Medical tele-robotic system

Information

  • Patent Grant
  • 8209051
  • Patent Number
    8,209,051
  • Date Filed
    Wednesday, September 27, 2006
    17 years ago
  • Date Issued
    Tuesday, June 26, 2012
    12 years ago
Abstract
A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The subject matter disclosed generally relates to the field of robotics used in the medical field.


2. Background Information


There is a growing need to provide remote health care to patients that have a variety of ailments ranging from Alzheimers to stress disorders. To minimize costs it is desirable to provide home care for such patients. Home care typically requires a periodic visit by a health care provider such as a nurse or some type of assistant. Due to financial and/or staffing issues the health care provider may not be there when the patient needs some type of assistance. Additionally, existing staff must be continuously trained, which can create a burden on training personnel. It would be desirable to provide a system that would allow a health care provider to remotely care for a patient without being physically present.


Robots have been used in a variety of applications ranging from remote control of hazardous material to assisting in the performance of surgery. For example, U.S. Pat. No. 5,762,458 issued to Wang et al. discloses a system that allows a surgeon to perform minimally invasive medical procedures through the use of robotically controlled instruments. There have also been developed “toy” robots for home use. Such robots typically have a relatively simple movement platform and some type of speech synthesis for generating words and sounds. It would be desirable to provide a robotic system that would allow for remote patient monitoring and assistance.


BRIEF SUMMARY OF THE INVENTION

A robot that may include a camera and a monitor that are attached to a housing. The robot may also have a platform that is attached to the housing and coupled to a controller. The controller may be coupled to a broadband interface.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a robotic system;



FIG. 2 is a schematic of an electrical system of a robot;



FIG. 3 is a further schematic of the electrical system of the robot;



FIG. 4 is an illustration of a robot with an arm in an upward position;



FIG. 5 is an illustration of the robot with the arm in a lower position;



FIG. 6 is an illustration of a holonomic platform of the robot;



FIG. 7 is an illustration of a roller assembly of the holonomic platform;



FIG. 8 is an illustration of an arm assembly of the robot;



FIG. 9 is an illustration of a gripper assembly of the arm;



FIG. 10 is a schematic of a battery recharger for the robot;



FIG. 11 is a Vector Diagram that may be used to compute movement of the robot.





DETAILED DESCRIPTION

Disclosed is a robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.


Referring to the drawings more particularly by reference numbers, FIG. 1 shows a robotic system 10. The robotic system 10 includes a robot 12, a base station 14 and a remote control station 16. The remote control station 16 may be coupled to the base station 14 through a network 18. By way of example, the network 18 may be either a packet switched network such as the Internet, or a circuit switched network such has a Public Switched Telephone Network (PSTN) or other broadband system. The base station 14 may be coupled to the network 18 by a modem 20 or other broadband network interface device.


The remote control station 16 may include a computer 22 that has a monitor 24, a camera 26, a microphone 28 and a speaker 30. The computer 22 may also contain an input device 32 such as a joystick or a mouse. The control station 16 is typically located in a place that is remote from the robot 12. Although only one remote control station 16 is shown, the system 10 may include a plurality of remote stations. Additionally, although only the robot 12 is shown it is to be understood that the system 10 may have a plurality of robots 12. In general any number of robots 12 may be controlled by any number of remote stations. For example, one remote station 16 may be coupled to a plurality of robots 12, or one robot 12 may be coupled to a plurality of remote stations 16. The robot 12 includes a movement platform 34 that is attached to a robot housing 36. Also attached to the robot housing 36 are a camera 38, a monitor 40, a microphone(s) 42 and a speaker 44. The microphone 42 and speaker 30 may create a stereophonic sound. The robot 12 may also have an antennae 44 that is wirelessly coupled to an antennae 46 of the base station 14. The system 10 allows a user at the remote control station 16 to move the robot 12 through the input device 32. The robot camera 38 is coupled to the remote monitor 24 so that a user at the remote station 16 can view a patient. Likewise, the robot monitor 40 is coupled to the remote camera 26 so that the patient can view the user. The microphones 28 and 42, and speakers 30 and 44, allow for audible communication between the patient and the user.


The remote station computer 22 may operate Microsoft OS software and WINDOWS XP or other operating systems such as LINUX. The remote computer 22 may also operate a video driver, a camera driver, an audio driver and a joystick driver. The video images may be transmitted and received with compression software such as MPEG CODEC.



