This application is related to U.S. patent application Ser. No. 11/154,129, which has matured to U.S. Pat. No. 7,416,370, filed on Jun. 15, 2005, and entitled “Method and Apparatus for Transporting a Substrate Using Non-Newtonian Fluid,” and is related to U.S. patent application Ser. No. 10/261,839 which has matured to U.S. Pat. No. 7,234,477, filed on Sep. 30, 2002, and entitled “Method and Apparatus for Drying Semiconductor Wafer Surfaces Using a Plurality of Inlets and Outlets Held in Close Proximity to the Wafer Surfaces,” the disclosure of these applications are incorporated herein by reference in their entirety for all purposes.
Throughout a semiconductor device manufacturing process, a semiconductor wafer is cleaned to remove particles, such as contamination from a depositions system, from the surface of the semiconductor wafer. If the particles are not removed, the particles will contaminate the semiconductor wafer resulting in damage to the electronic devices on the semiconductor wafer. As such, cleaning operations define a very critical step that is repeated many times throughout the manufacturing process.
One method to clean the semiconductor wafer is to rinse the surface of the semiconductor wafer with deionized water. However, cleaning the semiconductor water with water is terribly inefficient because the process uses an immense amount of water to remove only a very minute amount of contaminant. Specifically, the inefficiency is caused by the Newtonian properties of water.
In view of the foregoing, there is a need to provide methods and apparatuses that use fluids more efficiently to clean semiconductor wafers.
Broadly speaking, the present invention fills these needs by providing methods and apparatuses for cleaning a substrate. It should be appreciated that the present invention can be implemented in numerous ways, including as a method, a system, or a device. Several inventive embodiments of the present invention are described below.
In accordance with a first aspect of the present invention, a method for cleaning a substrate is provided. In this method, a flow of a non-Newtonian fluid is provided where at least a portion of the flow exhibits plug flow. To remove particles from a surface of the substrate, the surface of the substrate is placed in contact with the portion of the flow that exhibits plug flow such that the portion of the flow exhibiting plug flow moves over the surface of the substrate.
In accordance with a second aspect of the present invention, a method for cleaning a substrate is provided. In this method, a chamber is filled with a non-Newtonian fluid and the substrate is placed into the chamber. Thereafter, additional non-Newtonian fluids are forced into the chamber to create a flow of the non-Newtonian fluid where at least a portion of the flow exhibits plug flow. The substrate is placed within the chamber such that the portion of the flow exhibiting plug flow moves over a surface of the substrate to enable removal of particles from the surface.
In accordance with a third aspect of the present invention, a method for cleaning a substrate is provided. In this method, a surface of an application unit is provided and the application unit is disposed above a surface of the substrate. A flow of a non-Newtonian fluid is applied between the surface of the application unit and the surface of the substrate. At least a portion of the flow exhibits plug flow such that the portion of the flow exhibiting plug flow moves over the surface of the substrate to enable removal of particles from the surface of the substrate.
In accordance with a fourth aspect of the present invention, an apparatus for cleaning a substrate is provided. The apparatus is an application unit configured to be disposed above a surface of the substrate and configured to receive a non-Newtonian fluid. The application unit is capable of applying the non-Newtonian fluid to the surface to create a flow of the non-Newtonian fluid between the application unit and the surface. The flow has a portion that exhibits plug flow such that the plug flow moves over the surface to enable removal of particles from the surface.
In accordance with a fifth aspect of the present invention, an apparatus for cleaning a substrate is provided. The apparatus includes a chamber that has a cavity in a form of a conduit. The conduit is capable of conveying a flow of a non-Newtonian fluid such that a portion of the flow exhibits plug flow. Further, the chamber is configured to contain the substrate such that the plug flow moves over a surface of the substrate to enable removal of particles from the surface.
Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, and like reference numerals designate like structural elements.
An invention is described for methods and apparatuses for cleaning a substrate. It will be obvious, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
The embodiments described herein provide methods and apparatuses for cleaning a substrate. Essentially, non-Newtonian fluids that have the capability to flow as plug flow are used to clean the substrate. As will be explained in more detail below, a flow of non-Newtonian fluid is provided and at least a portion of the flow exhibits plug flow. To clean the substrate, a surface of the substrate is placed in contact with the portion of the flow that exhibits plug flow. In one embodiment, the flow of non-Newtonian fluid is applied to the surface of the substrate such that the portion of the flow exhibiting plug flow flows over the surface of the substrate. In another embodiment, the substrate is immersed in the flow of non-Newtonian fluid that exhibits plug flow.
