The disclosure relates to a memory device, a circuit structure and a production method thereof, and more particularly, to the memory device, the circuit structure and the production method which effectively generates a discharge path of an accumulated charge and a production method thereof.
In the manufacturing technology of the three-dimensional memory device, it is a common means to use high-density plasma to perform an etching process. The application of such high-density plasma often results in the accumulation of excessively high-energy charges in the memory device, resulting in the risk of arcing effect. Therefore, in the production process, how to improve a discharge path of accumulated charges to reduce the risk of arcing effect is an important issue for those skilled in the art.
The disclosure provides a memory device, a circuit structure and a production method thereof. The circuit structure provides a discharge path, so as to perform a discharge operation of an accumulated charge in a production process.
A circuit structure in the disclosure includes a peripheral circuit, a metal layer, a buffer layer, a poly silicon layer, and a via array. The peripheral circuit is disposed on a substrate. The metal layer covers on the peripheral circuit, and is electrically coupled to the peripheral circuit. The buffer layer is disposed on the metal layer. The poly silicon layer receives a reference ground voltage, and is formed on the buffer layer. The via array is disposed in the buffer layer, and is used to electrically connect the metal layer and the poly silicon layer. At least one first discharge path is disposed between the poly silicon layer and the substrate through the via array, the metal layer, and the peripheral circuit.
The memory device in the disclosure includes a substrate, multiple driving circuits, multiple via arrays, multiple poly silicon layers, and a peripheral poly silicon layer. The driving circuits are formed on the substrate. The driving circuits respectively correspond to multiple memory blocks. The poly silicon layers are electrically coupled to the driving circuits respectively through the via arrays and a metal layer. The peripheral poly silicon layer is formed on peripheries of the poly silicon layers, and the peripheral poly silicon layer and the poly silicon layers receive a reference ground voltage.
A production method of the circuit structure of the disclosure includes the following steps. A peripheral circuit is formed on a substrate. A metal layer is formed to cover on the peripheral circuit, and the metal layer is electrically coupled to the peripheral circuit. A buffer layer is formed to cover on the metal layer. A poly silicon layer is formed to cover the buffer layer, so that the poly silicon layer receives a reference ground voltage. A via array is formed in the buffer layer, so that the via array is electrically connected to the metal layer and the poly silicon layer. At least one first discharge path is formed between the poly silicon layer and the substrate through the via array, the metal layer, and the peripheral circuit.
Based on the above, in the circuit structure in the disclosure, by disposing the via array in the buffer layer, the poly silicon layer may be electrically coupled to the peripheral circuit through the via array, thereby generating at least one discharge path between the poly silicon layer and the substrate. In this way, the accumulated charge generated on the poly silicon layer due to the process operation may be discharged through the above discharge path, which effectively reduces the possibility of damage to the circuit structure due to the accumulated charge.
Referring to
The metal layer 150 covers on the peripheral circuit 120, and may be electrically coupled to one of the heavily doped regions of the transistors T1 and T2 through multiple contact windows. The buffer layer 140 covers on the metal layer 150, and the poly silicon layer 130 covers on the buffer layer 140. The via array 160 is disposed in the buffer layer 140, and is used to electrically couple the poly silicon layer 130 and the metal layer 150. In this way, a discharge path DP11 may be formed between the poly silicon layer 130 and the substrate 110 through the via array 160, the metal layer 150, and the heavily doped region N+ of the transistor T1 in the peripheral circuit 120. Another discharge path DP12 may be formed between the poly silicon layer 130 and the substrate 110 through the via array 160, the metal layer 150, and the heavily doped region P+ of the transistor T2 in the peripheral circuit 120.
It is worth mentioning that in this embodiment, the poly silicon layer 130 receives a reference ground voltage GND. In addition, the substrate 110 may also receive the reference ground voltage GND.
In this embodiment, in a production process of the circuit structure 100, when plasma is applied to the poly silicon layer 130 to generate an accumulated charge on the poly silicon layer 130, the accumulated charge on the poly silicon layer 130 may be discharged through the discharge paths DP11 And DP12. When a voltage on the poly silicon layer 130 is negative (e.g., not greater than 0.7 volts), the accumulated charge may be discharged through the discharge path DP11. When the voltage on the poly silicon layer 130 is positive (e.g., greater than 0.7 volts), the accumulated charge may be discharged through the discharge path DP12.
It is worth mentioning that in other embodiments of the disclosure, the peripheral circuit 120 may only have the transistor T1. The heavily doped region N+ of the transistor T1 may also provide a discharge operation of a bipolar charge. When the voltage on the poly silicon layer 130 is negative (e.g., less than 0.7 volts), the accumulated charge may be discharged through the discharge path DP11. When the voltage on the poly silicon layer 130 is positive and greater than a junction breakdown voltage between the heavily doped region N+ of the transistor T1 and the substrate 110, the accumulated charge may also be discharged through the discharge path DP11.
Incidentally, the word lines WL on the word line structure 170 are disposed in a stepped manner, and are disposed on the poly silicon layer 130.
