015 | B2 |
9113861 | Martin et al. | Aug 2015 | B2 |
9149339 | Unsworth | Oct 2015 | B2 |
9204939 | Frimer et al. | Dec 2015 | B2 |
9295379 | Sholev | Mar 2016 | B2 |
9307894 | Von Grunberg et al. | Apr 2016 | B2 |
9333040 | Shellenberger et al. | May 2016 | B2 |
9345545 | Shellenberger et al. | May 2016 | B2 |
9360934 | Ruiz Morales et al. | Jun 2016 | B2 |
9474580 | Hannaford et al. | Oct 2016 | B2 |
9480531 | Von Grunberg | Nov 2016 | B2 |
9492240 | Itkowitz et al. | Nov 2016 | B2 |
9504456 | Frimer et al. | Nov 2016 | B2 |
9603672 | Shellenberger et al. | Mar 2017 | B2 |
9669542 | Karguth et al. | Jun 2017 | B2 |
9696700 | Beira et al. | Jul 2017 | B2 |
9757204 | Frimer et al. | Sep 2017 | B2 |
9757206 | Frimer et al. | Sep 2017 | B2 |
9795282 | Sholev et al. | Oct 2017 | B2 |
9795454 | Seeber et al. | Oct 2017 | B2 |
9877794 | Csiky | Jan 2018 | B2 |
D816243 | Barber | Apr 2018 | S |
9937013 | Frimer et al. | Apr 2018 | B2 |
9943372 | Sholev et al. | Apr 2018 | B2 |
10028792 | Frimer et al. | Jul 2018 | B2 |
10039609 | Frimer et al. | Aug 2018 | B2 |
10052157 | Frimer et al. | Aug 2018 | B2 |
10064691 | Frimer et al. | Sep 2018 | B2 |
10071488 | Robinson et al. | Sep 2018 | B2 |
10092164 | Sholev et al. | Oct 2018 | B2 |
10092359 | Beira et al. | Oct 2018 | B2 |
10092365 | Seeber | Oct 2018 | B2 |
10136956 | Seeber | Nov 2018 | B2 |
10201392 | Frimer et al. | Feb 2019 | B2 |
10265129 | Beira | Apr 2019 | B2 |
10325072 | Beira et al. | Jun 2019 | B2 |
20020040217 | Jinno | Apr 2002 | A1 |
20020049367 | Irion et al. | Apr 2002 | A1 |
20020072736 | Tierney et al. | Jun 2002 | A1 |
20030155747 | Bridges | Aug 2003 | A1 |
20030208186 | Moreyra | Nov 2003 | A1 |
20040049205 | Lee et al. | Mar 2004 | A1 |
20040116906 | Lipow | Jun 2004 | A1 |
20040236316 | Danitz et al. | Nov 2004 | A1 |
20040253079 | Sanchez | Dec 2004 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050204851 | Morley et al. | Sep 2005 | A1 |
20050240078 | Kwon et al. | Oct 2005 | A1 |
20060043698 | Bridges | Mar 2006 | A1 |
20060178559 | Kumar et al. | Aug 2006 | A1 |
20060183975 | Saadat et al. | Aug 2006 | A1 |
20060219065 | Jinno et al. | Oct 2006 | A1 |
20060235436 | Anderson et al. | Oct 2006 | A1 |
20060253109 | Chu | Nov 2006 | A1 |
20070088340 | Brock et al. | Apr 2007 | A1 |
20070137371 | Devengenzo | Jun 2007 | A1 |
20070156123 | Moll et al. | Jul 2007 | A1 |
20070208375 | Nishizawa et al. | Sep 2007 | A1 |
20070299387 | Williams et al. | Dec 2007 | A1 |
20080039255 | Jinno et al. | Feb 2008 | A1 |
20080046122 | Manzo et al. | Feb 2008 | A1 |
20080058776 | Jo et al. | Mar 2008 | A1 |
20080071208 | Voegele et al. | Mar 2008 | A1 |
20080103492 | Morley et al. | May 2008 | A1 |
20080177285 | Brock et al. | Jul 2008 | A1 |
20080243106 | Coe et al. | Oct 2008 | A1 |
20080314181 | Schena | Dec 2008 | A1 |
20090036902 | Dimaio et al. | Feb 2009 | A1 |
20090198253 | Omori | Aug 2009 | A1 |
20090216248 | Uenohara et al. | Aug 2009 | A1 |
20090216249 | Jinno et al. | Aug 2009 | A1 |
20090247821 | Rogers | Oct 2009 | A1 |
20090248039 | Cooper et al. | Oct 2009 | A1 |
20090299141 | Downey et al. | Dec 2009 | A1 |
