Magnetic memories, particularly magnetic random access memories (MRAMs), have drawn increasing interest due to their potential for high read/write speed, excellent endurance, non-volatility and low power consumption during operation. An MRAM can store information utilizing magnetic materials as an information recording medium. One type of MRAM is a spin transfer torque random access memory (STT-MRAM). STT-MRAM utilizes magnetic junctions written at least in part by a current driven through the magnetic junction. A spin polarized current driven through the magnetic junction exerts a spin torque on the magnetic moments in the magnetic junction. As a result, layer(s) having magnetic moments that are responsive to the spin torque may be switched to a desired state.
For example, a conventional magnetic tunneling junction (MTJ) may be used in a conventional STT-MRAM. The conventional MTJ typically resides on a substrate. The conventional MTJ, uses conventional seed layer(s), may include capping layers and may include a conventional antiferromagnetic (AFM) layer. The conventional MTJ includes a conventional reference layer, a conventional free layer and a conventional tunneling barrier layer between the conventional pinned and free layers. A bottom contact below the conventional MTJ and a top contact on the conventional MTJ may be used to drive current through the conventional MTJ in a current-perpendicular-to-plane (CPP) direction.
The conventional reference layer and the conventional free layer are magnetic. The magnetization of the conventional reference layer is fixed, or pinned, in a particular direction. The conventional free layer has a changeable magnetization. The conventional free layer may be a single layer or include multiple layers.
To switch the magnetization of the conventional free layer, a current is driven perpendicular to plane. When a sufficient current is driven from the top contact to the bottom contact, the magnetization of the conventional free layer may switch to be parallel to the magnetization of a conventional bottom reference layer. When a sufficient current is driven from the bottom contact to the top contact, the magnetization of the free layer may switch to be antiparallel to that of the bottom reference layer. The differences in magnetic configurations correspond to different magnetoresistances and thus different logical states (e.g. a logical “0” and a logical “1”) of the conventional MTJ.
Because of their potential for use in a variety of applications, research in magnetic memories is ongoing. Mechanisms for improving the performance of STT-MRAM are desired. For example, a lower switching current may be desired for easier and faster switching. Concurrently, a magnetic junction having larger lateral (in-plane) dimensions may be desirable. However both these goals may be difficult to achieve together. Accordingly, what is needed is a method and system that may improve the performance of the spin transfer torque based memories. The method and system described herein address such a need.
A magnetic junction and method for providing the magnetic junction are described. The magnetic junction is usable in a magnetic device. The magnetic junction includes a free layer, first and second reference layers, and first and second nonmagnetic spacer layers. The free layer is switchable between stable magnetic states. The first nonmagnetic spacer layer is between the first reference layer and the free layer. The second nonmagnetic spacer layer is between the free layer and the second reference layer. The free layer is between the first nonmagnetic spacer layer and the second nonmagnetic spacer layer. The first reference layer has a first reference layer magnetic length. The second reference layer has a second reference layer magnetic length. The free layer has a free layer magnetic length less than the free layer physical length, less than the first reference layer magnetic length and less than the second reference layer magnetic length. The free layer magnetic length has a first end and a second end opposite to the first end. The free layer and the first reference layer are oriented such that the first reference layer magnetic length extends past the first end and past the second end of the free layer. The free layer and the second reference layer are oriented such that the second reference layer magnetic length extends past the first end and past the second end of the free layer.
The magnetic junction has a more uniform magnetic field at the free layer. As a result, switching performance may be improved.
The exemplary embodiments relate to magnetic junctions usable in magnetic devices, such as magnetic memories, and the devices using such magnetic junctions. The magnetic memories may include spin transfer torque magnetic random access memories (STT-MRAMs) and may be used in electronic devices employing nonvolatile memory. Such electronic devices include but are not limited to cellular phones, smart phones, tables, laptops and other portable and non-portable computing devices. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the exemplary embodiments and the generic principles and features described herein will be readily apparent. The exemplary embodiments are mainly described in terms of particular methods and systems provided in particular implementations. However, the methods and systems will operate effectively in other implementations. Phrases such as “exemplary embodiment”, “one embodiment” and “another embodiment” may refer to the same or different embodiments as well as to multiple embodiments. The embodiments will be described with respect to systems and/or devices having certain components. However, the systems and/or devices may include more or less components than those shown, and variations in the arrangement and type of the components may be made without departing from the scope of the invention. The exemplary embodiments will also be described in the context of particular methods having certain steps. However, the method and system operate effectively for other methods having different and/or additional steps and steps in different orders that are not inconsistent with the exemplary embodiments. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein.