FIGS. 2 and 3 show an embodiment of the robot 12. The robot 12 may include a high level control system 50 and a low level control system 52. The high level control system 50 may include a processor 54 that is connected to a bus 56. The bus is coupled to the camera 38 by an input/output (I/O) port 58, and to the monitor 40 by a serial output port 60 and a VGA driver 62. The monitor 40 may include a touchscreen function that allows the patient to enter input by touching the monitor screen.


The speaker 44 is coupled to the bus 56 by a digital to analog converter 64. The microphone 42 is coupled to the bus 56 by an analog to digital converter 66. The high level controller 50 may also contain random access memory (RAM) device 68, a non-volatile RAM device 70 and a mass storage device 72 that are all coupled to the bus 62. The mass storage device 72 may contain medical files of the patient that can be accessed by the user at the remote control station 16. For example, the mass storage device 72 may contain a picture of the patient. The user, particularly a health care provider, can recall the old picture and make a side by side comparison on the monitor 24 with a present video image of the patient provided by the camera 38. The robot antennae 44 may be coupled to a wireless transceiver 74. By way of example, the transceiver 74 may transmit and receive information in accordance with IEEE 802.11a.


The controller 54 may operate with a LINUX OS operating system. The controller 54 may also operate X WINDOWS along with video, camera and audio drivers for communication with the remote control station 16. Video information may be transceived using MPEG CODEC compression techniques. The software may allow the user to send e-mail to the patient and vice versa, or allow the patient to access the Internet. In general the high level controller 50 operates to control the communication between the robot 12 and the remote control station 16.


The high level controller 50 may be linked to the low level controller 52 by serial ports 76 and 78. The low level controller 52 includes a processor 80 that is coupled to a RAM device 82 and non-volatile RAM device 84 by a bus 86. The robot 12 contains a plurality of motors 88 and motor encoders 90. The encoders 90 provide feedback information regarding the output of the motors 88. The motors 88 can be coupled to the bus 86 by a digital to analog converter 92 and a driver amplifier 94. The encoders 90 can be coupled to the bus 86 by a decoder 96. The robot 12 also has a number of proximity sensors 98 (see also FIG. 1). The position sensors 98 can be coupled to the bus 86 by a signal conditioning circuit 100 and an analog to digital converter 102.


The low level controller 52 runs software routines that mechanically actuate the robot 12. For example, the low level controller 52 provides instructions to actuate the movement platform to move the robot 12, or to actuate an arm of the robot. The low level controller 52 may receive movement instructions from the high level controller 50. The movement instructions may be received as movement commands from the remote control station. Although two controllers are shown, it is to be understood that the robot 12 may have one controller controlling the high and low level functions.


The various electrical devices of the robot 12 may be powered by a battery(ies) 104. The battery 104 may be recharged by a battery recharger station 106 (see also FIG. 1). The low level controller 52 may include a battery control circuit 108 that senses the power level of the battery 104. The low level controller 52 can sense when the power falls below a threshold and then send a message to the high level controller 50. The high level controller 50 may include a power management software routine that causes the robot 12 to move so that the battery 104 is coupled to the recharger 106 when the battery power falls below a threshold value. Alternatively, the user can direct the robot 12 to the battery recharger 106.



FIG. 4 shows an embodiment of the robot 12. The robot 12 may include a holonomic platform 110 that is attached to a robot housing 112. The holonomic platform 110 allows the robot 12 to move in any direction. Although not shown the robot housing 112 may include bumpers.


The robot 12 may have an arm 114 that supports the camera 38 and monitor 40. The arm 114 may have two degrees of freedom so that the camera 26 and monitor 24 can be moved from an upper position shown in FIG. 4 to a lower position shown in FIG. 5. The arm 114 may have an end effector 116 such as a gripper that can grasp objects.


The robot 12 may include a drawer 118 that can automatically move between a closed position and an open position. The drawer 118 can be used to dispense drugs to a patient. For example, the drawer 118 may include a drug(s) that must be taken at a certain time. The robot 12 may be programmed so that the drawer 118 is opened at the desired time. A nurse or other health care provider may periodically “load” the drawer 118. The robot may also have a battery recharger port 119. Although drugs are described, it is to be understood that the drawer 118 could hold any item.


As shown in FIG. 6 the holonomic platform 110 may include three roller assemblies 120 that are mounted to a base plate 122. The roller assemblies 120 are typically equally spaced about the platform 110 and allow for movement in any direction.



FIG. 7 shows an embodiment of a roller assembly 120. Each assembly 120 may include a drive ball 124 that is driven by a pair of transmission rollers 126. The assembly 120 includes a retainer ring 128 and a plurality of bushings 130 that allow the ball 124 to rotate in an x and y direction but prevents movement in a z direction.


