The present invention is directed to a method for electrically connecting a semiconductor component to an electric module.
U.S. Pat. No. 3,922,712 describes a method for electrically connecting a semiconductor component to an electric module but in the method a punched grid, initially undivided, is applied to a semiconductor chip to obtain a discrete, housed semiconductor component equipped with contact legs such that the component may be soldered to other circuit components in subsequent steps.
The method according to the present invention permits contacting of semiconductor power components to additional parts of an electric module in particular by using the fewest possible joining techniques and the fewest possible method steps and without using bond wires, so that the components may be used in adverse environments in particular, such as the engine compartment of a motor vehicle. Contacting without using wire bonds permits a space-saving contacting, because it is not necessary to provide any travel paths for the head of a bonder. In addition, in comparison with bond joints, the method may yield an electric connection which is mechanically more rugged. For high-power applications, it may no longer be necessary to manufacture separate power modules, which are combinations of copper elements with semiconductor chips, which are in turn glued to a heat sink integrated into the housing of the electric module (see, for example, the procedure disclosed in European Patent Application No. 98928076 which corresponds to International Published Patent Application No. WO 98/54760). The surface quality of the metal bodies used need no longer be so high that it is possible to bond directly to them.
A punched grid may be used which is surrounded at least partially on both sides, in particular in the form of a contact frame, by electrically nonconducting material, so that the conductor grid which is subsequently connected directly to the semiconductor chip electrically is self-supporting-and is easy to handle. In the assembled state, it is possible to stack this grid with other punched grids connected by contact frames, these grids in turn contacting additional chips, because electric insulation from one another is ensured not only between the punched grid conductors of one plane due to the at least partial bilateral embedding of the individual punched grids, but also between the punched grid conductors of contact frames stacked together.
A punched grid may be used, i.e., a metal strip grid which is structured so that one of the conductors may be connected to the bottom side of the chip at least in a thermally conducting manner. This may eliminate the need for heat sinks to be provided separately.
In addition, due to the use of a punched grid connected by an electrically nonconducting contact frame, the resulting possibility of a parallel in the process management may be advantageous. In one method step the final electrical and/or thermally conducting connection may be established to both the bottom side as well as the metallized contact areas on the top side of the chip. Thus, the connection to the heat sink and also the connection to the external plugs and connection elements of the electric module are ultimately achieved in one joining step.
Exemplary embodiments of the present invention are illustrated in the drawings and explained in greater detail in the following description.
a and 6b illustrate use of an IMS substrate.
The terminal regions are to be used to join a semiconductor component, which is subsequently to be contacted electrically to these terminal areas, to other parts of the electric module. These other parts of the electric module may include other discrete semiconductor components or monolithic circuit groups. It is also possible to configure semiconductor terminal area 4a and/or multiple conductor terminal areas in the form of conductor terminal area 4a, so that the punched grid metal strip on an end functions directly as a rigid plug, connection which protrudes out of the housing bottom and by which the electric module as a whole may be plugged into a female connecting element of a separate design. If metal strip 4a has a hole on an end protruding out of the housing bottom, then as an alternative, the electric module may be attached through this hole to the electric terminals of a separate design by screw contacting.
Following the mounting of the semiconductor chip on the heat sink, as illustrated in
The use of a contact frame permits simultaneous bonding of upper and lower terminals of the semiconductor chip. With appropriate dimensioning, the contact frame may protect the chip from displacement in the subsequent joining operation by at least one inside edge of the contact frame coming in contact with the chip at the side and thus securing the chip laterally.
As illustrated in
In an alternative example embodiment, the housing bottom may also be configured such that terminal areas 4 and the surface of the chip are situated at the same level, so that punched grid conductors extending only within one plane may be used for the contact frame. In another alternative example embodiment, the heat sink may also be supported by partial areas of the housing bottom over all or part of the area. This is possible in particular when the quantities of heat to be dissipated in operation of the electric module are not so great that there would have to be a direct heat exchange with the ambient air over the entire area beneath the heat sink.
This nose element is used to facilitate the adjustment of contact frame 9 relative to housing bottom 1 and/or relative to semiconductor chip 3 situated on the heat sink.