A magnetic junction and method for providing the magnetic junction are described. The magnetic junction is usable in a magnetic device. The magnetic junction includes a free layer, first and second reference layers, and first and second nonmagnetic spacer layers. The free layer is switchable between stable magnetic states using a write current passed through the magnetic junction. The first nonmagnetic spacer layer is between the first reference layer and the free layer. The second nonmagnetic spacer layer is between the free layer and the second reference layer. The free layer is between the first nonmagnetic spacer layer and the second nonmagnetic spacer layer. The first reference layer has a first reference layer magnetic length. The second reference layer has a second reference layer magnetic length. The free layer has a free layer magnetic length less than the first reference layer magnetic length and less than the second reference layer magnetic length. The free layer magnetic length has a first end and a second end opposite to the first end. The free layer and the first reference layer are oriented such that the first reference layer magnetic length extends past the first end and past the second end of the free layer. The free layer and the second reference layer are oriented such that the second reference layer magnetic length extends past the first end and past the second end of the free layer.
The exemplary embodiments are described in the context of particular methods, magnetic junctions and magnetic memories having certain components. One of ordinary skill in the art will readily recognize that the present invention is consistent with the use of magnetic junctions and magnetic memories having other and/or additional components and/or other features not inconsistent with the present invention. The method and system are also described in the context of current understanding of the spin transfer phenomenon, of magnetic anisotropy, and other physical phenomenon. Consequently, one of ordinary skill in the art will readily recognize that theoretical explanations of the behavior of the method and system are made based upon this current understanding of spin transfer, magnetic anisotropy and other physical phenomena. However, the method and system described herein are not dependent upon a particular physical explanation. One of ordinary skill in the art will also readily recognize that the method and system are described in the context of a structure having a particular relationship to the substrate. However, one of ordinary skill in the art will readily recognize that the method and system are consistent with other structures. In addition, the method and system are described in the context of certain layers being synthetic and/or simple. However, one of ordinary skill in the art will readily recognize that the layers could have another structure. Furthermore, the method and system are described in the context of magnetic junctions and/or substructures having particular layers. However, one of ordinary skill in the art will readily recognize that magnetic junctions and/or substructures having additional and/or different layers not inconsistent with the method and system could also be used. Moreover, certain components are described as being magnetic, ferromagnetic, and ferrimagnetic. As used herein, the term magnetic could include ferromagnetic, ferrimagnetic or like structures. Thus, as used herein, the term “magnetic” or “ferromagnetic” includes, but is not limited to ferromagnets and ferrimagnets. As used herein, “in-plane” is substantially within or parallel to the plane of one or more of the layers of a magnetic junction. Conversely, “perpendicular” and “perpendicular-to-plane” corresponds to a direction that is substantially perpendicular to one or more of the layers of the magnetic junction. The method and system are also described in the context of certain alloys. Unless otherwise specified, if specific concentrations of the alloy are not mentioned, any stoichiometry not inconsistent with the method and system may be used.
As can be seen in
The magnetic junction 100 is also configured to allow the free layer magnetic moment 141 to be switched between stable magnetic states using a write current passed through the magnetic junction 100. Thus, the free layer 140 is switchable utilizing spin transfer torque when a write current is driven through the magnetic junction 100 in a current perpendicular-to-plane (CPP) direction. The direction of the magnetic moment 141 of the free layer 140 may be read by driving a read current through the magnetic junction 100.