The transmission rollers 126 are coupled to a motor assembly 132. The assembly 132 corresponds to the motor 88 shown in FIG. 3. The motor assembly 132 includes an output pulley 134 attached to a motor 136. The output pulley 134 is coupled to a pair of ball pulleys 138 by a drive belt 140. The ball pulleys 138 are attached to drive pins 142 that are attached to a bracket 144. The transmission rollers 126 are attached to a bearing bracket 144 by a roller pin 146.


Rotation of the output pulley 134 rotates the ball pulleys 138. Rotation of the ball pulleys 138 causes the transmission rollers 126 to rotate and spin the ball 124 through frictional forces. Spinning the ball 124 will move the robot 12. The drive balls 126 are out of phase so that one of the balls 126 is always in contact with ball 124. The roller pin 146 and bracket 144 allow the transmission rollers 126 to freely spin and allow orthoganal directional passive movement when one of the other roller assemblies 120 is driving and moving the robot 12.



FIGS. 8 and 9 show an embodiment of the arm 114. The arm 114 may include a first linkage 150 that is pivotally mounted to a fixed plate 152 of the robot housing 12. The arm 114 may also include a second linkage 154 that is pivotally connected to the first linkage 150 and a third linkage 156 that is pivotally connected to the second linkage 154.


The first linkage 150 may be coupled to a first motor 158 and motor encoder 160 by a gear assembly 162. Rotation of the motor 158 will cause a corresponding pivotal movement of the linkage 150 and arm 114. The linkage 150 may be coupled to the fixed plate 152 by a bearing 164.


The second linkage 154 may be coupled to a second motor 166 and encoder 168 by a gear assembly 170 and a pulley assembly 172. The pulley assembly 172 may be connected to the gear assembly 170 by a pin 174 that extends through the gear assembly 162 of the first motor 158. The second linkage 154 may be attached to a pin 176 that can spin relative to the first linkage 150. The pulley assembly 172 may have a belt 178 that couples a pair of pulleys 180 and 182 that are attached to pins 174 and 176, respectively. Pin 176 may be coupled to the first linkage 150 by bearings 182. The arm 114 is configured to allow wires 183 to be internally routed through the linkages 150, 154 and 156.


The third linkage 156 may be connected to a pin 184 that can spin relative to the second linkage 154. The pin 184 may be coupled to the second linkage 154 by a bearing assembly 186. The third linkage 156 may be structurally coupled to the first linkage 150 by a pair of pulley assemblies 188. The pulley assembly 188 insures a horizontal position of the third linkage 156 no matter what position the first 150 and second 154 linkages are in. As shown in FIGS. 4 and 5 the third linkage 156 is always in a horizontal position. This insures that the camera 26 is always in the same orientation, thus reducing the possibility of disorientation at the remote control station when viewing the patient.


The gripper 116 is attached to the third linkage 156. The gripper 116 may include a pair of fingers 190 that are pivotally attached to a base plate 192. The fingers 190 are coupled to a motor 194 and encoder 196 by a gear assembly 198. The base plate 192 is coupled to the third linkage 156 by a bearing assembly 200. The motor 194 can spin the base plate 192 and fingers 192 relative to the third linkage 156.


The gripper 116 may further have a push rod 202 that can engage cam surfaces 204 of the fingers 190 to move the gripper fingers 190 between open and closed positions. The push rod 202 may be coupled to a motor 206 and encoder (not shown) by a linkage assembly 208. Actuation of the motor 206 will translate the push rod 202 and move the fingers 190. The motor 206 may have a force sensor that provides force feedback back to the remote control station. The input device of the remote control station may have a force feedback mechanism so that the user feels the force being exerted onto the gripper fingers 190.


In operation, the robot 12 may be placed in a home or a facility where one or more patients are to be monitored and/or assisted. The facility may be a hospital or a residential care facility. By way of example, the robot 12 may be placed in a home where a health care provider may monitor and/or assist the patient. Likewise, a friend or family member may communicate with the patient. The cameras and monitors at both the robot and remote control station allow for teleconferencing between the patient and the person at the remote station.


The robot 12 can be maneuvered through the home or facility by manipulating the input device 32 at the remote station 16. The robot 12 may also have autonomous movement. For example, the robot 12 may be programmed to automatically move to a patients room at a certain time to dispense drugs in the drawer 118 without input from the remote station 16. The robot 12 can be programmed to monitor and/or assist a patient 24 hours a day, 7 days a week. Such a monitoring capability is enhanced by the autonomous recharging function of the robot.


