The present invention generally relates to the field of non-volatile memory (“NVM”) cells. More specifically, the present invention relates to a method and a system for selecting a reference voltage of one or more reference cells in order to read one or more memory cells within a memory cell array.
NVM cells are generally operated (e.g. programmed, read, and erased) using one or more reference structures or cells. Each of the one or more reference structures or cells may be compared against a memory cell being operated in order to determine a condition or state of the memory cell being operated. As is well known, an NVM cell's state may be defined and determined by its threshold voltage, the voltage at which the cell begins to conduct current. A NVM cell's threshold voltage level is usually correlated to the amount of charge stored in a charge storage region of the cell. Different threshold voltage ranges are associated with different states of an NVM cell.
Generally, in order to determine whether an NVM cell is in a specific state, for example erased, programmed, or programmed at one of multiple possible programmed states within a Multi-Level Cell (“MLC”), the cell's threshold level is compared to that of a reference structure or cell whose threshold level is set, or otherwise known to be, at a voltage level associated with the specific state being tested for. Comparing the threshold voltage of a NVM cell to that of a reference cell is often accomplished using a sense amplifier or similar circuit. Various techniques for comparing an NVM's threshold voltage against those of one or more reference cells or structures, in order to determine the NVM's cells state, are well known and applicable to the present invention. Any method or circuit presently known or to be devised in the future for comparing threshold voltage levels of reference cells or structures against NVM cells are applicable to the present invention.
When programming a NVM cell to a desired state, after each programming pulse, an NVM cell's threshold value may be compared against a reference cell having a reference threshold value set at a voltage level defined as the “program verify” level. The reference cell with a threshold voltage set at a voltage level defined as a “program verify” level for the given state may be compared to the threshold voltage of the cell being programmed (i.e. charged) in order to determine whether a charge storage area or region of the cell being programmed has been sufficiently charged so as to have placed the cell in a condition which may be considered “programmed” at the desired state.
When reading a NVM cell, to determine whether it is at a particular state, the cell's threshold voltage may be compared against that of a reference cell having a reference threshold voltage defined as a “read” level for the specific state. A “read” level is usually set lower than a “program verify” level and higher than the erase verify level in order to compensate for voltage drifts which may occur during operation. A logical state of the cell is defined as ‘0’ if the cell's Vt is higher than that of the read reference and ‘1’ if it is lower.
In a MLC, two or more programming levels may co-exist on the same cell, as is drawn in
The voltage threshold of a NVM cell seldom stays fixed. Threshold voltage drift is a phenomenon which may result in large variations of the threshold voltage of a memory cell. These variations may occur due to charge leakage from the cell's charge storage region, temperature changes, and due to interference from the operation of neighboring NVM cells.
Variation of the threshold voltage of memory cells may lead to false reads of the state and may further result in the corruption of the data in the memory array. Voltage drift is especially problematic in MLC cells where the Vt regions or sub-ranges associated with each programmed state are relatively smaller than those for a typical binary cell.
In order to reduce data loss and data corruption due to drift in the threshold voltages of the cells of a NVM array, threshold voltage drift of cells in the NVM array should be compensated for. For a given NVM array, it would be desired to provide one or a set of reference cells whose references threshold voltages are offset from defined verify threshold levels by some value related to the actual voltage drift experienced by the NVM cells to be read. There is a well understood need for an efficient and reliable method of determining a set of reference voltage levels which may accommodate variations in the threshold voltages of cells of an NVM array, and of established reference cells with the determined reference voltages.