20100004508 | Naito et al. | Jan 2010 | A1 |
20100011900 | Burbank | Jan 2010 | A1 |
20100023025 | Zeiner et al. | Jan 2010 | A1 |
20100094130 | Ninomiya et al. | Apr 2010 | A1 |
20100121347 | Jaspers | May 2010 | A1 |
20100160929 | Rogers et al. | Jun 2010 | A1 |
20100160940 | Lutze et al. | Jun 2010 | A1 |
20100170519 | Romo et al. | Jul 2010 | A1 |
20100225209 | Goldberg et al. | Sep 2010 | A1 |
20100305595 | Hermann | Dec 2010 | A1 |
20100318099 | Itkowitz et al. | Dec 2010 | A1 |
20100318101 | Choi | Dec 2010 | A1 |
20100331859 | Omori | Dec 2010 | A1 |
20110087236 | Stokes et al. | Apr 2011 | A1 |
20110087238 | Wang et al. | Apr 2011 | A1 |
20110213346 | Morley et al. | Sep 2011 | A1 |
20110230867 | Hirschfeld et al. | Sep 2011 | A1 |
20110275901 | Shelton, IV | Nov 2011 | A1 |
20110276084 | Shelton, IV | Nov 2011 | A1 |
20110290854 | Timm et al. | Dec 2011 | A1 |
20110301419 | Craft et al. | Dec 2011 | A1 |
20120027762 | Schofield | Feb 2012 | A1 |
20120031114 | Mueller et al. | Feb 2012 | A1 |
20120049623 | Nakayama | Mar 2012 | A1 |
20120095298 | Stefanchik et al. | Apr 2012 | A1 |
20120116163 | Lutze et al. | May 2012 | A1 |
20120132018 | Tang et al. | May 2012 | A1 |
20120143173 | Steege et al. | Jun 2012 | A1 |
20120158014 | Stefanchik et al. | Jun 2012 | A1 |
20120191245 | Fudaba et al. | Jul 2012 | A1 |
20120209292 | Devengenzo et al. | Aug 2012 | A1 |
20120253326 | Kleyman | Oct 2012 | A1 |
20120277762 | Lathrop et al. | Nov 2012 | A1 |
20120283745 | Goldberg et al. | Nov 2012 | A1 |
20120289973 | Prisco et al. | Nov 2012 | A1 |
20120289974 | Rogers et al. | Nov 2012 | A1 |
20120296341 | Seibold et al. | Nov 2012 | A1 |
20130123805 | Park et al. | May 2013 | A1 |
20130144274 | Stefanchik et al. | Jun 2013 | A1 |
20130172713 | Kirschenman | Jul 2013 | A1 |
20130245643 | Woodard et al. | Sep 2013 | A1 |
20130245647 | Martin et al. | Sep 2013 | A1 |
20130282027 | Woodard et al. | Oct 2013 | A1 |
20130304083 | Kaercher et al. | Nov 2013 | A1 |
20130304084 | Beira | Nov 2013 | A1 |
20140005681 | Gee et al. | Jan 2014 | A1 |
20140018447 | McGovern et al. | Jan 2014 | A1 |
20140018780 | Hirscheld | Jan 2014 | A1 |
20140076088 | Berkelman et al. | Mar 2014 | A1 |
20140114481 | Ogawa et al. | Apr 2014 | A1 |
20140142595 | Awtar et al. | May 2014 | A1 |
20140166023 | Kishi | Jun 2014 | A1 |
20140180308 | Von Grunberg | Jun 2014 | A1 |
20140188091 | Vidal et al. | Jul 2014 | A1 |
20140188159 | Steege | Jul 2014 | A1 |
20140195010 | Beira | Jul 2014 | A1 |
20140200561 | Ingmanson et al. | Jul 2014 | A1 |
20140207150 | Rosa et al. | Jul 2014 | A1 |
20140230595 | Butt et al. | Aug 2014 | A1 |
20140249546 | Shvartsberg et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263553 | Leimbach et al. | Sep 2014 | A1 |
20140276950 | Smaby | Sep 2014 | A1 |
20140276951 | Hourtash | Sep 2014 | A1 |
20140276956 | Crainich et al. | Sep 2014 | A1 |
20140350570 | Lee | Nov 2014 | A1 |
20150057499 | Erden et al. | Feb 2015 | A1 |
20150057702 | Edmondson et al. | Feb 2015 | A1 |
20150060517 | Williams | Mar 2015 | A1 |
20150066018 | Doll et al. | Mar 2015 | A1 |
