The manufacturing of integrated circuits (IC) semiconductor devices, flat panel displays, optoelectronics devices, data storage devices, magneto electronic devices, magneto optic devices, packaged devices, and the like entails the integration and sequencing of many unit processing steps. For example, IC manufacturing typically includes a series of processing steps such as cleaning, surface preparation, deposition, lithography, patterning, etching, planarization, implantation, thermal annealing and other related unit processing steps. The precise sequencing and integration of the unit processing steps enable the formation of functional devices meeting desired performance specifications such as speed, power consumption, yield and reliability. Furthermore, the tools and equipment employed in device manufacturing have been developed to enable the processing of ever increasing substrate sizes such as the move to twelve inch (or 300 millimeter) diameter wafers in order to fit more ICs per substrate per unit processing step for productivity and cost benefits. Other methods of increasing productivity and decreasing manufacturing costs include the use of batch reactors whereby multiple monolithic substrates can be processed in parallel. In these processing steps a monolithic substrate or batch of monolithic substrates are processed uniformly, i.e., in the same fashion with the same resulting physical, chemical, electrical, and the like properties across a given monolithic substrate.
The ability to process uniformly across a monolithic substrate and/or across a series of monolithic substrates is advantageous for manufacturing efficiency and cost effectiveness, as well as repeatability and control. However, uniform processing across an entire substrate can be disadvantageous when optimizing, qualifying or investigating new materials, new processes, and/or new process sequence integration schemes, since the entire substrate is nominally made the same using the same materials, processes and process sequence integration scheme. Each so processed substrate represents in essence only one possible variation per substrate. Thus, the full wafer uniform processing under conventional processing techniques results in fewer data points per substrate, longer times to accumulate a wide variety of data and higher costs associated with obtaining such data.
Accordingly, there is a need to be able to more efficiently screen and analyze an array of materials, processes, and process sequence integration schemes across a substrate in order to more efficiently evaluate alternative materials, processes, and process sequence integration schemes for semiconductor manufacturing processes.
Embodiments of the present invention provide a method and a system for screening a semiconductor manufacturing operation having numerous possible materials, processes and process sequences to derive an optimum manufacturing method or integration sequence, or a relatively small set of optimum manufacturing methods. Several inventive embodiments of the present invention are described below.
In one aspect of the invention, a method for analyzing and optimizing semiconductor fabrication techniques using variations of materials, unit processes, and process sequences is provided. In the method, a subset of a semiconductor manufacturing process sequence and build is analyzed for optimization. During the execution of the subset of the manufacturing process sequence, the materials, unit processes, and process sequence for creating a certain structure is varied. For example, adhesion layers in interconnect applications could be analyzed through a combination of blanket depositions and combinatorial variations in discrete regions on the substrate. During the combinatorial processing, the materials, unit processes, or process sequence is varied between the discrete regions of a semiconductor substrate, wherein within each of the regions the process yields a substantially uniform or consistent result that is representative of a result of a commercial semiconductor manufacturing operation. Moreover, the variation is introduced in a controlled manner, so that testing will determine any differences due to the variation without having to be concerned with external factors causing testing anomalies.
In one embodiment, primary, secondary and tertiary screening levels are defined during the combinatorial process sequence in order to methodically optimize the materials, unit processes, and process sequence of the semiconductor manufacturing operation. In another embodiment, a structure, series of structures or partial structure(s) in each region is tested for physical, chemical, electrical, magnetic, etc., properties during the screening. Based on the results of this testing further screening is performed where the materials, unit processes, and process sequences having the desired characteristics are included, while other materials, processes, and process sequences not having the desired characteristics are eliminated. Once a portion of the materials, unit processes, and process sequences having the desired characteristics are identified, then those aspects can be performed in a conventional manner, i.e., non-combinatorially, and other aspects of the materials, unit processes, or process sequence can be varied combinatorially. The iterative repeating of this process eventually yields an optimized semiconductor manufacturing process sequence, which takes into account the interaction of the process and the process sequence as opposed to a material-centric viewpoint.