As an alternative, the nose element may be configured as a catch nose element which is able to engage in a suitably configured recess in the heat sink as soon as the semiconductor chip has reached a final position when the contact frame is applied to the heat sink and the semiconductor chip. As an alternative, the recess may extend as far as the housing bottom, or some parts of the housing bottom may even form a continuation of the recess. In the latter case, the recess for a catch nose element may be configured by providing the recess with a slightly larger diameter in the area of the housing bottom than in the area of the heat sink.
The part of the punched grid used for the mechanical mounting thus may simultaneously ensure the dissipation of waste heat of the electronic power module to the environment.
In an alternative example embodiment, the inner terminal ends of conductors 12 have an embossed pattern to facilitate slip-proof premounting of the component.
The SMD housing is a power SMD housing which may be electrically contacted to the lateral terminal legs as well as electrically and thermally connected to the metallic bottom side. It is not sufficient to contact the heat sink via a single contact leg. In laser welding, the reverse side of the SMD, for example, may also be contacted by welding the heat sink to the bottom side of the SMD, in which case the heat sink may have a suitable embossing of a defined thickness so that the laser beam is able to induce fusion between the heat sink and the bottom side of the SMD, working from the bottom side of the heat sink. The electric and thermal flux then proceeds by these fusion points, an adequate number of which may be present. In the case of bonding by laser welding, the terminal legs are “bombarded” by the laser beam from above, while the bonding of the bottom side of the SMD to the heat sink is accomplished by a laser beam which is guided toward it either laterally or from beneath. In another example embodiment, the metallic bottom side of the SMD may also extend above the plastic sheathing of the SMD, thus making it possible to integrate this metal bottom side into the heat sink-by a driving fit. The thermal connection of such a driving fit may be further supported by a thermally conducting paste which is additionally applied between the bottom side of the SMD and the heat sink. As an alternative to laser welding, laser soldering may also be used. To do so, before assembly and contacting of the SMD element, solder paste may be applied to the heat sink and the punched grid conductors in the contact areas. With regard to the laser beam guidance, the same thing may then apply as in the case of laser welding (terminal leg bombarded from above, reverse side of SMD bombarded from the side or from beneath).
If a structured IMS is used in which the external terminal ends of the metal strip conductors do not project above the substrate, then in parallel with or in close proximity to the time of soldering the chip, protruding conductors may also be superficially soldered to the external terminal ends. In addition, there is also the possibility of soldering additional SMD elements onto the given grid of metal strip conductors.
As illustrated in
As an alternative to laser welding, other techniques such as soldering, laser soldering, ultrasonic welding, conductive gluing, etc. may also be used. Solder or conductive adhesive may be applied either to the punched grid conductors or to the external terminal ends of the metal strip conductors before inserting the substrate. In any case, no surfaces which would be suitable for wire bonding may be needed on the punched grid conductors or the other insertion parts (terminal eyes, etc.), because all electric contacting occurs by rigid metal strips, i.e., punched grids. As an alternative to application of gel, it is also possible to use casting in a resin compound, molding, lacquer coating, or application of a glob top mass for passivation. These are techniques that are usually used to cover a chip after mounting it on a substrate by the flip-chip technique.
Number | Date | Country | Kind |
---|---|---|---|
100 38 092 | Aug 2000 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE01/02755 | 7/20/2001 | WO | 00 | 9/25/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/13269 | 2/14/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3922712 | Stryker | Nov 1975 | A |
4079511 | Grabbe | Mar 1978 | A |
4413404 | Burns | Nov 1983 | A |
4604678 | Hagner | Aug 1986 | A |
4616412 | Schroeder | Oct 1986 | A |
4967261 | Niki et al. | Oct 1990 | A |
5202288 | Doering et al. | Apr 1993 | A |
5345106 | Doering et al. | Sep 1994 | A |
5669137 | Ellerson et al. | Sep 1997 | A |
5789280 | Yokota | Aug 1998 | A |
6677662 | Chung et al. | Jan 2004 | B1 |
6781219 | Bissey | Aug 2004 | B1 |
Number | Date | Country |
---|---|---|
39 16 899 | Nov 1990 | DE |
39 16899 | Nov 1990 | DE |
11-265956 | Sep 1999 | JP |
9854760 | Dec 1998 | WO |
WO 9854760 | Dec 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20040038561 A1 | Feb 2004 | US |