20150105821 | Ward et al. | Apr 2015 | A1 |
20150113933 | Markt | Apr 2015 | A1 |
20150142018 | Sniffin et al. | May 2015 | A1 |
20150150575 | Hartoumbekis et al. | Jun 2015 | A1 |
20150230869 | Shim et al. | Aug 2015 | A1 |
20150250547 | Fukushima et al. | Sep 2015 | A1 |
20150265355 | Prestel et al. | Sep 2015 | A1 |
20160022365 | Jensen et al. | Jan 2016 | A1 |
20160051274 | Howell et al. | Feb 2016 | A1 |
20160151115 | Karguth et al. | Jun 2016 | A1 |
20160346053 | Beira | Dec 2016 | A1 |
20160374766 | Schuh | Dec 2016 | A1 |
20170245954 | Beira | Aug 2017 | A1 |
20170273749 | Grover et al. | Sep 2017 | A1 |
20170308667 | Beira et al. | Oct 2017 | A1 |
20170360522 | Beira | Dec 2017 | A1 |
20170367778 | Beira | Dec 2017 | A1 |
20180000472 | Beira | Jan 2018 | A1 |
20180000544 | Beira | Jan 2018 | A1 |
20180000550 | Beira | Jan 2018 | A1 |
20180028269 | Morel et al. | Feb 2018 | A1 |
20180055583 | Schuh et al. | Mar 2018 | A1 |
20180125519 | Beira et al. | May 2018 | A1 |
20180125592 | Beira | May 2018 | A1 |
20180242991 | Beira | Aug 2018 | A1 |
20180353252 | Chassot et al. | Dec 2018 | A1 |
20180360548 | Marshall et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
101584594 | Nov 2009 | CN |
101637402 | Feb 2010 | CN |
101732093 | Jun 2010 | CN |
103717355 | Apr 2014 | CN |
43 03 311 | Aug 1994 | DE |
19652792 | May 1999 | DE |
10314827 | Apr 2004 | DE |
10314828 | Jul 2004 | DE |
10 2012 222 755 | Jun 2014 | DE |
10 2014 205 036 | Sep 2015 | DE |
10 2014 205 159 | Sep 2015 | DE |
0 595 291 | May 1994 | EP |
0 621 009 | Oct 1994 | EP |
0 677 275 | Oct 1995 | EP |
0 776 739 | Jun 1997 | EP |
1 254 642 | Nov 2002 | EP |
1 279 371 | Dec 2004 | EP |
1 886 630 | Feb 2008 | EP |
1 889 579 | Feb 2008 | EP |
2 058 090 | May 2009 | EP |
1 977 677 | Aug 2009 | EP |
2 095 778 | Sep 2009 | EP |
1 889 583 | Apr 2011 | EP |
2 377 477 | May 2012 | EP |
2 473 119 | Jul 2012 | EP |
2 305 144 | Oct 2012 | EP |
2 044 893 | Jul 2013 | EP |
2 653 110 | Oct 2013 | EP |
2 679 192 | Jan 2014 | EP |
2 736 680 | Jun 2014 | EP |
2 777 561 | Sep 2014 | EP |
2 783 643 | Oct 2014 | EP |
2 837 340 | Feb 2015 | EP |
2 837 354 | Feb 2015 | EP |
2 554 131 | Aug 2015 | EP |
2 979 657 | Feb 2016 | EP |
0 834 244 | May 1960 | GB |
0 969 899 | Sep 1964 | GB |
2004-041580 | Feb 2004 | JP |
2007-290096 | Nov 2007 | JP |
2008-104620 | May 2008 | JP |
2009-018027 | Jan 2009 | JP |
20110032444 | Mar 2011 | KR |
20130031403 | Mar 2013 | KR |
WO-8200611 | Mar 1982 | WO |
WO-9743942 | Nov 1997 | WO |
WO-9825666 | Jun 1998 | WO |
WO-03067341 | Aug 2003 | WO |
WO-03086219 | Oct 2003 | WO |
WO-2004052171 | Jun 2004 | WO |
WO-2005009482 | Feb 2005 | WO |
WO-2005046500 | May 2005 | WO |
WO-2006086663 | Apr 2006 | WO |
WO-2007133065 | Nov 2007 | WO |
WO-2008130235 | Oct 2008 | WO |
WO-2009091497 | Jul 2009 | WO |
WO-2009095893 | Aug 2009 | WO |
WO-2009145572 | Dec 2009 | WO |
WO-2009157719 | Dec 2009 | WO |
WO-2010019001 | Feb 2010 | WO |
WO-2010030114 | Mar 2010 | WO |
WO-2010050771 | May 2010 | WO |
WO-2010083480 | Jul 2010 | WO |
WO-2010096580 | Aug 2010 | WO |
WO-2010130817 | Nov 2010 | WO |
WO-2011025818 | Mar 2011 | WO |