In another aspect of the invention, a tool for optimizing a process sequence for manufacturing a production wafer that may contain devices defined thereon is provided. In one embodiment, the production wafer is at least 6 inches in diameter, however, the production wafer can be any suitable size or shape that includes diameters less than or greater than 6 inches. The tool includes a mainframe having a plurality of modules attached thereto. One of the modules is a combinatorial processing module. Through the combinatorial module, an order of the process sequence, unit processes, process conditions, and/or materials are varied among regions of the wafer being processed. In one embodiment, the mainframe includes a combinatorial processing module and a conventional processing module. The modules are configured to define structures on a semiconductor substrate according to a process sequence order. One or more processes of the process sequence order are performed in the combinatorial processing module. The process or processes performed in the combinatorial module is varied in discrete regions of the semiconductor substrate through the combinatorial processing module.
Other aspects of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings. Like reference numerals designate like structural elements.
FIGS. 2A-C are simplified schematic diagrams illustrating isolated and slightly overlapping regions in accordance with one embodiment of the invention.
The embodiments described herein provide a method and system for evaluating materials, unit processes, and process integration sequences to improve semiconductor manufacturing operations. It will be obvious, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
The embodiments described herein enable the application of combinatorial techniques to process sequence integration in order to arrive at a globally optimal sequence of semiconductor manufacturing operations by considering interaction effects between the unit manufacturing operations, the process conditions used to effect such unit manufacturing operations, as well as materials characteristics of components utilized within the unit manufacturing operations. Rather than only considering a series of local optimums, i.e., where the best conditions and materials for each manufacturing unit operation is considered in isolation, the embodiments described below consider interactions effects introduced due to the multitude of processing operations that are performed and the order in which such multitude of processing operations are performed when fabricating a semiconductor device. A global optimum sequence order is therefore derived and as part of this derivation, the unit processes, unit process parameters and materials used in the unit process operations of the optimum sequence order are also considered.
The embodiments described further below analyze a portion or sub-set of the overall process sequence used to manufacture a semiconductor device. Once the subset of the process sequence is identified for analysis, combinatorial process sequence integration testing is performed to optimize the materials, unit processes and process sequence used to build that portion of the device or structure. During the processing of some embodiments described herein, structures are formed on the processed semiconductor substrate that are equivalent to the structures formed during actual production of the semiconductor device. For example, such structures may include, but would not be limited to, trenches, vias, interconnect lines, capping layers, masking layers, diodes, memory elements, gate stacks, transistors, or any other series of layers or unit processes that create an intermediate structure found on semiconductor chips. While the combinatorial processing varies certain materials, unit processes, or process sequences, the composition or thickness of the layers or structures or the action of the unit process, such as cleaning, surface preparation, etch, deposition, planarization, implantation, surface treatment, etc. is substantially uniform through each discrete region. Furthermore, while different materials or unit processes may be used for corresponding layers or steps in the formation of a structure in different regions of the substrate during the combinatorial processing, the application of each layer or use of a given unit process is substantially consistent or uniform throughout the different regions in which it is intentionally applied. Thus, the processing is uniform within a region (inter-region uniformity) and between regions (intra-region uniformity), as desired. It should be noted that the process can be varied between regions, for example, where a thickness of a layer is varied or one of various process parameters may be varied between the regions, etc., as desired by the design of the experiment.
The result is a series of regions on the substrate that contain structures or unit process sequences that have been uniformly applied within that region and, as applicable, across different regions. This process uniformity allows comparison of the properties within and across the different regions such that the variations in test results are due to the varied parameter (e.g., materials, unit processes, unit process parameters, or process sequences) and not the lack of process uniformity. In contrast, gradient processing techniques require variation across layers and non-uniformity within layers occurs so that a rapid scan of various material compositions is obtained. In the embodiments described herein, the positions of the discrete regions on the substrate can be defined as needed, but are preferably systematized for ease of tooling and design of experimentation. In addition, the number, variants and location of structures within each region are designed to enable valid statistical analysis of the test results within each region and across regions to be performed. Gradient processing techniques are unable to deliver the uniformity or consistency at arbitrary locations to build structures from a commercial semiconductor chip or enable statistical analysis of the impact of varying the materials, unit processes or process sequences between various areas of the substrate. That is, the output of a gradient processing operation is customized for a particular testing purpose and this output is unable to provide any data with regard to process sequence interactions, as the gradient processes are not easily translatable to many processes used during the commercial creation of a semiconductor device.