The nonmagnetic spacer layer(s) 130 and 150 may be tunneling barrier layers. For example, the nonmagnetic spacer layer 130 and/or 150 may be a crystalline MgO tunneling barrier with a (100) orientation. For example, the tunneling barrier layers 130 and 150 may be not more than 1.5 nm thick in some embodiments. In some such embodiments, the thicknesses of the tunneling barrier layers 130 and 150 may not exceed one nanometer. In general, the tunneling barrier layers 130 and 150 are desired to have different thicknesses. Such nonmagnetic spacer layers 130 and 150 may enhance TMR of the magnetic junction 100. In other embodiments, the nonmagnetic spacer layer(s) 130 and 150 may be formed of other material(s) including but not limited to conductors.
The reference layers 110 and 160 are shown as being simple, single layers. However, in other embodiments, the reference layer(s) 110 and/or 160 may be multilayer(s). For example, the reference layer(s) 110 and/or 160 might be a synthetic antiferromagnet (SAF) including two magnetically coupled ferromagnetic layers separated by and sandwiching a nonmagnetic layer, such as Ru. The reference layer(s) 110 and/or 160 may be high perpendicular anisotropy (Hk) multilayer(s). For example, the reference layer 110 and/or 160 may be or include a Co/Pt, Co/Ni and/or Co/Ir multilayer. Other reference layer(s) having other structures may be used. In addition, in alternate embodiments, the reference layer 110 and/or 160 may have the magnetic moment(s) 111 and/or 161, in plane.
The free layer 140 may be a single layer or a multilayer. For example the free layer may include a CoFeB and/or other high perpendicular magnetic anisotropy layer. The free layer 140 has a reduced magnetic length in comparison to the reference layers 110 and/or 160. The magnetic length of a layer is the distance the magnetic portion of the layer extends in plane. In some embodiments, the magnetic length of interest is only along the long axis of the magnetic junction 100. However, the magnetic length may be in other direction in-plane. The magnetic length can but need not be the same as the physical length of the layer. Thus, the magnetic (or effective) length of the layer may be less than or equal to the actual length of the layer.
The difference in magnetic lengths between the free layer 140 and the reference layers 110 and 160 can be seen in
As can be seen in
In the embodiment shown, the free layer magnetic length is shown as substantially centered along the magnetic lengths of the reference layers 110 and 160. Thus, the reference layer 160 has a magnetic length that extends the same distance, d2, further than the ends of the free layer magnetic length by approximately the same amount in both directions. Similarly, the reference layer 110 has a magnetic length that extends the same distance, d1, further than the ends of the free layer magnetic length in both directions shown. In other embodiments, the free layer 140 may not be centered. In such embodiments, the magnetic length of the reference layer 160 and/or 110 would extend further than the ends of the free layer magnetic length by different distances. However, in all embodiments, the reference layers 110 and 160 extend further than the ends of the magnetic length of the free layer 140.
In some embodiments, the magnetic length of the free layer 140 may also be smaller than the magnetic lengths of the reference layers 110 and 160 in other directions in-plane. For example the free layer 140 may have a reduced magnetic length in comparison to both reference layers 110 and 160 along the short axis of the magnetic junction 100. This direction is perpendicular to the page. In some embodiments, the magnetic lengths of the reference layers 110 and 160 exceeds that of the free layer 140 for multiple directions in-plane. For example, the free layer magnetic length may be less than the magnetic lengths of the reference layers 110 and 160 in all directions in-plane. Such a case is shown in
Use of a free layer 140 having a reduced magnetic length with respect to the reference layers 110 and 160 may improve performance. Because the magnetic lengths of the reference layers 110 and 160 extend further than that of the free layer 140, any magnetic effects due to the edges of the reference layers 110 and 160 may be less likely to adversely affect performance. Near the center of the magnetic junction 100, the magnetic field on the free layer 140 due to the reference layers 110 and 160 is substantially constant, small and perpendicular-to-plane. Near the edges of the magnetic junction 100, the magnetic field due to the reference layers 110 and 160 exhibits flowering. Thus, the magnetic field is larger and has a nonzero component in-plane. At and beyond the edges of the magnetic junction 100, the in-plane component of the magnetic field may be substantial. Thus, the magnetic field “flowers” (e.g. increases in magnitude bends outward in a manner similar to petals of a flower) near the edges of the magnetic junction 100. This effect reduces the efficiency of switching. Consequently, a higher switching current is needed to write to a free layer having a magnetic length that extends to the edges of the magnetic junction 100. Because its magnetic length terminates closer to the center of the magnetic junction, the free layer 140 experiences little flowering of the field due to the reference layers 110 and 160. Stated differently, the free layer 140 experiences a smaller, more uniform perpendicular-to-plane field from the reference layers 110 and 160 because the free layer 140 magnetic length ends further from the edges of the reference layer magnetic lengths. Consequently, the free layer 140 may be written using a lower write current. Performance of the magnetic junction may thus be improved.