The present invention is a method, circuit and system for determining a reference voltage. Some embodiments of the present invention relate to a system, method and circuit for establishing a set of operating reference cells to be used in operating (e.g. reading) cells in a NVM block or array. As part of the present invention, at least a subset of cells of the NVM block or array may be read using each of two or more sets of test reference cells, where each set of test reference cells may generate or otherwise provide reference voltages at least slightly offset from each other set of test reference cells. For each set of test reference cells used to read the at least a subset of the NVM block, a read error rate may be calculated or otherwise determined. A set of test reference cells associated with a relatively low read error rate may be selected as the set of operating reference cells to be used in operating (e.g. reading) other cells, outside the subset of cells, in the NVM block or array. In a further embodiment, the selected set of test reference cells may be used to establish an operating set of reference cells having reference voltages substantially equal to those of the selected test set.
According to some embodiments of the present invention, prior or during the programming of a set of cells in the NVM array, the number of cells to be programmed to each of one or more logical or program states associated with the set of cells may be counted, and may be stored, for example in a check sum table. As part of some embodiments of the present invention, the number of cells to be programmed to, up to and/or below each logical or program state may be counted and/or stored in a table with is either on the same array as the set of NVM cells or in memory on the same chip as the NVM array.
Upon the reading of the set of programmed cells, according to some embodiments of the present invention, the number of cells found to be at a given logical or program state may be compared against either corresponding values stored during programming (e.g. the number of cells programmed to a given state) or against a value derived from the values stored during programming (e.g. the number of cells programmed at or above the given state, minus the number of cells programmed to or above an adjacent higher logical state). If there is a discrepancy between the number of cells read at a given state and an expected number based on the values determined/counted/stored during programming, a Read Verify reference threshold value associated with the given program state may be adjusted upward or downward to compensate for the detected error. According to some embodiments of the present invention, the read verify level of an adjacent logical state may also be moved upward or downward in order to compensate for detected read errors at a given state.
For example, according to some embodiments of the present invention, if the number of cells found (e.g. read) in a given program state is below an expected value, either the Read Verify reference voltage associated with that given state may be reduced, or if there is found that the number of cells read above the given state exceeds an expected number, the Read Verify reference associated with a logical state higher and adjacent to the given state may be raised. Conversely, if the number of cells found (e.g. read) in a given program state is above expectations, either the Read Verify reference voltage associated with that given state may be increased, or if there is found that the number of cells read above the given state is below an expected number, the Read Verify reference associated with a logical state higher and adjacent to the given state may be lowered. Thus, Read Verify reference voltages for a set of cells may be selected such that the number of cells found/read in each of the states associated with the set may be substantially equal to the a number either read from or derived from the values counted during programming of the set of cells, which values may have been stored in a check sum table.
According to some embodiments of the present invention, the check sum table may reside on the same chip as the set of NVM cells, and according to a further embodiment of the present invention, a controller may be adapted to perform the above mentioned error detection and Read Verify reference value adjustments. The check sum table may either be stored in the same NVM array as the set of NVM cells, or on some other memory cells residing on the same chip as the NVM array, for example in a register or buffer used by the controller during programming and/or reading. According to other embodiments of the present invention, specialized error coding and detection circuits may be included with a controller on the same chip and the NVM array to be operated.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features and advantages thereof, may best be understood by reference to the following non limiting detailed description when read with the accompanied drawings in which:
It will be appreciated that for simplicity and clarity of these non-limiting illustrations, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods and procedures have not been described in detail so as not to obscure the present invention.
The present invention is a method, circuit and system for determining a reference voltage. Some embodiments of the present invention relate to a system, method and circuit for establishing a set of operating reference cells to be used in operating (e.g. reading) cells in a NVM block or array. As part of the present invention, at least a subset of cells of the NVM block or array may be read using each of two or more sets of test reference cells, where each set of test reference cells may generate or otherwise provide reference voltages at least slightly offset from each other set of test reference cells. For each set of test reference cells used to read the at least a subset of the NVM block, a read error rate may be calculated or otherwise determined. A set of test reference cells associated with a relatively low read error rate may be selected as the set of operating reference cells to be used in operating (e.g. reading) other cells, outside the subset of cells, in the NVM block or array. In a further embodiment, the selected set of test reference cells may be used to establish (e.g. program) an operating set of reference cells having reference voltages substantially equal to those of the selected test set.