While the gradient technique has the above limitations, it does enable a rapid scan of material properties and may be incorporated into the front end of the techniques described herein to identify possible material candidates to be incorporated into the combinatorial process sequence integration being analyzed and optimized. However, due to the inherent variation and non-uniformity within a location, the gradient processing techniques are unable to be used in the evaluation of process sequence integration techniques.
It should be appreciated that various other combinations of conventional and combinatorial processes can be included in the processing sequence with regard to
Under combinatorial processing operations the processing conditions at different regions can be controlled independently. Consequently, process material amounts, reactant species, processing temperatures, processing times, processing pressures, processing flow rates, processing powers, processing reagent compositions, the rates at which the reactions are quenched, deposition order of process materials, process sequence steps, etc., can be varied from region to region on the substrate. Thus, for example, when exploring materials, a processing material delivered to a first and second region can be the same or different. If the processing material delivered to the first region is the same as the processing material delivered to the second region, this processing material can be offered to the first and second regions on the substrate at different concentrations. In addition, the material can be deposited under different processing parameters. Parameters which can be varied include, but are not limited to, process material amounts, reactant species, processing temperatures, processing times, processing pressures, processing flow rates, processing powers, processing reagent compositions, the rates at which the reactions are quenched, atmospheres in which the processes are conducted, an order in which materials are deposited, etc. It should be appreciated that these process parameters are exemplary and not meant to be an exhaustive list as other process parameters commonly used in semiconductor manufacturing may be varied.
As mentioned above, within a region the process conditions are substantially uniform, in contrast to gradient processing techniques which rely on the inherent non-uniformity of the material deposition. That is, the embodiments, described herein locally perform the processing in a conventional manner, e.g., substantially consistent and substantially uniform, while globally over the substrate, the materials, processes and process sequences may vary. Thus, the testing will find optimums without interference from process variation differences between processes that are meant to be the same. It should be appreciated that a region may be adjacent to another region in one embodiment or the regions may be isolated and, therefore, non-overlapping. When the regions are adjacent, there may be a slight overlap wherein the materials or precise process interactions are not known, however, a portion of the regions, normally at least 50% or more of the area, is uniform and all testing occurs within that region. Further, the potential overlap is only allowed with material of processes that will not adversely affect the result of the tests. Both types of regions are referred to herein as regions or discrete regions.
FIGS. 2A-C are simplified schematic diagrams illustrating isolated and slightly overlapping regions in accordance with one embodiment of the invention. In
In one embodiment, the primary and secondary testing may occur on a coupon, while the tertiary testing is performed on a production size wafer. Through this multi-level screening process, the best possible candidates have been identified from many thousands of options. The time required to perform this type of screening will vary, however, the efficiencies gained through the HPC methods provide a much faster development system than any conventional technique or scheme. While these stages are defined as primary second and tertiary, these are arbitrary labels placed on these steps. Furthermore, primary screening is not necessarily limited to materials research and can be focused on unit processes or process sequences, but generally involves a simpler substrate, less steps and quicker testing than the later screening levels.
The stages also may overlap and there may be feedback from the secondary to the primary, and the tertiary to the secondary and/or the primary to further optimize the selection of materials, unit processes and process sequences. In this manner, the secondary screening begins while primary screening is still being completed, and/or while additional primary screening candidates are generated, and tertiary screening can begin once a reasonable set of options are identified from the secondary screening. Thus, the screening operations can be pipelined in one embodiment. As a general matter and as discussed elsewhere in more detail, the level of sophistication of the structures, process sequences, and testing increases with each level of screening. Furthermore, once the set of materials, unit processes and process sequences are identified through tertiary screening, they must be integrated into the overall manufacturing process and qualified for production, which can be viewed as quaternary screening or production qualification. In one more level of abstraction, a wafer can be pulled from the production process, combinatorially processed, and returned to the production process under tertiary and/or quaternary screening.