WO-2011027183 | Mar 2011 | WO |
WO-2011123669 | Oct 2011 | WO |
WO-2012020386 | Feb 2012 | WO |
WO-2012049623 | Apr 2012 | WO |
WO-2013007784 | Jan 2013 | WO |
WO-2013014621 | Jan 2013 | WO |
WO-2014012780 | Jan 2014 | WO |
WO-2014018447 | Jan 2014 | WO |
WO-2014067804 | May 2014 | WO |
WO-2014094716 | Jun 2014 | WO |
WO-2014094717 | Jun 2014 | WO |
WO-2014094718 | Jun 2014 | WO |
WO-2014094719 | Jun 2014 | WO |
WO-2014145148 | Sep 2014 | WO |
WO-2014156221 | Oct 2014 | WO |
WO-2014201010 | Dec 2014 | WO |
WO-2014201538 | Dec 2014 | WO |
WO-2015081946 | Jun 2015 | WO |
WO-2015081947 | Jun 2015 | WO |
WO-2015088647 | Jun 2015 | WO |
WO-2015088655 | Jun 2015 | WO |
WO-2015111475 | Jul 2015 | WO |
WO-2015113933 | Aug 2015 | WO |
WO-2015129383 | Aug 2015 | WO |
WO-2015139674 | Sep 2015 | WO |
WO-2015175200 | Nov 2015 | WO |
WO-2016030767 | Mar 2016 | WO |
WO-2016083189 | Jun 2016 | WO |
WO-2016097861 | Jun 2016 | WO |
WO-2016097864 | Jun 2016 | WO |
WO-2016097868 | Jun 2016 | WO |
WO-2016097871 | Jun 2016 | WO |
WO-2016097873 | Jun 2016 | WO |
WO-2016154173 | Sep 2016 | WO |
WO-2016162751 | Oct 2016 | WO |
WO-2016162752 | Oct 2016 | WO |
WO-2016183054 | Nov 2016 | WO |
WO-016189284 | Dec 2016 | WO |
WO-2016189284 | Dec 2016 | WO |
WO-2017015599 | Jan 2017 | WO |
WO-2017064301 | Apr 2017 | WO |
WO-2017064303 | Apr 2017 | WO |
WO-2017064305 | Apr 2017 | WO |
WO-2017064306 | Apr 2017 | WO |
WO-2017220978 | Dec 2017 | WO |
WO-2018142112 | Aug 2018 | WO |
WO-2018162921 | Sep 2018 | WO |
Entry |
---|
US 9,232,978 B2, 01/2016, Shellenberger et al. (withdrawn) |
Abbott, et al., “Design of an Endoluminal Notes Robotic System,” IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, pp. 410-416 (2007). |
Aesculap Surgical Technologies, Aesculap® Caiman®, Advanced Bipolar Seal and Cut Technology Brochure, 6 pages (retrieved Aug. 31, 2015). |
Arata, et al., “Development of a dexterous minimally-invasive surgical system with augmented force feedback capability,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3207-3212 (2005). |
Çavuşo{hacek over (g)}lu, et al., “Laparoscopic Telesurgical Workstation,” IEEE Transactions on Robotics and Automation,(15)4:728-739 (1999). |
Charles, et al., Dexterity-enhanced Telerobotic Microsurgery, Advanced Robotics, ICAR '97. Proceedings, 8th Int'l Conference (1997). |
Dachs, et al., “Novel Surgical Robot Design: Minimizing the Operating Envelope Within the Sterile Field,” 28th International Conference, IEEE Engineering in Medicine Biology Society, New York, pp. 1505-1508 (2006). |
Dario, et al., “Novel Mechatronic Tool for Computer-Assisted Arthroscopy,” IEEE Transactions on Information Technology in Biomedicine, 4(1):15-29 (Mar. 2000). |
Focacci, et al., “Lightweight Hand-held Robot for Laparoscopic Surgery,” IEEE International Conference on Robotics & Automation, Rome, Italy, pp. 599-604 (2007). |
Guthart, et al., “The Intuitive™ Telesurgery System: Overview and Application,” IEEE International Conference on Robotics & Automation, San Francisco, CA, pp. 618-621 (2000). |