Reference is now made to
The data read at block 320 may be used to determine a read error rate associated with the nth set of test reference cells (block 330). According to some embodiments of the present invention, the at least a subset of the NVM block may be a predefined portion or segment of the NVM block where source data is stored on the NVM cells along with extra error detection data/codes derived during programming. The read error rate may be determined using a variety of error rate sampling and/or error detection techniques, for example, parity bit, checksum, CRC and various other techniques. Any error detection coding and/or evaluation technique, presently known or to be devised in the future, may be applicable to present invention.
Once an error rate is calculated or otherwise determined for the at least a subset of the NVM block using the nth set of test reference cells, the error rate associated with the nth set of test reference cells may be recorded (block 340). The counter ‘n’ may then be incremented by 1 (block 350), and the counter may be checked to see whether the new ‘n’ is equal to N+1, a value greater than the total number of test reference cell sets (block 360). In case that the new ‘n’ is smaller (not equal) than N+1 blocks 320–360 may be repeated, and thus an error rate associated with the use of each of the test reference cell sets to read the at least a subset of the NVM block may be determined and recorded.
Once the counter ‘n’ equals N+1, and the error rates associated the each of the test sets have the been determined, the set of reference test cells associated with a relatively low (e.g. the lowest) read error rate may be selected (block 370). The selected set of reference cells may either be used to operate the cell on NVM block or array (block 380), or may be used to establish an operating set of reference cells whose reference threshold voltages substantially correspond to the reference threshold voltages of the selected set (block 390), such that the established operating set may be used to operate cells in the NVM array.
The above description exemplifies one embodiment of a method of establishing a set of operating reference cells to be used in operating a NVM block of cells or array. It should be noted that other embodiments of the present invention may deviate from the above description. The selected test may used as an operating reference set, may be used to select or program an operating set, or may be used to adjust reference levels on a set of adjustable reference structures. Furthermore, the method of the present invention may be implemented in a variety of implementations including hardware and/or software modules which may be known in the present or yet to be devised in the future. One example of a possible implementation of a method of establishing a set of operating reference cells to be used in operating cells of a NVM block or array in accordance with the some embodiments of the present invention is described herein below with reference to
Reference is now made to
In the embodiment shown, the controller 410 may implement the counter ‘n’ (not shown). However, any other configuration may also be used, including, but not limited to, a distinctive counter module. The controller 410 may be configured to control the operation of the controllable voltage source 412 and of the sense amplifier 414. In accordance with some embodiments of the present invention, such as the one illustrated in
The controller 410 may receive the data read from the NVM cells in the subset area 402. The controller 410 may process the data, and may determine a read error rate associated with the nth set of test reference cells used to read the memory cells in the subset area 402. The read error rate may be determined using a variety of error rate sampling and/or error detection techniques, for example, parity bit, checksum, CRC and various other techniques. The subset area 402 and/or any of the other elements of the NVM block 400 and/or the supplementary circuitry 401, including any additional elements as may be required, may be configured to support the error rate sampling and/or error detection technique of choice. In the embodiment shown, the subset area 402 may include one or more parity bits (marked Pn) in support of parity check error detection. The controller 410 may be configured to process the data read from the subset area 402 and to determine a read error rate in accordance with parity check error detection. In a further embodiment of the present invention, a separate error coding and detection circuit (not shown) may be included.
Once calculated, the controller 410 may record the read error rate for each set of test reference cells or structures either internally or in a designated error rate table 416, which error rate table may be a part of the NVM block or array. The read error rate may be recorded in a manner to maintain the association of each of the recorded read error rates with the set of test reference cells that was used to generate it.