It should be appreciated that not all non-Newtonian fluids exhibit plug flow. A variety of factors (e.g., applied shear stress, properties of the non-Newtonian fluid, etc.) determine whether a non-Newtonian fluid flows as plug flow. For example, foam (a non-Newtonian fluid) that drains and collapses quickly does not have any significant mechanical strength. Such quick draining foam has virtually no yield point and would most likely not flow as plug flow. In contrast, a high quality foam with a high yield point that drains slowly and can maintain its integrity indefinitely would likely flow as plug flow. There are a variety of methods to increase the yield point of a non-Newtonian fluid. For instance, to increase the yield point of foam, smaller bubbles may be used. Additionally, increasing the amount of surfactants in foam and/or the use of different surfactants can limit foam draining, thereby increasing the yield point of foam. Additional polymers or other binding materials may be added to increase the yield point of the foam and reduce the rate of liquid draining from the foam.
As shown in
A plug flow can result in a high velocity of the non-Newtonian fluid at the surface of substrate 702. The high velocity flow of the non-Newtonian fluid in contact with the surface of substrate 702 correlates to faster collisions and increased collision frequency with particles on the surface of the substrate, thereby assisting the removal of particles from the surface of the substrate. It should be appreciated that gap 706 between surface of application unit 704 and surface of substrate 702 can have any suitable height to accommodate the flow of non-Newtonian fluid. In one exemplary embodiment, gap 706 between the surface of application unit 704 and the surface of substrate 702 has a height in a range from about 50 microns to about 10 millimeters.
Apparatus 1010 also includes input ports 1132 in the walls of the chamber. Input ports 1132 are configured to port the non-Newtonian fluid into the chamber. As shown in the top view of
Still referring to
After substrate 702 is placed into the chamber, panel 1130, which is proximate to the first opening at input end 1116, closes to seal off the first opening. The non-Newtonian fluid applicator then forces additional non-Newtonian fluids into the chamber to create a flow of the non-Newtonian fluid. Since the non-Newtonian fluid cannot exit through the first opening at input end 1116, the non-Newtonian fluid forced through input ports 1132 flows from the input end towards output end 1117 to exit at the second opening at the output end. The direction of the flow is substantially parallel to surfaces of substrate 702. As will be explained in more detail below, a portion of the flow exhibits plug flow, and the substrate is placed within the chamber such that the plug flow moves over surfaces of substrate 702 to remove particles from the surfaces.
To enable the flow to move over surfaces of substrate 702, the substrate is held within the chamber. Embodiments of apparatus 1010 can include one or more holding pins 1112 within the chamber. Holding pins 1112 are used to receive an edge of substrate 702 to prevent horizontal movement of the substrate. In the embodiment of
To exploit the benefits of increased particle removal associated with plug flow, substrate 702 is placed within the chamber such that the portion of the flow exhibiting plug flow moves over a surface of the substrate. With the embodiment shown in
It should be appreciated that chemicals and/or gases in the non-Newtonian fluid can further assist in the removal of particles from surfaces of substrate 702. Specifically, chemicals and/or gases can be included in the non-Newtonian fluid to chemically react or to facilitate chemical reactions with the particles and/or surfaces of substrate 702. Any suitable chemicals and/or gases can be included in the non-Newtonian fluid to facilitate substrate cleaning. For example, foam that is comprised of ozone bubbles and deionized water can be applied to a substrate. The ozone in combination with the deionized water chemically reacts with an organic photoresist material, which is commonly used in semiconductor photolithography operations, to remove the photoresist material from surface of substrate 702.
Furthermore, it should be appreciated that in addition to cleaning, the embodiments described above can be applied to other suitable semiconductor device manufacturing processes that depend on mass transfers. For example, a plug flow of non-Newtonian fluid can be used for plating, which is a surface-covering technique in which a metal is coated onto a surface. The application of a flow of non-Newtonian fluid exhibiting plug flow onto a surface to be plated results in high velocity at or near the surface. The high velocity equates to a high mass transfer of metal onto the surface, thereby reducing the amount of fluid used to coat the surface. In another example, the embodiments described above can be applied to wet etching, where a flow of the non-Newtonian fluid (e.g., a chemical etchant) exhibiting plug flow is applied onto a surface of a substrate to remove a material being etched.
In summary, the above-described embodiments provide methods and apparatuses for cleaning a substrate. To clean a surface of the substrate, the substrate is placed in contact with a flow of non-Newtonian fluid that exhibits plug flow. For the same transfer of mass, plug flow has a higher flow velocity at or near the surface of the substrate when compared to the use of a Newtonian fluid, such as water, to clean a substrate. The friction created by the plug flow at the surface of the substrate is by orders of magnitude higher than the negligible friction created by the Newtonian fluid. As a result, the use of a non-Newtonian fluid exhibiting plug flow to clean substrates is more efficient than the use of a Newtonian fluid because less non-Newtonian fluid is used to achieve the same cleaning effect when compared to the use of the Newtonian fluid.