The robot 10 may be controlled by a number of different users. To accommodate for this the robot may have an arbitration system. The arbitration system may be integrated into the operating system of the robot 12. For example, the arbitration technique may be embedded into the operating system of the high-level controller 50.


By way of example, the users may be divided into classes that include the robot itself, a local user, a caregiver, a doctor, a family member, or a service provider. The robot may override input commands that conflict with robot operation. For example, if the robot runs into a wall, the system may ignore all additional commands to continue in the direction of the wall. A local user is a person who is physically present with the robot. The robot could have an input device that allows local operation. For example, the robot may incorporate a voice recognition system that receives and interprets audible commands.


A caregiver is someone who remotely monitors the patient. A doctor is a medical professional who can remotely control the robot and also access medical files contained in the robot memory. The family and service users remotely access the robot. The service user may service the system such as by upgrading software, or setting operational parameters.


Message packets may be transmitted between a robot 12 and a remote station 16. The packets provide commands and feedback. Each packet may have multiple fields. By way of example, a packet may include an ID field a forward speed field, an angular speed field, a stop field, a bumper field, a sensor range field, a configuration field, a text field and a debug field.


The identification of remote users can be set in an ID field of the information that is transmitted from the remote control station 16 to the robot 12. For example, a user may enter a user ID into a setup table in the application software run by the remote control station 16. The user ID is then sent with each message transmitted to the robot.


The robot 12 may operate in one of two different modes; an exclusive mode, or a sharing mode. In the exclusive mode only one user has access control of the robot. The exclusive mode may have a priority assigned to each type of user. By way of example, the priority may be in order of local, doctor, caregiver, family and then service user. In the sharing mode two or more users may share access with the robot. For example, a caregiver may have access to the robot, the caregiver may then enter the sharing mode to allow a doctor to also access the robot. Both the caregiver and the doctor can conduct a simultaneous tele-conference with the patient.


The arbitration scheme may have one of four mechanisms; notification, timeouts, queue and call back. The notification mechanism may inform either a present user or a requesting user that another user has, or wants, access to the robot. The timeout mechanism gives certain types of users a prescribed amount of time to finish access to the robot. The queue mechanism is an orderly waiting list for access to the robot. The call back mechanism informs a user that the robot can be accessed. By way of example, a family user may receive an e-mail message that the robot is free for usage. Tables 1 and 2, show how the mechanisms resolve access request from the various users.














TABLE I






Access
Medical
Command
Software/Debug
Set


User
Control
Record
Override
Access
Priority







Robot
No
No
Yes (1)
No
No


Local
No
No
Yes (2)
No
No


Caregiver
Yes
Yes
Yes (3)
No
No


Doctor
No
Yes
No
No
No


Family
No
No
No
No
No


Service
Yes
No
Yes
Yes
Yes


















TABLE II









Requesting User













Local
Caregiver
Doctor
Family
Service

















Current
Local
Not Allowed
Warn current user of
Warn current user of
Warn current user of
Warn current user of


User


pending user
pending user
pending user
pending user





Notify requesting
Notify requesting user
Notify requesting user
Notify requesting





user that system is in
that system is in use
that system is in use
user that system is in





use
Set timeout = 5 m
Set timeout = 5 m
use





Set timeout

Call back
No timeout








Call back



Caregiver
Warn current user
Not Allowed
Warn current user of
Warn current user of
Warn current user of




of pending user.

pending user
pending user
pending user




Notify requesting

Notify requesting user
Notify requesting user
Notify requesting




user that system is

that system is in use
that system is in use
user that system is in




in use.

Set timeout = 5 m
Set timeout = 5 m
use




Release control

Queue or callback

No timeout








Callback



Doctor
Warn current user
Warn current user of
Warn current user of
Notify requesting user
Warn current user of




of pending user
pending user
pending user
that system is in use
pending user




Notify requesting
Notify requesting
Notify requesting user
No timeout
Notify requesting




user that system is
user that system is in
that system is in use
Queue or callback
user that system is in




in use
use
No timeout

use




Release control
Set timeout = 5 m
Callback

No timeout








Callback



Family
Warn current user
Notify requesting
Warn current user of
Warn current user of
Warn current user of




of pending user
user that system is in
pending user
pending user
pending user




Notify requesting
use
Notify requesting user
Notify requesting user
Notify requesting




user that system is
No timeout
that system is in use
that system is in use
user that system is in




in use
Put in queue or
Set timeout = 1 m
Set timeout = 5 m
use




Release Control
callback

Queue or callback
No timeout








Callback



Service
Warn current user
Notify requesting
Warn current user of
Warn current user of
Not Allowed




of pending user
user that system is in
request
pending user




Notify requesting
use
Notify requesting user
Notify requesting user




user that system is
No timeout
that system is in use
that system is in use




in use
Callback
No timeout
No timeout




No timeout

Callback
Queue or callback









The information transmitted between the station 16 and the robot 12 may be encrypted. Additionally, the user may have to enter a password to enter the system 10. A selected robot is then given an electronic key by the station 16. The robot 12 validates the key and returns another key to the station 16. The keys are used to encrypt information transmitted in the session.