After a read error rate has been established for the nth set of test reference cells, the counter may be instructed to increment ‘n’ by 1. The controller 410 may be consulted to check whether the new value for ‘n’ has exceeded the total number of test reference cell sets. If so, the process of determining and recording a read error rate associated with each of the sets of test reference cells may be discontinued by the controller 410. In other words, the process of determining and recording a read error rate may be repeated for each of the N sets of test reference cells (e.g. 432, 434 and 436).
The controller 410 may then select from amongst the recorded read error rates a relatively low (e.g. the lowest) read error rate. The set of test reference cells associated with the selected relatively low read error rate may be selected as the set of operation reference cells to be used in operating cells of the NVM block or array 400. According to one optional embodiment of the present invention, the controller 410 may also determine a set of reference voltages associated with the selected test set associated with the selected relatively low read error rate. The set of reference voltages may also be recorded, for example in the error rate table 416. The set of reference voltages may be stored, such that the association of the stored set of reference voltages with the selected set of test reference cells (e.g. 432) is maintained.
According to some embodiments of the present invention, in case that the controller 410 determines that more than one of the generated read error rates, each being associated with a different set of test reference cells, is the lowest, for example, when two or more equal read error rates are equally the lowest, additional processing may be required to determine which of the sets is more likely to provide a lower read error rate. For example, the process of generating and recording a read error rate for each of the two or more sets of test reference cells may be repeated in accordance with different criteria or on an additional subset of the NVM block. Alternatively, one of the lowest read error rates may be arbitrarily selected.
As part of further embodiments of the present invention, it may be sufficient to select from amongst the sets of test reference cells (e.g. 432, 434 and 436) the set that is expected to provide a relatively low read error rate. In this case, for example, after using each of the sets of test reference cells to read at least a subset of the NVM block, as discussed above, and generating a read error rate associated with the set used, the read error rate may be checked. In case that the read error rate is below a predetermined threshold, the set of test reference cells associated with that read error rate may be selected and recorded, and the process of generating and recording a read error rate may be discontinued prior to checking all the test sets. According to yet further embodiments of the present invention, in case that none of the generated read error rates falls below the predetermined threshold, the lowest error rate may be selected in accordance with the above discussion.
In a further embodiment of the present invention, the selected set of test reference cells may be used to establish an operating set of reference cells having reference voltages substantially equal to those of the selected test set.
Reference is now made to
Initially, the supplemental circuitry 401 and the NVM block 400 may be operated to determine a read error rate associated with each one of the two or more sets of test reference cells 432, 434 and 436, and to select one of the two or more sets of test reference cells 432, 434 and 436 associated with a relatively low (e.g. the lowest) read error rate. Next, the selected set of test reference cells may be used to determine offset values for one or more global reference cells from the set of global reference cells 520. The offset values may be input to an offset circuit 510, either directly or via the controller 410. The offset circuit 510, either alone or in combination with a controllable voltage source 412, may be adapted to offset one or more reference voltages of global reference cells from the set of global reference cells 510. In one embodiment, the offset circuit 510 may be configured to offset the reference voltages of the global reference cells, such that the reference voltages of reference cells in the global reference set 520 may be substantially equal to corresponding reference cells in the selected test set.
In another embodiment of the present invention, a set of reference voltages associated with the selected test set may be obtained by the controller 410. As discussed above, the set of reference voltages may be recorded, for example in the error rate table 416. In this case, the set of reference voltages data may be obtained by simply retrieving the relevant data from the table 416. The controller 410 may instruct the offset circuit 5120 to offset the threshold voltages of one or more of the reference cells in the set of global reference cells 520 in accordance with the set of reference voltages. In yet another embodiment of the present invention, the controller 410 may instruct the offset circuit 510 to offset the reference voltages of one or more of the global reference cells in the set of global reference cells 510, such that the threshold voltages of the set of global reference cells 510 may be substantially equal to the threshold voltages of the selected test set.