Although a few embodiments of the present invention have been described in detail herein, it should be understood, by those of ordinary skill, that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details provided therein, but may be modified and practiced within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3037887 | Brenner et al. | Jun 1962 | A |
3212762 | Carroll et al. | Oct 1965 | A |
3436262 | Crowe et al. | Apr 1969 | A |
3617095 | Lissant | Nov 1971 | A |
3978176 | Voegeli | Aug 1976 | A |
4085059 | Smith et al. | Apr 1978 | A |
4133773 | Simmons | Jan 1979 | A |
4156619 | Griesshammer | May 1979 | A |
4238244 | Banks | Dec 1980 | A |
4633893 | McConnell et al. | Jan 1987 | A |
4781764 | Leenaars | Nov 1988 | A |
4817652 | Liu et al. | Apr 1989 | A |
4838289 | Kottman et al. | Jun 1989 | A |
4849027 | Simmons | Jul 1989 | A |
4911761 | McConnell et al. | Mar 1990 | A |
4962776 | Liu et al. | Oct 1990 | A |
5000795 | Chung et al. | Mar 1991 | A |
5048549 | Hethcoat | Sep 1991 | A |
5102777 | Lin et al. | Apr 1992 | A |
5105556 | Kurokawa et al. | Apr 1992 | A |
5113597 | Sylla | May 1992 | A |
5175124 | Winebarger | Dec 1992 | A |
5181985 | Lampert et al. | Jan 1993 | A |
5226969 | Watanabe et al. | Jul 1993 | A |
5242669 | Flor | Sep 1993 | A |
5271774 | Leenaars et al. | Dec 1993 | A |
5288332 | Pustilnik et al. | Feb 1994 | A |
5306350 | Hoy et al. | Apr 1994 | A |
5336371 | Chung et al. | Aug 1994 | A |
5415191 | Mashimo et al. | May 1995 | A |
5417768 | Smith et al. | May 1995 | A |
5464480 | Matthews | Nov 1995 | A |
5472502 | Batchelder | Dec 1995 | A |
5494526 | Paranjpe | Feb 1996 | A |
5498293 | Ilardi et al. | Mar 1996 | A |
5656097 | Olesen et al. | Aug 1997 | A |
5660642 | Britten | Aug 1997 | A |
5705223 | Bunkofske | Jan 1998 | A |
5800626 | Cohen et al. | Sep 1998 | A |
5858283 | Burris | Jan 1999 | A |
5900191 | Gray et al. | May 1999 | A |
5904156 | Advocate, Jr. et al. | May 1999 | A |
5908509 | Olesen et al. | Jun 1999 | A |
5911837 | Matthews | Jun 1999 | A |
5932493 | Akatsu et al. | Aug 1999 | A |
5944581 | Goenka | Aug 1999 | A |
5944582 | Talieh | Aug 1999 | A |
5945351 | Mathuni | Aug 1999 | A |
5951779 | Koyanagi et al. | Sep 1999 | A |
5964954 | Matsukawa et al. | Oct 1999 | A |
5964958 | Ferrell et al. | Oct 1999 | A |
5968285 | Ferrell et al. | Oct 1999 | A |
5997653 | Yamasaka | Dec 1999 | A |
6048409 | Kanno et al. | Apr 2000 | A |
6049996 | Freeman et al. | Apr 2000 | A |
6081650 | Lyons et al. | Jun 2000 | A |
6090217 | Kittle | Jul 2000 | A |
6092538 | Arai et al. | Jul 2000 | A |
6152805 | Takahashi | Nov 2000 | A |
6158445 | Olesen et al. | Dec 2000 | A |
6167583 | Miyashita et al. | Jan 2001 | B1 |
6225235 | Kunze-Concewitz | May 2001 | B1 |
6228563 | Starov et al. | May 2001 | B1 |
6267125 | Bergman et al. | Jul 2001 | B1 |
6270584 | Ferrell et al. | Aug 2001 | B1 |
6272712 | Gockel et al. | Aug 2001 | B1 |
6276459 | Herrick et al. | Aug 2001 | B1 |
6286231 | Bergman et al. | Sep 2001 | B1 |
6290780 | Ravkin | Sep 2001 | B1 |
6296715 | Kittle | Oct 2001 | B1 |
6319801 | Wake et al. | Nov 2001 | B1 |
6352082 | Mohindra et al. | Mar 2002 | B1 |
6386956 | Sato et al. | May 2002 | B1 |
6398975 | Mertens et al. | Jun 2002 | B1 |
6401734 | Morita et al. | Jun 2002 | B1 |
6423148 | Aoki | Jul 2002 | B1 |