The free layer 140A has a reduced magnetic length and reduced physical length in comparison to those of the reference layers 110 and 160. The reference layers 110 and 160 have magnetic lengths MLRL1 and MLRL2, respectively. The free layer 140A has a magnetic length MLFL. In the embodiment shown, the magnetic length of the free layer 140A is substantially the same as the physical length PLFL (physical length free layer) of the free layer 140A. For the reference layers 110 and 160 the actual, physical lengths are substantially the same as the magnetic lengths. The region between the nonmagnetic spacer laser 130 and 150 may be filled with an oxide (not shown for clarity). The magnetic length of the reference layer 110 extends further than each end of the free layer magnetic length by a distance d. The magnetic length of the reference layer 160 extends further than each end of the free layer magnetic length by a distance d. In some embodiments, d has the ranges described above. Further the free layer 140A may be in the size range described above. In other embodiments, the magnetic length of the reference layer 160 and/or 110 would extend further than the ends of the free layer magnetic length by different distances.
In some embodiments, the magnetic and physical lengths of the free layer 140A may also be less than the magnetic and physical lengths of the reference layers 110 and 160 in other directions in-plane. The distance by which the reference layer magnetic lengths exceed the free layer magnetic length can but need not be the same in all directions.
Use of a free layer 140A having a reduced magnetic and physical length with respect to the reference layers 110 and 160 may improve performance. For the reasons discussed above, any magnetic effects due to the edges of the reference layers 110 and 160 may be less likely to adversely affect performance. For example, flowering of the magnetic field from the reference layers 110 and 160 may be less likely to affect performance of the free layer 140A. The free layer 140 experiences a smaller, more uniform perpendicular-to-plane field from the reference layers 110 and 160 because the free layer 140A magnetic length ends further from the edges of the reference layer magnetic lengths. Consequently, the free layer 140 may be written using a lower write current. Performance of the magnetic junction 100A may thus be improved. Further, the free layer physical length may be set using photolithographic techniques. As a result, the location of the ends of the free layer magnetic length may be more easily and reliably formed. Consequently, fabrication of the magnetic junction 100A may be improved.
The free layer 140A has a reduced magnetic length and reduced physical length in comparison to those of the reference layers 110 and 160B. Thus the free layer 140A is analogous to that described above. The reference layer 160B a SAF including magnetic layers 162 and 166 separated by nonmagnetic coupling layer 164. For example the magnetic layer(s) 162 and/or 166 may include a Co/Pt multilayer, a Co/Ni multilayer, a Co/Ir multilayer and/or another multilayer or alloy. The nonmagnetic coupling layer 164 moderates the magnetic coupling between the magnetic layers 162 and 166. In the embodiment shown, the magnetic layers 162 and 166 are antiferromagnetically coupled, for example via an RKKY interaction. Thus, the magnetic moments 163 and 165 are antiparallel.
The magnetic junction 100B may share the benefits of the magnetic junctions 100 and/or 100A. The free layer 140A may be written using a lower write current. Performance of the magnetic junction 100B may thus be improved. Further, the free layer physical length may be set using photolithographic techniques. Consequently, fabrication of the magnetic junction 100B may be improved.