According to further embodiments of the present invention, the offset circuit 510 and the set of global reference cells 520 may be substituted with a bank of reference cells (not shown). The bank of reference cells may include two or more reference cells each reference cell in the bank being incrementally offset from the other reference cells in the bank. For example, each reference cell in the bank may have a threshold voltage that is slightly higher than the threshold voltage of the previous reference cell (excluding the first reference cell).
According to some embodiments of the present invention, once selected, the selected set of test reference cells may be used to determine which of the reference cells in the bank of reference cells is to be used for establishing an operating set of reference cells. The selected set of reference cells from the bank of reference cells may be selected such that the selected set from the bank may have reference voltages that are substantially equal to those of the selected test set. Thus, the selected set of reference cells from the bank may provide a set of operating reference cells having reference voltages substantially equal to those of the selected test set. The set of operating reference cells may be used to operate the NVM array.
According to some embodiments of the present invention, prior or during the programming of a set of cells in the NVM array, the number of cells to be programmed to each of one or more logical or program states associated with the set of cells may be counted, and may be stored, for example in a check sum table. As part of some embodiments of the present invention, the number of cells to be programmed to, up to and/or below each logical or program state may be counted and/or stored in a table with is either on the same array as the set of NVM cells or in memory on the same chip as the NVM array.
Upon the reading of the set of programmed cells, according to some embodiments of the present invention, the number of cells found to be at a given logical or program state may be compared against either corresponding values stored during programming (e.g. the number of cells programmed to a given state) or against a value derived from the values stored during programming (e.g. the number of cells programmed at or above the given state, minus the number of cells programmed to or above an adjacent higher logical state). If there is a discrepancy between the number of cells read at a given state and an expected number based on the values determined/counted/stored during programming, a Read Verify reference threshold value associated with the given program state may be adjusted upward or downward to compensate for the detected error. According to some embodiments of the present invention, the read verify level of an adjacent logical state may also be moved upward or downward in order to compensate for detected read errors at a given state.
For example, according to some embodiments of the present invention, if the number of cells found (e.g. read) in a given program state is below an expected value, either the Read Verify reference voltage associated with that given state may be reduced, or if there is found that the number of cells read above the given state exceeds an expected number, the Read Verify reference associated with a logical state higher and adjacent to the given state may be raised. Conversely, if the number of cells found. (e.g. read) in a given program state is above expectations, either the Read Verify reference voltage associated with that given state may be increased, or if there is found that the number of cells read above the given state is below an expected number, the Read Verify reference associated with a logical state higher and adjacent to the given state may be lowered. Thus, Read Verify reference voltages for a set of cells may be selected such that the number of cells found/read in each of the states associated with the set may be substantially equal to the a number either read from or derived from the values counted during programming of the set of cells, which values may have been stored in a check sum table.
According to some embodiments of the present invention, the check sum table may reside on the same chip as the set of NVM cells, and according to a further embodiment of the present invention, a controller may be adapted to perform the above mentioned error detection and Read Verify reference value adjustments. The check sum table may either be stored in the same NVM array as the set of NVM cells, or on some other memory cells residing on the same chip as the NVM array, for example in a register or buffer used by the controller during programming and/or reading. According to other embodiments of the present invention, specialized error coding and detection circuits may be included with a controller on the same chip and the NVM array to be operated.
Turning Now to
Turning now to
During the reading of the cells from the programmed set of cells, either the controller 410 or some other error detection circuit (not shown) may compare the number of cells counted in each program state during reading with the correspond check sum values stored during or prior to programming. For example, if the total number of cells in the set is 1000, the number of cells read in the third program state is 235, and one of the check sum values stored indicates that the number of cells programmed below the third program state is 750, it can be derived that there should be 250 cells programmed to the third program state and thus the reading of the set missed 15 cells which should have been read as being programmed to the third program state (Block 610).
The Read Verify reference threshold voltage associated with each program state may be adjusted in response to an error detected in reading during step 610 (block 620).