Hereinafter, referring to
Hereinafter, referring to
The peripheral circuit 320 is formed in substrate 310. In this embodiment, the peripheral circuit 320 includes the transistors T1 and T2. The transistor T1 may be the N-type transistor, and has the source and the drain formed by the N-type heavily doped region (N+). The transistor T2 may be the P-type transistor, and has the source and the drain formed by the P-type heavily doped region (P+). The metal layer 350 covers on the peripheral circuit 320, and may be electrically coupled to one of the heavily doped regions of the transistors T1 and T2 through the contact windows. The buffer layer 340 covers on the metal layer 350, and the poly silicon layer 330 covers on the buffer layer 340. The via array 360 is formed in the buffer layer 340, and is used to electrically couple the poly silicon layer 330 and the metal layer 350. In this way, a discharge path may be formed between the poly silicon layer 330 and the substrate 310 through the via array 360, the metal layer 350, and the heavily doped region N+ of the transistor T1 in the peripheral circuit 320. Another discharge path may be formed between the poly silicon layer 330 and the substrate 310 through the via array 360, the metal layer 350, and the heavily doped region P+ of the transistor T2 in the peripheral circuit 320.
It is worth mentioning that in this embodiment, the circuit structure 300 further includes the transmission array through via 380. The transmission array through via 380 is formed in an insulating layer 3120. The transmission array through via 380 penetrates through the poly silicon layer 330 and the buffer layer 340, and is electrically connected to the metal layer 350. In addition, the conductive line structure 390 is formed above the insulating layer 3120. One end of the conductive line structure 390 is electrically coupled to the metal layer 350, and the other end of the conductive line structure 390 is electrically coupled to the poly silicon layer 330 through the contact window 3100.
In this way, in this embodiment, another discharge path DP2 may be formed between the poly silicon layer 330 and the substrate 310 through the conductive line structure 390, the transmission array through via 380, the metal layer 350, and the peripheral circuit 320. The discharge path DP2 may be applied to a normal operation of the circuit structure 300 to provide the discharge path of the poly silicon layer 330.
In this embodiment, the transmission array through via 380, the conductive line structure 390, and the contact window 3100 may be completed through a back-end process.
It may be seen from the above description that in an architecture of the circuit structure 300 in the embodiment of the disclosure, the discharge paths may be formed, and the accumulated charge on the poly silicon layer 330 may be effectively discharged to maintain the normal operation of the circuit structure 300.
Hereinafter, referring to
In this embodiment, the poly silicon layers GP may respectively correspond to multiple memory blocks. At least one discharge path may be formed between the poly silicon layer GP and the substrate through the corresponding via array VAD, the corresponding metal layer BM, and the corresponding driving circuit GD as a peripheral circuit. A formation method of the discharge path in this embodiment is the same as that of the discharge paths DP11 and DP12 in the embodiment of
The via array VAD may be formed at a corner of the poly silicon layer GP.
Incidentally, each of the metal layers BM and each of the corresponding driving circuits GD may be electrically coupled to each other through the contact window.
The poly silicon layer GP may receive the reference ground voltage GND.
On the other hand, the peripheral poly silicon layer PGP is formed on a periphery of the poly silicon layer GP. Multiple separation windows IW1 to IW3 (which is three in this embodiment) may be formed in the peripheral poly silicon layer PGP, and the one or more poly silicon layers GP may be disposed in each of the separation windows IW1 to IW3. The memory device 400 shown in this embodiment may be a NOR flash memory device or an AND flash memory device.
A peripheral via array VADP may be formed at a corner of the peripheral poly silicon layer PGP. Each of the peripheral via arrays VADP may be electrically coupled to the metal layer BM, and coupled to a heavily doped region HDP in the substrate through the contact window. The heavily doped region HDP may be a part of a driving circuit disposed in the substrate.
Referring to
The peripheral circuit 620 includes transistors T1 and T2. The transistor T2 is formed in a well 610. The transistor T1 may be formed in a well 630. In this embodiment, the well 630 may be formed on the well 610. Besides, the transistors T1 and T2 may have different conductive types. For example, the transistor T2 may be P-type transistor, and the transistor T1 may be N-type transistor. Correspondingly, the wells 610 and 630 may have different conductive types. For example, the well 610 may be N-type well, and the well 630 may be P-type well. On the other and, in this embodiment, the well 610 may receive a voltage with positive polarity, and the well 630 may receive a voltage with negative polarity.
Referring to
The memory device 700 of this embodiment provides the double discharge paths, which may effectively discharge the accumulated charge on the poly silicon layer GP, and may effectively ensure the safety of the memory device 700.
Hereinafter, referring to
In
Referring to
In
In
In
Based on the above, in the circuit structure of the disclosure, by forming the via array, the poly silicon layer receiving the reference ground voltage may be electrically coupled to the peripheral circuit through the via array, and coupled to the substrate through the heavily doped region in the peripheral circuit. In this way, the discharge path may be formed between the poly silicon layer and the substrate, and the discharge operation may be performed for the accumulated charge on the poly silicon layer. In the production process, the circuit structure may be effectively protected from being damaged by the accumulated charge generated by the plasma.