The free layer 140A has a reduced magnetic length and reduced physical length in comparison to those of the reference layers 110C and 160. Thus the free layer 140A is analogous to that described above. The reference layer 110C is a SAF including magnetic layers 112 and 116 separated by nonmagnetic coupling layer 114. For example the magnetic layer(s) 112 and/or 116 may include a Co/Pt multilayer, a Co/Ni multilayer, a Co/Ir multilayer and/or another multilayer or alloy. The nonmagnetic coupling layer 114 moderates the magnetic coupling between the magnetic layers 112 and 116. In the embodiment shown, the magnetic layers 112 and 116 are antiferromagnetically coupled, for example via an RKKY interaction. Thus, the magnetic moments 113 and 117 are antiparallel. The magnetic junction 100C may be viewed as the same as the magnetic junction 100B, with the order of layers reversed.
The magnetic junction 100C may share the benefits of the magnetic junctions 100, 100A and/or 100B. The free layer 140A may be written using a lower write current. Performance of the magnetic junction 100C may thus be improved. Further, the free layer physical length may be set using photolithographic techniques. Consequently, fabrication of the magnetic junction 100C may be improved.
The free layer 140A has a reduced magnetic length and reduced physical length in comparison to those of the reference layers 110C and 160B. Thus the free layer 140A is analogous to that described above. Both reference layers 110C and 160B are SAFs. The reference layer 110C includes magnetic layers 112 and 116 separated by nonmagnetic coupling layer 114. The reference layer 160B includes magnetic layers 162 and 166 separated by nonmagnetic coupling layer 164. The layers 112114116, 162, 164 and 166 are analogous to those described above.
The magnetic junction 100D may share the benefits of the magnetic junctions 100, 100A, 100B and/or 100C. The free layer 140A may be written using a lower write current. Performance of the magnetic junction 100D may thus be improved. Further, the free layer physical length may be set using photolithographic techniques. Consequently, fabrication of the magnetic junction 100D may be improved.
The free layer 140A has a reduced magnetic length and reduced physical length in comparison to those of the reference layers 110 and 160E. Thus the free layer 140A is analogous to that described above. In addition, the second reference layer 160E is an extended reference layer that forms part of at least two magnetic junctions 100E. In the embodiment shown, the nonmagnetic spacer layer 150, optional PEL 105 and optional texture blocking coupling layer 109 also extend across multiple magnetic junctions 100E.
The magnetic junction 100E may share the benefits of the magnetic junctions 100, 100A, 100B, 100C and/or 100D. The free layer 140A may be written using a lower write current. Performance of the magnetic junction 100E may thus be improved. Further, the free layer physical length may be set using photolithographic techniques. Consequently, fabrication of the magnetic junction 100E may be improved. Moreover, the reference layer 160E need not be patterned. Fabrication of the magnetic junction 100E may thus be further simplified.
The free layer 140A has a reduced magnetic length and reduced physical length in comparison to those of the reference layers 110F and 160. Thus the free layer 140A is analogous to that described above. In addition, the first reference layer 110F is an extended reference layer that forms part of at least two magnetic junctions 100F. In the embodiment shown, the nonmagnetic spacer layer 130, optional PEL 104 and optional texture blocking coupling layer 107 also extend across multiple magnetic junctions 100F.
The magnetic junction 100F may share the benefits of the magnetic junctions 100, 100A, 100B, 100C 100D and/or 100E. The free layer 140A may be written using a lower write current. Performance of the magnetic junction 100F may thus be improved. Further, the free layer physical length may be set using photolithographic techniques. Consequently, fabrication of the magnetic junction 100E may be improved. Moreover, the reference layer 110F need not be patterned. Fabrication of the magnetic junction 100F may thus be further simplified.