With respect to
According to some embodiments of the present invention,
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
The present application is a continuation-in-part of U.S. patent application Ser. No. 10/695,448, filed on Oct. 29, 2003 which claims priority from U.S. provisional patent application Ser. No. 60/421,785, filed Oct. 29, 2002, which are hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4342102 | Puar | Jul 1982 | A |
4388705 | Sheppard | Jun 1983 | A |
4389705 | Sheppard | Jun 1983 | A |
4527257 | Cricchi | Jul 1985 | A |
4667217 | Janning | May 1987 | A |
5027321 | Park | Jun 1991 | A |
5142496 | Van Buskirk | Aug 1992 | A |
5172338 | Mehrotra et al. | Dec 1992 | A |
5241497 | Komarek | Aug 1993 | A |
5276646 | Kim et al. | Jan 1994 | A |
5289412 | Frary et al. | Feb 1994 | A |
5295108 | Higa | Mar 1994 | A |
5305262 | Yoneda | Apr 1994 | A |
5335198 | Van Buskirk et al. | Aug 1994 | A |
5345425 | Shikatani | Sep 1994 | A |
5349221 | Shimoji | Sep 1994 | A |
5359554 | Odake et al. | Oct 1994 | A |
5361343 | Kosonocky et al. | Nov 1994 | A |
5381374 | Shiraishi et al. | Jan 1995 | A |
5418743 | Tomioka et al. | May 1995 | A |
5434825 | Harari | Jul 1995 | A |
5450341 | Sawada et al. | Sep 1995 | A |
5450354 | Sawada et al. | Sep 1995 | A |
5477499 | Van Buskirk et al. | Dec 1995 | A |
5508968 | Collins et al. | Apr 1996 | A |
5521870 | Ishikawa | May 1996 | A |
5537358 | Fong | Jul 1996 | A |
5544116 | Chao et al. | Aug 1996 | A |
5557570 | Iwahashi | Sep 1996 | A |
5568085 | Eitan et al. | Oct 1996 | A |
5583808 | Brahmbhatt | Dec 1996 | A |
5596527 | Tomioka et al. | Jan 1997 | A |
5627790 | Golla et al. | May 1997 | A |
5633603 | Lee | May 1997 | A |
5657332 | Auclair et al. | Aug 1997 | A |
5694356 | Wong et al. | Dec 1997 | A |
5712815 | Bill et al. | Jan 1998 | A |
5717632 | Richart et al. | Feb 1998 | A |
5748534 | Dunlap et al. | May 1998 | A |
5754475 | Bill et al. | May 1998 | A |
5768193 | Lee et al. | Jun 1998 | A |
5771197 | Kim | Jun 1998 | A |
5784314 | Sali et al. | Jul 1998 | A |
5805500 | Campardo et al. | Sep 1998 | A |
5812449 | Song | Sep 1998 | A |
5812456 | Hull et al. | Sep 1998 | A |
5822256 | Bauer et al. | Oct 1998 | A |
5828601 | Hollmer et al. | Oct 1998 | A |
5841700 | Chang | Nov 1998 | A |
5847441 | Cutter et al. | Dec 1998 | A |
5867429 | Chen et al. | Feb 1999 | A |
5886927 | Takeuchi | Mar 1999 | A |
5936888 | Sugawara | Aug 1999 | A |
5940332 | Artieri | Aug 1999 | A |
5946258 | Evertt et al. | Aug 1999 | A |
5949728 | Liu et al. | Sep 1999 | A |
5969993 | Takeshima | Oct 1999 | A |
5982666 | Campardo | Nov 1999 | A |
5986940 | Atsumi et al. | Nov 1999 | A |
6011725 | Eitan | Jan 2000 | A |
6034896 | Ranaweera et al. | Mar 2000 | A |
6044019 | Cernea et al. | Mar 2000 | A |