FIG. 10 shows an embodiment of a battery recharger. The robot port 119 may include a secondary winding 250 that is magnetically coupled to a primary winding 252 of the battery recharger station 106. The primary winding 252 is coupled to an electrical outlet plug 254 by a relay circuit 256, a fuse 258 and a switch 260. The relay 256 is controlled by a recharger controller 262.


The recharger controller 262 is connected to a recharger infrared (IR) transceiver 264. The recharger IR transceiver 264 is coupled to a robot IR transceiver 266. The robot IR transceiver 266 is connected to the low level controller 52. The robot 10 may also have an alignment sensor 268 that can sense a target 270 on the station 106. By way of example, the sensor 268 may include an optical emitter and receiver that detects a light beam reflected from the target 270. The controller 52 may also sense a current flow into the battery 104 to determine whether the robot 12 is aligned with the docking station 106.


The secondary windings 250 are connected to the battery 104 by a charger circuit 272. The secondary 250 and primary 252 windings may each have wires 274 wrapped about a magnetic core 276. The station 106 may also have an oscillator/chopper circuit (not shown) to increase the voltage magnetically transferred to the secondary winding 250.


In operation, the robot 10 is moved to the battery recharger station 106 either autonomously, or by user control. The robot 10 is moved until the sensor 268 is aligned with the target 270. The low level controller 52 then sends a command to the recharger controller 262 through the transceivers 264 and 266. The recharger controller 262 then closes the relay 256 wherein power is transferred to the battery 104 through the windings 250 and 252. When the battery 104 is recharged, or the battery recharging process is interrupted by the user, the low level controller 52 transmits a command to the recharger controller 262 to open the relay 256. The robot 10 then moves away from the recharging station 106.



FIG. 11 shows a vector diagram that can be used to compute movement of the robot with the following equations:










w
1

=





V



R
1




(

Sin



1




Sin





θ

-
Cos




1



Cos





θ


)


+


Ψ






L
1



R
1







(
1
)







w
2

=





V



R
2



Sin





θ

+


Ψ






L
2



R
2







(
2
)







w
3

=





V



R
3




(

Sin



2




Sin





θ

+
Cos




2



Cos





θ


)


+


Ψ






L
3



R
3







(
3
)







where,


w2=is the angular velocity of a first roller.


w2=is the angular velocity of a second roller.


w3=is the angular velocity of a third roller.


V=is the input linear velocity for the robot which components Vx=|V|cos θ and −Vy=|V|sin θ.


ψ=is the input angular velocity for the robot.


The values w1, w2 and w3 can be obtained by solving for the inverse of the following matrix:






A
=

[




-


Cos



1



R
1







Sin



1



R
1






L
1


R
1






O



-

1

R
2







L
2


R
2








Cos



3



R
3






Sin



3



R
3






L
3


R
3





]





While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.

Claims
  • 1. A method for interacting with a patient, comprising: transmitting commands from a control station to a robot that has a camera, a monitor, a speaker and a microphone;moving the robot in response to the commands;capturing a still image of a patient with the robot camera;capturing a live video image of the patient with the robot camera, the still image is not a part of the live video image; displaying simultaneously the still image of the patient and the live video image of the patient on a monitor of control station capturing an image of an operator with a control station camera, transmitting the captured operator image to the robot and displaying the transmitted captured operator image on a robot monitor;transmitting a voice message from the control station to the robot; and,transmitting a patient voice message from the robot to the control station.
  • 2. The method of claim 1, wherein the still image of the patient is stored in the robot.
  • 3. The method of claim 1, wherein the robot moves across a surface.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application claiming priority to U.S. patent application Ser. No. 10/206,457, filed Jul. 25, 2002, now U.S. Pat. No. 6,925,357, issued Aug. 2, 2005; and, U.S. patent application Ser. No. 10/913,621, filed Aug. 6, 2004 now U.S. Pat. No. 7,164,970.