The free layer 140G has a reduced magnetic length in comparison to those of the reference layers 110 and 160. The reference layers 110 and 160 have magnetic lengths MLRL1 and MLRL2, respectively. The free layer 140G has a magnetic length MLFL, which is shown by dashed lines. However, the physical length PLFL′ of the free layer 140G is greater than the magnetic length. This difference between the magnetic and physical lengths may be achieved by oxidizing the edges of the free layer 140G. For example, the free layer 140G may include a material, such as Mg, that has a higher affinity for oxygen than the magnetic materials used in the free layer 140G. Other higher oxygen affinity materials that may be used include Al, Ti, Ta, W, Zr and/or V. In some embodiments, the free layer 140G includes at least five atomic percent and not more than fifteen atomic percent of the high oxygen affinity material(s). Upon exposure to an oxygen plasma or analogous oxidizing process, the edges of the free layer 140G oxidize. Thus, the magnetic length is made shorter than the physical length. In contrast, the physical lengths are substantially the same as the magnetic lengths for the reference layers 110 and 160. The magnetic lengths of the reference layers 110 and 160 extend further than each end of the free layer magnetic length by a distance d. In other embodiments, the magnetic length of the reference layer 160 and/or 110 would extend further than the ends of the free layer magnetic length by different distances. In some embodiments, the magnetic length of the free layer 140G may also be less than the magnetic lengths of the reference layers 110 and 160 in other directions in-plane. The distance by which the reference layer magnetic lengths exceed the free layer magnetic length can but need not be the same in all directions.
Use of a free layer 140G having a reduced magnetic with respect to the reference layers 110 and 160 may improve performance. For the reasons discussed above, any magnetic effects due to the edges of the reference layers 110 and 160 may be less likely to adversely affect performance. For example, flowering of the magnetic field from the reference layers 110 and 160 may be less likely to affect performance of the free layer 140G. Instead, the free layer 140 experiences a more uniform perpendicular-to-plane field from the reference layers 110 and 160 because the free layer 140G magnetic length ends further from the edges of the reference layer magnetic lengths. Consequently, the free layer 140 may be written using a lower write current. Performance of the magnetic junction 100G may thus be improved.
The free layer 140G has a reduced magnetic length in comparison to that of the reference layers 110H and 160H. Thus the free layer 140G is analogous to that described above. In addition, the reference layers 110H and/or 160H may be configured in a manner analogous to the reference layer(s) of one or more of the magnetic junctions 100, 100A, 100B, 100C, 100D, 100E, 100F and/or 100G.
The magnetic junction 100H may share the benefits of the magnetic junctions 100, 100A, 100B, 100C, 100D, 100E, 100F and/or 100G. The free layer 140G may be written using a lower write current. Performance of the magnetic junction 100G may thus be improved.
Various features have been described with respect to the magnetic junctions 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G and/or 100H. One of ordinary skill in the art will recognize that these features may be combined in manner(s) not shown and which are not inconsistent with the devices and methods described herein.
A magnetoresistive stack for the magnetic junction(s) 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G and/or 100H is provided, via step 202. Step 202 includes depositing at least a first fixed magnetic layer for the reference layer 110/110C/110F/110H, depositing a first nonmagnetic layer for the nonmagnetic spacer layer 130, depositing a free magnetic layer for the free layer 140/140A/140G, depositing a second nonmagnetic layer for the nonmagnetic spacer layer 150 and depositing a second fixed magnetic layer for the reference layer 160/160B/160E/160H.
The free layer magnetic length MLFL for the free layer 140/140A/140G is defined, via step 204. Step 204 includes ensuring that the free layer magnetic length is less than the magnetic lengths of the reference layers 110/110C/110F/110H and 160/160B/160E/160H. For example, step 204 may include masking the region corresponding to the desired magnetic length of the free layer 140/140A and removing the exposed portion of the free magnetic layer and any layers above the free magnetic layer. Alternatively, step 204 may include masking the region corresponding to the desired physical length of the reference layer(s) 110/110C/110F/110H and 160/160B/160E/160H, removing the exposed portion of the magnetoresistive stack and then oxidizing the edges of the free layer 140/140G. Thus, the magnetic length MLFL of the free layer 140, 140A and/or 140G is defined.