Ikuta, et al., “Development of Remote Microsurgery Robot and New Surgical Procedure for Deep and Narrow Space,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 1103-1108 (2003). |
Ikuta, et al., “Hyper Redundant Miniature Manipulator ‘Hyper Finger’ for Remote Minimally Invasive Surgery in Deep Area,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 1098-1102 (2003). |
International Search Report & Written Opinion dated Feb. 2, 2017 in Int'l PCT Patent Appl. Serial No. PCT/IB2016/001286. |
International Search Report & Written Opinion dated Jan. 18, 2013 in Int'l PCT Patent Appl Serial. No. PCT/IB2012/053786. |
International Search Report dated Jan. 18, 2013 in Int'l PCT Patent Appl Serial No. PCT/IB2012/053786. |
International Search Report dated Mar. 23, 2012 in Int'l PCT Patent Appl Serial. No. PCT/IB2011/054476. |
Ishii, et al., “Development of a New Bending Mechanism and Its Application to Robotic Forceps Manipulator,” IEEE International Conference on Robotics & Automation, Rome, Italy, pp. 238-243 (2007). |
International Search Report & Written Opinion dated Feb. 17, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002095. |
International Search Report & Written Opinion dated May 23, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002524. |
International Search Report & Written Opinion dated Mar. 23, 2012 in Int'l PCT Patent Appl Serial No. PCT/IB2011/054476. |
International Search Report & Written Opinion dated Mar. 30, 2015 in Int'l PCT Patent Appl Serial No. PCT/EP2015/051473. |
International Search Report & Written Opinion dated Apr. 26, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002512. |
International Search Report & Written Opinion dated May 24, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002487. |
International Search Report & Written Opinion dated Jun. 10, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002533. |
International Search Report & Written Opinion dated Jun. 13, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2015/002493. |
International Search Report & Written Opinion dated Aug. 25, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2016/000542. |
International Search Report & Written Opinion dated Sep. 2, 2016 in Int'l PCT Patent Appl Serial No. PCT/IB2016/000543. |
Kobayashi, et al., “Small Occupancy Robotic Mechanisms for Endoscopic Surgery,” International Conference on Medical Image Computing and Computer assisted Interventions, pp. 75-82 (2002). |
Lang, et al., Intra-operative robotics: NeuroArm., Acta Neurochir Suppl, 109:231-236 (2011). |
Mayer, et al., “The Endo[PA]R System for Minimally Invasive Robotic Surgery,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 3637-3642 (2004). |
Mitsuishi, et al., “Development of a Remote Minimally Invasive Surgical System with Operational Environment Transmission Capability,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 2663-2670 (2003). |
Mitsuishi, et al., Master-slave robotic platform and its feasibility study for micro-neurosurgery, Int. J. Med. Robot., 9(2):180-9 (2013). |
Morita, et al., Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models, J. Neurosurg., 103(2):320-7 (2005). |