US Referenced Citations (254)
Number Name Date Kind
3821995 Aghnides Jul 1974 A
4413693 Derby Nov 1983 A
4471354 Smith Sep 1984 A
4519466 Shiraishi May 1985 A
4638445 Mattaboni Jan 1987 A
4669168 Tamura et al. Jun 1987 A
4697472 Hiyane Oct 1987 A
4709265 Silverman et al. Nov 1987 A
4733737 Falamak Mar 1988 A
4751658 Kadonoff et al. Jun 1988 A
4777416 George et al. Oct 1988 A
4797557 Ohman Jan 1989 A
4803625 Fu et al. Feb 1989 A
4847764 Halvorson Jul 1989 A
4875172 Kanayama Oct 1989 A
4942538 Yuan et al. Jul 1990 A
4974607 Miwa Dec 1990 A
4977971 Crane et al. Dec 1990 A
5006988 Borenstein et al. Apr 1991 A
5040116 Evans, Jr. et al. Aug 1991 A
5051906 Evans, Jr. et al. Sep 1991 A
5073749 Kanayama Dec 1991 A
5084828 Kaufman et al. Jan 1992 A
5130794 Ritchey Jul 1992 A
5153833 Gordon et al. Oct 1992 A
5157491 Kassatly Oct 1992 A
5186270 West Feb 1993 A
5193143 Kaemmerer et al. Mar 1993 A
5217453 Wilk Jun 1993 A
5224157 Yamada et al. Jun 1993 A
5231693 Backes et al. Jul 1993 A
5236432 Matsen, III et al. Aug 1993 A
5305427 Nagata Apr 1994 A
5319611 Korba Jun 1994 A
5341242 Gilboa et al. Aug 1994 A
5341459 Backes Aug 1994 A
5341854 Zezulka et al. Aug 1994 A
5350033 Kraft Sep 1994 A
5366896 Margrey et al. Nov 1994 A
5374879 Pin et al. Dec 1994 A
5417210 Funda et al. May 1995 A
5419008 West May 1995 A
5436542 Petelin et al. Jul 1995 A
5441047 David Aug 1995 A
5442728 Kaufman et al. Aug 1995 A
5462051 Oka Oct 1995 A
5486853 Baxter et al. Jan 1996 A
5510832 Garcia Apr 1996 A
5539741 Barraclough et al. Jul 1996 A
5544649 David et al. Aug 1996 A
5553609 Chen et al. Sep 1996 A
5572229 Fisher Nov 1996 A
5572999 Funda et al. Nov 1996 A
5630566 Case May 1997 A
5636218 Ishikawa et al. Jun 1997 A
5652849 Conway et al. Jul 1997 A
5684695 Bauer Nov 1997 A
5701904 Simmons et al. Dec 1997 A
5749058 Hashimoto May 1998 A
5749362 Funda et al. May 1998 A
5754631 Cave May 1998 A
5762458 Wang et al. Jun 1998 A
5786846 Hiroaki Jul 1998 A
5802494 Kuno Sep 1998 A
5836872 Kenet et al. Nov 1998 A
5838575 Lion Nov 1998 A
5857534 DeVault et al. Jan 1999 A
5867653 Aras et al. Feb 1999 A
5871451 Unger et al. Feb 1999 A
5876325 Mizuno et al. Mar 1999 A
5911036 Wright et al. Jun 1999 A
5917958 Nunally et al. Jun 1999 A
5927423 Wada et al. Jul 1999 A
5954692 Smith et al. Sep 1999 A
5959423 Nakanishi et al. Sep 1999 A
5966130 Benman, Jr. Oct 1999 A
5974446 Sonnenreich et al. Oct 1999 A
6006946 Williams et al. Dec 1999 A
6036812 Williams et al. Mar 2000 A
6133944 Braun et al. Oct 2000 A
6135228 Asada et al. Oct 2000 A
6148100 Anderson et al. Nov 2000 A
6170929 Wilson et al. Jan 2001 B1
6175779 Barrett Jan 2001 B1
6201984 Funda et al. Mar 2001 B1
6211903 Bullister Apr 2001 B1
6219587 Ahlin et al. Apr 2001 B1
6232735 Baba et al. May 2001 B1
6233504 Das et al. May 2001 B1
6233735 Ebihara May 2001 B1
6256556 Zenke Jul 2001 B1
6259806 Green Jul 2001 B1
6259956 Myers et al. Jul 2001 B1
6266162 Okamura et al. Jul 2001 B1
6266577 Popp et al. Jul 2001 B1
6289263 Mukherjee Sep 2001 B1
6292713 Jouppi et al. Sep 2001 B1
6304050 Skaar et al. Oct 2001 B1