6439247 | Kittle | Aug 2002 | B1 |
6457199 | Frost et al. | Oct 2002 | B1 |
6488040 | de Larios et al. | Dec 2002 | B1 |
6491043 | Mohindra et al. | Dec 2002 | B2 |
6491764 | Mertens et al. | Dec 2002 | B2 |
6493902 | Lin | Dec 2002 | B2 |
6513538 | Chung et al. | Feb 2003 | B2 |
6514921 | Kakizawa | Feb 2003 | B1 |
6527870 | Gotikis | Mar 2003 | B2 |
6532976 | Huh et al. | Mar 2003 | B1 |
6537915 | Moore et al. | Mar 2003 | B2 |
6562726 | Torek et al. | May 2003 | B1 |
6576066 | Namatsu | Jun 2003 | B1 |
6594847 | Krusell et al. | Jul 2003 | B1 |
6616772 | de Larios et al. | Sep 2003 | B2 |
6733596 | Mikhaylichenko et al. | May 2004 | B1 |
6787473 | Andreas | Sep 2004 | B2 |
6797071 | Kittle | Sep 2004 | B2 |
6802911 | Lee et al. | Oct 2004 | B2 |
6846380 | Dickinson et al. | Jan 2005 | B2 |
6851435 | Mertens et al. | Feb 2005 | B2 |
6874516 | Matsuno et al. | Apr 2005 | B2 |
6896826 | Wojtczak et al. | May 2005 | B2 |
6927176 | Verhaverbeke et al. | Aug 2005 | B2 |
6946396 | Miyazawa et al. | Sep 2005 | B2 |
6951042 | Mikhaylichenko et al. | Oct 2005 | B1 |
7122126 | Fuentes | Oct 2006 | B1 |
7591613 | de Larios et al. | Sep 2009 | B2 |
20020072482 | Sachdev et al. | Jun 2002 | A1 |
20020094684 | Hirasaki et al. | Jul 2002 | A1 |
20020121290 | Tang et al. | Sep 2002 | A1 |
20020185164 | Tetsuka et al. | Dec 2002 | A1 |
20020195121 | Kittle | Dec 2002 | A1 |
20030075204 | de Larios et al. | Apr 2003 | A1 |
20030148903 | Bargaje et al. | Aug 2003 | A1 |
20030171239 | Patel et al. | Sep 2003 | A1 |
20030226577 | Orll et al. | Dec 2003 | A1 |
20040002430 | Verhaverbeke | Jan 2004 | A1 |
20040053808 | Raehse et al. | Mar 2004 | A1 |
20040134515 | Castrucci | Jul 2004 | A1 |
20040159335 | Montierth et al. | Aug 2004 | A1 |
20040163681 | Verhaverbeke | Aug 2004 | A1 |
20040261823 | de Larios | Dec 2004 | A1 |
20050045209 | Tan | Mar 2005 | A1 |
20050132515 | Boyd et al. | Jun 2005 | A1 |
20050133060 | de Larios et al. | Jun 2005 | A1 |
20050133061 | de Larios et al. | Jun 2005 | A1 |
20050159322 | Min et al. | Jul 2005 | A1 |
20050176606 | Konno et al. | Aug 2005 | A1 |
20050183740 | Fulton et al. | Aug 2005 | A1 |
20060201267 | Liu | Sep 2006 | A1 |
20060283486 | de Larios et al. | Dec 2006 | A1 |
20060285930 | de Larios et al. | Dec 2006 | A1 |
20070000518 | Korolik et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
40-38-587 | Jun 1992 | DE |
0827188 | Mar 1998 | EP |
0905746 | Mar 1999 | EP |
11-334874 | Dec 1999 | EP |
0989600 | Mar 2000 | EP |
53-076559 | Jul 1978 | JP |
56-084618 | Jul 1981 | JP |
56-084619 | Jul 1981 | JP |
59-24849 | Feb 1984 | JP |
60-005529 | Jan 1985 | JP |
62-119543 | May 1987 | JP |
63-077510 | Apr 1988 | JP |
02-309638 | Dec 1990 | JP |
5-15857 | Jan 1993 | JP |
06-177101 | Jun 1994 | JP |
07-006993 | Jan 1995 | JP |
11-350169 | Dec 1999 | JP |
2001-064688 | Mar 2001 | JP |
2002-66475 | Mar 2002 | JP |
2002-280330 | Sep 2002 | JP |
2002-309638 | Oct 2002 | JP |
2003-282513 | Oct 2003 | JP |
2005-194294 | Jul 2005 | JP |
WO-9916109 | Apr 1999 | WO |
WO-0033980 | Jun 2000 | WO |
WO-0059006 | Oct 2000 | WO |
WO-0112384 | Feb 2001 | WO |
WO-02101795 | Dec 2002 | WO |
WO-2005006424 | Jan 2005 | WO |
WO 2005064647 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060283486 A1 | Dec 2006 | US |