Nakamura, et al., “Multi-DOF Forceps Manipulator System for Laparoscopic Surgery-Mechanism miniaturized & Evaluation of New Interface,” 4th International Conference on Medical Image Computing and Computer assisted Interventions (MICCAI2001), pp. 606-613 (2001). |
Peirs, et al., “Design of an advanced tool guiding system for robotic surgery,” IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 2651-2656 (2003). |
Sallé, et al., “Optimal Design of High Dexterity Modular MIS Instrument for Coronary Artery Bypass Grafting,” IEEE International Conference on Robotics & Automation, New Orleans, LA, pp. 1276-1281 (2004). |
Seibold, et al., “Prototype of Instrument for Minimally Invasive Surgery with 6-Axis Force Sensing Capability,” IEEE International Conference on Robotics & Automation, Barcelona, Spain, pp. 496-501 (2005). |
Simaan et al., “Dexterous System for Laryngeal Surgery: Multi-Backbone Bending Snake-like Slaves for Teleoperated Dexterous Surgical Tool Manipulation,” IEEE International Conference on Robotics & Automation, New Orleans, LA, pp. 351-357 (2004). |
Stryker®, Endoscopy, Take a Look Around, Ideal Eyes™ FFD122 HD, Articulating Laparoscope Brochure, 2 pages (2009). |
Swiss Search Report dated Jun. 4, 2012 in Swiss Patent Application No. CH 00702/12. |
Tavakoli, et al., “Force Reflective Master-Slave System for Minimally Invasive Surgery,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, pp. 3077-3082 (2003). |
Taylor, et al., “Steady-Hand Robotic System for Microsurgical Augmentation,” The International Journal of Robotics Research, 18(12):1201-1210 (1999). |
www.cttc.co/technologies/maestro-non-robotic-dexterous-laproscopic-instrument-writs-providing-seven-degrees, “Maestro: Non-Robotic Dexterous Laproscopic Instrument With a Wrist Providing Seven Degrees of Freedom”, accessed Nov. 12, 2015, 4 pages. |
Yamashita, et al., “Development of Endoscopic Forceps Manipulator Using Multi-Slider Linkage Mechanisms,” The 1st Asian Symposium on Computer Aided Surgery—Robotic and Image-Guided Surgery, Ibaraki, Japan, 4 pages (2005). |
Zeus, “Robotic Surgical System” available at http://allaboutroboticsurgery.com/zeusrobot.html. |
U.S. Appl. No. 13/878,924, filed May 17, 2013. |
U.S. Appl. No. 14/233,184 / U.S. Pat. No. 9,696,700, filed Jan. 16, 2014 / Jul. 4, 2017. |
U.S. Appl. No. 15/116,509, filed Aug. 3, 2016. |
U.S. Appl. No. 15/506,659, filed Feb. 24, 2017. |
U.S. Appl. No. 15/536,539, filed Jun. 15, 2017. |
U.S. Appl. No. 15/536,562, filed Jun. 15, 2017. |
U.S. Appl. No. 15/536,568, filed Jun. 15, 2017. |
U.S. Appl. No. 15/536,573, filed Jun. 15, 2017. |
U.S. Appl. No. 15/536,576, filed Jun. 15, 2017. |
U.S. Appl. No. 15/564,194, filed Oct. 3, 2017. |
U.S. Appl. No. 15/633,611, filed Jun. 26, 2017. |
International Search Report & Written Opinion dated Jul. 10, 2018 in Int'l PCT Patent Appl. Serial No. PCT/IB2018/053272. |
Communication Relating to the Results of the Partial International Search dated May 28, 2019 in Int'l PCT Patent Appl. Serial No. PCT/IB2019/050961. |
Number | Date | Country | |
---|---|---|---|
20180125592 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62145452 | Apr 2015 | US |