6321137 De Smet Nov 2001 B1
6325756 Webb et al. Dec 2001 B1
6327516 Zenke Dec 2001 B1
6330486 Padula Dec 2001 B1
6330493 Takahashi et al. Dec 2001 B1
6346950 Jouppi Feb 2002 B1
6369847 James et al. Apr 2002 B1
6381515 Inoue et al. Apr 2002 B1
6408230 Wada Jun 2002 B2
6430471 Kintou et al. Aug 2002 B1
6430475 Okamoto Aug 2002 B2
6438457 Yokoo et al. Aug 2002 B1
6452915 Jorgensen Sep 2002 B1
6457043 Kwak et al. Sep 2002 B1
6463361 Wang et al. Oct 2002 B1
6466844 Ikeda et al. Oct 2002 B1
6468265 Evans et al. Oct 2002 B1
6474434 Bech Nov 2002 B1
6480762 Uchikubo et al. Nov 2002 B1
6491701 Tierney et al. Dec 2002 B2
6496099 Wang et al. Dec 2002 B2
6496755 Wallach et al. Dec 2002 B2
6501740 Sun et al. Dec 2002 B1
6507773 Parker et al. Jan 2003 B2
6522906 Salisbury et al. Feb 2003 B1
6523629 Buttz et al. Feb 2003 B1
6526332 Sakamoto et al. Feb 2003 B2
6529802 Kawakita et al. Mar 2003 B1
6532404 Colens Mar 2003 B2
6535182 Stanton Mar 2003 B2
6535793 Allard Mar 2003 B2
6540039 Yu Apr 2003 B1
6543899 Covannon et al. Apr 2003 B2
6549215 Jouppi Apr 2003 B2
6563533 Colby May 2003 B1
6580246 Jacobs Jun 2003 B2
6581798 Liff et al. Jun 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6594269 Polcyn Jul 2003 B1
6594552 Nowlin et al. Jul 2003 B1
6604019 Ahlin et al. Aug 2003 B2
6604021 Imai et al. Aug 2003 B2
6611120 Song et al. Aug 2003 B2
6646677 Noro et al. Nov 2003 B2
6650748 Edwards et al. Nov 2003 B1
6666374 Green et al. Dec 2003 B1
6684129 Salisbury et al. Jan 2004 B2
6691000 Nagai et al. Feb 2004 B2
6710797 McNelley et al. Mar 2004 B1
6728599 Wang et al. Apr 2004 B2
6764373 Osawa et al. Jul 2004 B1
6769771 Trumbull Aug 2004 B2
6781606 Jouppi et al. Aug 2004 B2
6784916 Smith Aug 2004 B2
6785589 Eggenberger et al. Aug 2004 B2
6791550 Goldhor et al. Sep 2004 B2
6799065 Niemeyer Sep 2004 B1
6799088 Wang et al. Sep 2004 B2
6804580 Stoddard et al. Oct 2004 B1
6804656 Rosenfeld et al. Oct 2004 B1
6810411 Coughlin et al. Oct 2004 B1
6836703 Wang et al. Dec 2004 B2
6839612 Sanchez et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6845297 Allard Jan 2005 B2
6852107 Wang et al. Feb 2005 B2
6853878 Hirayama et al. Feb 2005 B2
6871117 Wang et al. Mar 2005 B2
6879879 Jouppi et al. Apr 2005 B2
6892112 Wang et al. May 2005 B2
6895305 Lathan et al. May 2005 B2
6914622 Smith et al. Jul 2005 B1
6925357 Wang et al. Aug 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6952470 Tioe Oct 2005 B1
6965394 Gutta et al. Nov 2005 B2
6995664 Darling Feb 2006 B1
7058689 Parker et al. Jun 2006 B2
7092001 Schulz Aug 2006 B2
7096090 Zweig Aug 2006 B1
7115102 Abbruscato Oct 2006 B2
7117067 McLurkin et al. Oct 2006 B2
7123285 Smith et al. Oct 2006 B2
7123991 Graf et al. Oct 2006 B2
7127325 Nagata et al. Oct 2006 B2
7129970 James et al. Oct 2006 B2
7142945 Wang et al. Nov 2006 B2
7142947 Wang et al. Nov 2006 B2
7151982 Liff et al. Dec 2006 B2
7154526 Foote et al. Dec 2006 B2
7155306 Haitin et al. Dec 2006 B2
7156809 Quy Jan 2007 B2
7158859 Wang et al. Jan 2007 B2
7158860 Wang et al. Jan 2007 B2
7161322 Wang et al. Jan 2007 B2
7164969 Wang et al. Jan 2007 B2