6044022 | Nachumovsky | Mar 2000 | A |
6084794 | Lu et al. | Jul 2000 | A |
6108240 | Lavi et al. | Aug 2000 | A |
6118692 | Banks | Sep 2000 | A |
6128226 | Eitan et al. | Oct 2000 | A |
6134156 | Eitan | Oct 2000 | A |
6147904 | Liron | Nov 2000 | A |
6169691 | Pasotti et al. | Jan 2001 | B1 |
6185143 | Perner et al. | Feb 2001 | B1 |
6201737 | Hollmer et al. | Mar 2001 | B1 |
6205056 | Pan et al. | Mar 2001 | B1 |
6222762 | Guterman et al. | Apr 2001 | B1 |
6233180 | Eitan et al. | May 2001 | B1 |
6240040 | Akaogi et al. | May 2001 | B1 |
6252799 | Liu et al. | Jun 2001 | B1 |
6282133 | Nakagawa et al. | Aug 2001 | B1 |
6285589 | Kajitani | Sep 2001 | B1 |
6307807 | Sakui et al. | Oct 2001 | B1 |
6331950 | Kuo et al. | Dec 2001 | B1 |
6351415 | Kushnarenko | Feb 2002 | B1 |
6353554 | Banks | Mar 2002 | B1 |
6469929 | Kushnarenko et al. | Oct 2002 | B1 |
6469935 | Hayashi | Oct 2002 | B2 |
6496414 | Kasa et al. | Dec 2002 | B2 |
6510082 | Le et al. | Jan 2003 | B1 |
6522585 | Pasternak | Feb 2003 | B2 |
6525969 | Kurihara et al. | Feb 2003 | B1 |
6529412 | Chen et al. | Mar 2003 | B1 |
6535434 | Maayan et al. | Mar 2003 | B2 |
6552387 | Eitan | Apr 2003 | B1 |
6574139 | Kurihara | Jun 2003 | B2 |
6577547 | Ukon | Jun 2003 | B2 |
6594181 | Yamada | Jul 2003 | B1 |
6636440 | Maayan et al. | Oct 2003 | B2 |
6639837 | Takano et al. | Oct 2003 | B2 |
6639844 | Liu et al. | Oct 2003 | B1 |
6643170 | Huang et al. | Nov 2003 | B2 |
6643178 | Kurihara | Nov 2003 | B2 |
6650568 | Iijima | Nov 2003 | B2 |
6670669 | Kawamura | Dec 2003 | B1 |
6831872 | Matsuoka | Dec 2004 | B2 |
6836431 | Chang | Dec 2004 | B2 |
20010006477 | Banks | Jul 2001 | A1 |
20020004878 | Norman | Jan 2002 | A1 |
20020034097 | Banks | Mar 2002 | A1 |
20020071313 | Takano et al. | Jun 2002 | A1 |
20020132436 | Eliyahu et al. | Sep 2002 | A1 |
20020191465 | Maayan et al. | Dec 2002 | A1 |
20030117841 | Yamashita | Jun 2003 | A1 |
20030117861 | Maayan et al. | Jun 2003 | A1 |
20030142544 | Maayan et al. | Jul 2003 | A1 |
20030208663 | Van Buskirk et al. | Nov 2003 | A1 |
20030214844 | Iijima | Nov 2003 | A1 |
20040008541 | Maayan et al. | Jan 2004 | A1 |
20040012993 | Kurihara | Jan 2004 | A1 |
20040013000 | Torii | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
0740307 | Oct 1996 | EP |
1 071 096 | Jan 2001 | EP |
1126468 | Aug 2001 | EP |
1164597 | Dec 2001 | EP |
0 656 628 | Apr 2003 | EP |
408106791 | Apr 1996 | JP |
02002216488 | Aug 2002 | JP |
WO 0046808 | Aug 2000 | WO |
WO 03036651 | May 2003 | WO |
WO 03063168 | Jul 2003 | WO |
WO 03088261 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040136236 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60421785 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10695448 | Oct 2003 | US |
Child | 10695457 | US |