In the various screening levels, the process tools may be the same or may be different. For example, in dry processing the primary screening tool may be a combinatorial sputtering tool available described, for example, in U.S. Pat. No. 5,985,356. This tool is efficient at preparing multi-material samples in regions for simple materials properties analysis. For secondary and/or tertiary screening technique, a modified cluster tool may be retrofitted with a combinatorial chamber as described in
In the development or screening cycle, typically there are many materials synthesized or processed involving large permutations of a plurality of materials, a plurality of processes, a plurality of processing conditions, a plurality of material application sequences, a plurality of process integration sequences, and combinations thereof. Testing of these many materials may use a simple test, such as adhesion or resistivity and may involve a blanket wafer (or coupon) or one with basic test structures to enable testing for one or more desired properties of each material or unit process. Once the successful materials or unit processes have been selected, combinatorial techniques are applied to analyze these materials or processes within a larger picture. That is, the combinatorial techniques determine whether the selected materials or unit processes meet more stringent requirements during second stage testing. The processing and testing during the second stage may be more complex, e.g., using a patterned wafer or coupon, with more test structures, larger regions, more variations, more sophisticated testing, etc. For example, the structure defined by the material and unit process sequence can be tested for properties related or derived from the structure to be integrated into the commercial product.
This iterative process may continue with larger and more complex test circuits being used for testing different parameters. This approach serves to increase the productivity of the combinatorial screening process by maximizing the effective use of the substrate real estate, and optimizing the corresponding reactor and test circuit design with the level of sophistication required to answer the level of questions necessary per stage of screening. Complex reactors and/or test circuit designs are utilized at later stages of screening when desired properties of the materials, processing conditions, process sequence, etc. are substantially known and/or have been refined via prior stages of screening.
The subsections of test structures generated from previous testing for some screening levels may be incorporated into subsequent, more complex screening levels in order to further evaluate the effectiveness of process sequence integrations and to provide a check and correlation vehicle to the previous screen. It should be appreciated that this ability allows a developer to see how results of the subsequent process differed from the results of the previous process, i.e., take into account process interactions. In one example, materials compatibility may be used as a primary test vehicle in primary screening, then specific structures incorporating those materials (carried forward from the primary screen) are used for the secondary screening. As mentioned herein, the results of the secondary screening may be fed back into the primary screening also. Then, the number and variety of test structures is increased in tertiary screening along with the types of testing, for example, electrical testing may be added or device characterization may be tested to determine whether certain critical parameters are met. Of course, electrical testing is not reserved for tertiary testing as electrical testing may be performed at other screening stages. The critical parameters generally focus on the requirements necessary to integrate the structures created from the materials and process sequence into the commercial product, e.g., a semiconductor die.
Still referring to
One manner of looking at the difference between the primary, secondary, and tertiary levels, aside from the data sophistication and the data quality, is that the primary level tends to have more variation per unit area of substrate than the secondary and tertiary levels (i.e., the regions are smaller in the primary screen). In some embodiments, the primary and secondary variation per unit area may be the same or similar with variation between the primary and the secondary levels being defined by the structures on the substrate or the structures (or partial structures) formed through the process sequence. It should be appreciated that when performing the screening described in
Module 408 is referred to as a library module in accordance with one embodiment of the invention. In module 408, a plurality of masks, also referred to as processing masks, are stored. The masks may be used in the dry combinatorial processing modules in order to apply a certain pattern to a substrate being processed in those modules. Module 410 includes a HPC physical vapor deposition module in accordance with one embodiment of the invention. Module 412 is a conventional deposition module in accordance with one embodiment of the invention. In one embodiment, a centralized controller, i.e., computing device 411, may control the processes of the HPC system. Further details of the HPC system are described in U.S. application Ser. Nos. 11/672,478, and 11/672,473.
In one embodiment, the combinatorial module, either for wet processing or dry processing, is capable of executing techniques, methodologies, processes, test vehicles, synthetic procedures, technology, or combinations thereof used for the simultaneous, parallel, or rapid serial: (i) design, (ii) synthesis, (iii) processing, (iv) process sequencing, (v) process integration, (vi) device integration, (vii) analysis, or (viii) characterization of more than two (2) compounds, compositions, mixtures, processes, or synthesis conditions, or the structures derived from such. It should be appreciated that test vehicles include, but are not limited to, physical, electrical, photolytic, and/or magnetic characterization devices such as test structures or chips, used in the design, process development, manufacturing process qualification, and manufacturing process control of integrated circuit devices.