7174238 Zweig Feb 2007 B1
7184559 Jouppi Feb 2007 B2
7188000 Chiappetta et al. Mar 2007 B2
7206627 Abovitz et al. Apr 2007 B2
7215786 Nakadai et al. May 2007 B2
7256708 Rosenfeld Aug 2007 B2
7262573 Wang et al. Aug 2007 B2
7346429 Goldenberg et al. Mar 2008 B2
7382399 McCall et al. Jun 2008 B1
7386730 Uchikubo Jun 2008 B2
RE42288 Degioanni Apr 2011 E
7924323 Walker et al. Apr 2011 B2
20010002448 Wilson May 2001 A1
20010010053 Ben-Shachar et al. Jul 2001 A1
20010037163 Allard Nov 2001 A1
20010054071 Loeb Dec 2001 A1
20020015296 Howell et al. Feb 2002 A1
20020027597 Sachau Mar 2002 A1
20020049517 Ruffner Apr 2002 A1
20020057279 Jouppi May 2002 A1
20020058929 Green May 2002 A1
20020063726 Jouppi May 2002 A1
20020095238 Ahlin et al. Jul 2002 A1
20020104094 Alexander et al. Aug 2002 A1
20020111988 Sato Aug 2002 A1
20020120362 Lathan et al. Aug 2002 A1
20020130950 James et al. Sep 2002 A1
20020141595 Jouppi Oct 2002 A1
20020143923 Alexander Oct 2002 A1
20020177925 Onishi et al. Nov 2002 A1
20020183894 Wang et al. Dec 2002 A1
20020184674 Xi et al. Dec 2002 A1
20030030397 Simmons Feb 2003 A1
20030050733 Wang et al. Mar 2003 A1
20030060808 Wilk Mar 2003 A1
20030135203 Wang et al. Jul 2003 A1
20030144579 Buss Jul 2003 A1
20030151658 Smith Aug 2003 A1
20030174285 Trumbull Sep 2003 A1
20030180697 Kim et al. Sep 2003 A1
20040019406 Wang et al. Jan 2004 A1
20040117065 Wang et al. Jun 2004 A1
20040138547 Wang et al. Jul 2004 A1
20040143421 Wang et al. Jul 2004 A1
20040162637 Wang et al. Aug 2004 A1
20040167668 Wang et al. Aug 2004 A1
20050021183 Wang et al. Jan 2005 A1
20050049898 Hirakawa Mar 2005 A1
20050065659 Tanaka Mar 2005 A1
20050071046 Miyazaki et al. Mar 2005 A1
20050104964 Bovyrin et al. May 2005 A1
20050182322 Grispo Aug 2005 A1
20050267826 Levy et al. Dec 2005 A1
20060047365 Ghodoussi et al. Mar 2006 A1
20060052676 Wang et al. Mar 2006 A1
20060161303 Wang et al. Jul 2006 A1
20070273751 Sachau Nov 2007 A1
20080201017 Wang et al. Aug 2008 A1
20080255703 Wang et al. Oct 2008 A1
20090105882 Wang et al. Apr 2009 A1
Foreign Referenced Citations (37)
Number Date Country
2289697 May 1998 CA
0981905 May 1998 EP
1262142 Dec 2002 EP
1573406 Sep 2005 EP
1800476 Jun 2007 EP
2214111 Aug 2010 EP
7213753 Aug 1995 JP
7248823 Sep 1995 JP
07257422 Oct 1995 JP
8084328 Mar 1996 JP
8320727 Dec 1996 JP
9267276 Oct 1997 JP
10079097 Mar 1998 JP
10288689 Oct 1998 JP
2000-032319 Jan 2000 JP
049800 Feb 2000 JP
079587 Mar 2000 JP
196876 Jul 2000 JP
2002-046088 Aug 2000 JP
2002305743 Apr 2001 JP
125641 May 2001 JP
147718 May 2001 JP
179663 Jul 2001 JP
198865 Jul 2001 JP
198868 Jul 2001 JP
199356 Jul 2001 JP
000574 Jan 2002 JP
046088 Feb 2002 JP
355779 Dec 2002 JP
524824 Aug 2004 JP
028066 Feb 2005 JP
WO 9306690 Apr 1993 WO
WO 9851078 Nov 1998 WO
WO9967067 Dec 1999 WO
WO 0033726 Jun 2000 WO
WO 03077745 Sep 2003 WO
WO 2006044847 Apr 2006 WO
Related Publications (1)
Number Date Country
20070021871 A1 Jan 2007 US
Divisions (2)
Number Date Country
Parent 10206457 Jul 2002 US
Child 11529108 US
Parent 10913621 Aug 2004 US
Child 10206457 US