Fabrication of the magnetic junction(s) 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G and/or 100H is completed, via step 206. Step 206 may include refilling the region around the free layer 140/140A or around the magnetic junction with an insulator. If the free layer 140A is being formed, then step 206 may include not only refilling the region around the free layer 140A with an insulator, but also depositing an additional portion of the second reference layer 160/160B/160E. If the free layer 140G is being formed, then step 206 may include other steps. In addition, step 206 may also be used to manufacture other portions of the device in which the magnetic junction 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G and/or 100H is to be used. For example, capping layers, contacts, or other structures might be formed.
Using the method 200, the magnetic junction(s) 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G and/or 100H may be formed. The free layers 140, 140A and/or 140H may be fabricated with shorter magnetic lengths. As a result, a magnetic junction having free layer(s) with improved switching characteristics may be achieved.
A magnetoresistive stack for the magnetic junction 220 is provided, via step 212.
The edges of the free layer are physically defined, via step 214. Step 214 may include providing a mask covering the region corresponding to the desired magnetic length of the free layer and removing the exposed portion of the free layer 224 and any layers above the free magnetic layer 224. This removal may include an ion mill or reactive ion etch (RIE) which stops at or within the first nonmagnetic spacer layer 223.
A refill step is performed, via step 216. Step 216 provides an insulating refill around the free layer 224′. For example, step 216 may include blanket depositing an insulating layer over the region including the magnetic junction 220. For example, silicon nitride (e.g. Si3N4) or silicon oxide (e.g. SiO2) may be deposited. A conformal deposition method such as PECVD. A portion of the insulating layer may be removed using an anisotropic etch, such as an RIE.
A remaining portion of the layer 226′ is exposed, via step 218. Step 218 may include removing the remainder of the hard mask 227 using an RIE. The RIE may remove part of the insulating layer 228 and part of the reference layer 226′.
Another fixed magnetic layer is provided, via step 219. Step 219 may include depositing a multilayer. The magnetic layer deposited in step 219 and the remaining portion of the layer 226″ form the second reference layer.
Using the method 210, the magnetic junction(s) 220 may be formed. The free layer 224′ may be fabricated with a shorter magnetic length and a shorter physical length than the magnetic and physical lengths of the reference layers 222 and 226′″. As a result, a magnetic junction having free layer(s) with improved switching characteristics may be achieved.
A magnetoresistive stack for the magnetic junction 250 is provided, via step 252. Step 252 includes providing material(s) for a free layer that include not only magnetic material(s), but also one or more materials having a higher oxygen affinity than the magnetic material(s). For example, free layer materials such as CoFeB may be deposited along with Mg, Al, Ti, Ta, W, Zr and/or V in step 252. In some embodiments, step 252 includes depositing at least five atomic percent and not more than fifteen atomic percent of the high oxygen affinity materials.
The edges of the magnetic junction 270 are physically defined, via step 254. Step 254 may include providing a hard mask covering the region corresponding to the desired magnetic length of the reference layers and removing the exposed portion of the layers 222, 223, 224, 225 and 226. This removal may include an ion mill or RIE.
A portion of the free layer 274′ is oxidized such that the free layer magnetic length is less than the free layer physical length, via step 256. For example, an oxygen plasma treatment may be used to oxidize the sides of the free layer 224.
Using the method 250, the magnetic junction(s) 270 may be formed. The free layer 274′ may be fabricated with a shorter magnetic length than the magnetic and physical lengths of the reference layers 272′ and 276′. As a result, a magnetic junction having free layer(s) with improved switching characteristics may be achieved.
A method and system for providing a magnetic junction and a memory fabricated using the magnetic junction has been described. The method and system have been described in accordance with the exemplary embodiments shown, and one of ordinary skill in the art will readily recognize that there could be variations to the embodiments, and any variations would be within the spirit and scope of the method and system. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.
This application is a divisional of U.S. patent application Ser. No. 15/396,296, filed Dec. 30, 2016, entitled METHOD AND SYSTEM FOR PROVIDING A DUAL MAGNETIC JUNCTION HAVING MITIGATED FLOWERING FIELD EFFECTS, assigned to the assignee of the present application, and incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15396296 | Dec 2016 | US |
Child | 15976844 | US |