The method then advances to operation 604 where the first process sequence order is executed while varying one of the identified semiconductor manufacturing processes combinatorially It should be noted that the use of a production size wafer is optional here as a coupon or portion of a wafer may be used. Here, as illustrated in
The method of
Thereafter electrical testing (E-test) is performed. From the results of the E-test, which include impact to line resistance, impact to capacitance, and impact to line-to-line leakage, the pre-clean processes associated with the most favorable results are selected and further combinatorial process sequence integration is executed. For example, a relatively small subset of the pre-clean possibilities is selected and set as a conventional process. Then, the electroless cap process may be combinatorially evaluated, where the pre-clean, molecular mask and the strip and clean operations are performed using a conventional process. The evaluation of the electroless cap process includes evaluation of different reducing agents, complexing agents, buffers, surfactants, temperatures for the process, pH ranges, cobalt and/or other source metal and/or metal alloy concentrations, deposition times, etc.
The evaluation of each of these processes combinatorially may include a methodical approach, which includes the primary, secondary, and tertiary evaluations as mentioned with reference to
In another embodiment, as illustrated in
Thus, the unit process steps involved with the above-reference approach include for example:
1. delivering cleaning solution(s) to remove organic and metallic contamination from exposed dielectric surfaces;
2. delivering cleaning and/or reducing solution(s) to remove the copper oxide and contamination from exposed copper surfaces;
3. delivering wetting, functionalization, and/or organic coating agents to form a masking layer on the dielectric portions of the substrate;
4. delivering and effecting a multicomponent (including but not limited to Co containing agents, transition metal containing agents, reducing agents, pH adjusters, surfactants, wetting agents, DI water, DMAB, TMAH, etc.) plating chemistry for electroless plating of a Co containing film;
5. delivering post plate etching and/or cleaning solution(s) to remove the sacrificial masking layer whereby excess plating material, such as Co particulates and other unwanted contamination which would otherwise have formed over the dielectric region(s) are removed through the removal of the masking layer
6. delivering post cleaning solution(s) to remove contamination and/or excess plating material, such as Co particulates from the capping layer;
7. rinsing the region; and
8. drying the region.
The site-isolated multiprocessing apparatus described above can be used to examine variations of each of the unit processes listed above, sequencing of the processes, and combinations thereof such that each region of die effectively receives a different process or processing history. Through the embodiments described herein, any of the processes, process sequence or the materials used in the process may be modified between regions of the substrate to evaluate the process interactions, as well as materials.
This following example illustrates a combinatorial processing approach to discovering new materials/processes/process sequence integration schemes to address the sealing of porous low-k dielectrics used in damascene (single or dual) copper interconnect formation. Porous low-k dielectrics are susceptible to precursor penetration during barrier layer formation such as in atomic layer deposition (ALD) processes which can lead to poisoning of the low-k dielectric, the inability to form a continuous barrier layer, the inability to form a thin and continuous barrier layer, etc., all of which can subsequently lead to poor device performance. Porous low-k dielectrics also typically exhibit poor (i.e. weaker) adhesion characteristics to barrier layers (e.g. Ta, TaxCy, TaxNy, TaxCyNz, W, WxCy, WxNy, WxCyNz, Ru, etc.) as compared to standard dielectrics (e.g. SiO2, FSG, etc.) which can lead to poor device reliability. It is desirable to be able to seal the exposed pores of porous low-k dielectrics and/or improve the adhesion properties of porous low-k dielectrics to barrier layers used in copper interconnect formation.
The unit process steps (involved with the above-referenced approach) for sealing of porous low-k dielectrics used in copper interconnect formation include for example:
1. delivering cleaning solution(s) to remove organic and metallic contamination from exposed dielectric surfaces;
2. delivering cleaning and/or reducing solution(s) to remove the copper oxide and contamination from exposed copper surfaces;
3. delivering wetting, functionalization, and/or coating agents selectively from a molecularly self-assembled layer(s) on the exposed dielectric surfaces so as to substantially fill and/or seal the exposed pores of the exposed dielectric surfaces;
4. delivering cleaning solution(s) to remove contamination and/or residue (resulting from step 3) from exposed copper surfaces;
5. rinsing the region;
6. drying the region; and
7. performing post-processing treatment, e.g., thermal, UV, IR, etc.
As illustrated in
It may be determined that the use of a metal alone with the High K gate is not compatible as defects are introduced into the structure as evidenced by testing results (e.g., fermi level pinning). Thus, as illustrated in
An optimum process sequence for this example was developed with the screening approach described herein.
Then, with this reduced subset, the effect of putting another electrode on top of the M-I structure is evaluated as depicted by
Still referring to
In summary, the embodiments described above enable rapid and efficient screening of materials, unit processes, and process sequences for semiconductor manufacturing operations. As illustrated in
The site-isolated multiprocessing methods and systems described in the present invention can be used to examine variations in one or more of the unit process steps listed above, sequencing of the processes, and combinations thereof, such that two or more regions of a substrate effectively receive a different process or sequence of processes, or processing history. The above examples are provided for illustrative purposes and not meant to be limiting. The embodiments described herein may be applied to any process sequence to optimize the process sequence, as well as the materials, processes, and processing conditions utilized in the manufacture of a semiconductor device where there exist multiple options for the materials, processes, processing conditions, and process sequences.
The present invention provides greatly improved methods and apparatus for the differential processing of regions on a single substrate. It is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments and variations of the invention will become apparent to those of skill in the art upon review of this disclosure. Merely by way of example a wide variety of process times, process temperatures and other process conditions may be utilized, as well as a different ordering of certain processing steps. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with the full scope of equivalents to which such claims are entitled.
The explanations and illustrations presented herein are intended to acquaint others skilled in the art with the invention, its principles, and its practical application. Those skilled in the art may adapt and apply the invention in its numerous forms, as may be best suited to the requirements of a particular use. Accordingly, the specific embodiments of the present invention as set forth are not intended as being exhaustive or limiting of the invention.
The embodiments described above provide methods and apparatus for the parallel or rapid serial synthesis, processing and analysis of novel materials having useful properties identified for semiconductor manufacturing processes. Any materials found to possess useful properties can then subsequently be prepared on a larger scale and evaluated in actual processing conditions. These materials can be evaluated along with reaction or processing parameters through the methods described above. In turn, the feedback from the varying of the parameters provides for process optimization. Some reaction parameters which can be varied include, but are not limited to, process material amounts, reactant species, processing temperatures, processing times, processing pressures, processing flow rates, processing powers, processing reagent compositions, the rates at which the reactions are quenched, atmospheres in which the processes are conducted, an order in which materials are deposited, etc. In addition, the methods described above enable the processing and testing of more than one material, more than one processing condition, more than one sequence of processing conditions, more than one process sequence integration flow, and combinations thereof, on a single substrate without the need of consuming multiple substrates per material, processing condition, sequence of operations and processes or any of the combinations thereof. This greatly improves the speed as well as reduces the costs associated with the discovery and optimization of semiconductor manufacturing operations.
Moreover, the embodiments described herein are directed towards delivering precise amounts of material under precise processing conditions at specific locations of a substrate in order to simulate conventional manufacturing processing operations. As mentioned above, within a region the process conditions are substantially uniform, in contrast to gradient processing techniques which rely on the inherent non-uniformity of the material deposition. That is, the embodiments, described herein locally perform the processing in a conventional manner, e.g., substantially consistent and substantially uniform, while globally over the substrate, the materials, processes and process sequences may vary. It should be noted that the discrete steps of uniform processing is enabled through the HPC systems described herein.
Any of the operations described herein that form part of the invention are useful machine operations. The invention also relates to a device or an apparatus for performing these operations. The apparatus can be specially constructed for the required purpose, or the apparatus can be a general-purpose computer selectively activated or configured by a computer program stored in the computer. In particular, various general-purpose machines can be used with computer programs written in accordance with the teachings herein, or it may be more convenient to construct a more specialized apparatus to perform the required operations.
Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications can be practiced within the scope of the appended claims. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims. In the claims, elements and/or steps do not imply any particular order of operation, unless explicitly stated in the claims.
This application is a continuation-in-part and claims the benefit of U.S. application Ser. No. 11/352,077 filed Feb. 10, 2006, and U.S. application Ser. No. 11/419,174 filed May 18, 2006, which are incorporated by reference in their entirely for all purposes. This application is related to U.S. application Ser. No. (Atty Docket INTMP003B) filed on the same day as the present application and entitled “Method and Apparatus for Combinatorially Varying Materials, Unit Process and Process Sequence.”
Number | Date | Country | |
---|---|---|---|
Parent | 11352077 | Feb 2006 | US |
Child | 11674132 | Feb 2007 | US |
Parent | 11419174 | May 2006 | US |
Child | 11674132 | Feb 2007 | US |