Method for fabricating a semiconductor structure including a metal oxide interface with silicon

Information

  • Patent Grant
  • 6709989
  • Patent Number
    6,709,989
  • Date Filed
    Thursday, June 21, 2001
    23 years ago
  • Date Issued
    Tuesday, March 23, 2004
    20 years ago
Abstract
A method of fabricating a semiconductor structure including the steps of:providing a silicon substrate having a surface;forming by atomic layer deposition a monocrystalline seed layer on the surface of the silicon substrate; andforming by atomic layer deposition one or more layers of a monocrystalline high dielectric constant oxide on the seed layer,where providing a substrate includes providing a substrate having formed thereon a silicon oxide, and wherein forming by atomic layer deposition a seed layer further includes depositing a layer of a metal oxide onto a surface of the silicon oxide, flushing the layer of metal oxide with an inert gas, and reacting the metal oxide and the silicon oxide to form a monocrystalline silicate.
Description




FIELD OF INVENTION




The present invention relates in general to a method for fabricating a semiconductor structure including a silicate interface between a silicon substrate and monocrystalline metal oxides, and more particularly to a method for fabricating an interface including a seed layer utilizing atomic layer deposition or atomic layer epitaxy.




BACKGROUND OF THE INVENTION




A stable silicon (Si) surface is most desirable for subsequent epitaxial growth of metal oxide thin films on silicon for numerous device applications, e.g., ferroelectrics or high dielectric constant oxides for non-volatile high density memory and next generation MOS devices. It is pivotal to establish a stable transition layer on the Si surface for the subsequent growth of monocrystalline high-k metal oxides.




Some reported growth of these oxides, such as BaO and BaTiO


3


on Si(100) were based on a BaSi


2


(cubic) template by depositing one fourth monolayer of Ba on Si(100) using molecular beam epitaxy at temperatures greater than 850° C. See for example: R. McKee et al.,


Appl. Phys. Lett


. 59(7), pp. 782-784 (Aug. 12, 1991); R. McKee et al.,


Appl. Phys. Lett


. 63(20), pp. 2818-2820 (Nov. 15, 1993); R. McKee et al.,


Mat. Res. Soc. Symp. Proc


., Vol. 21, pp. 131-135 (1991); U.S. Pat. No. 5,225,031, issued Jul. 6, 1993, entitled “PROCESS FOR DEPOSITING AN OXIDE EPITAXIALLY ONTO A SILICON SUBSTRATE AND STRUCTURES PREPARED WITH THE PROCESS”; and U.S. Pat. No. 5,482,003, issued Jan. 9, 1996, entitled “PROCESS FOR DEPOSITING EPITAXIAL ALKALINE EARTH OXIDE ONTO A SUBSTRATE AND STRUCTURES PREPARED WITH THE PROCESS”. A strontium silicide (SrSi


2


) interface model with a c(4×2) structure was proposed. See for example: R. McKee et al.,


Phys. Rev. Lett


. 81(14), 3014 (Oct. 5, 1998). However, atomic level simulation of this proposed structure indicates that it likely is not stable at elevated temperatures.




Growth of SrTiO


3


on silicon (100) using an SrO buffer layer has been accomplished. See for example: T. Tambo et al.,


Jpn. J. Appl. Phys


., Vol. 37 (1998), pp. 4454-4459. However, the SrO buffer layer was thick (100 Å), thereby limiting application for transistor films, and crystallinity was not maintained throughout the growth.




Furthermore, SrTiO


3


has been grown on silicon using thick oxide layers (60-120 Å) of SrO or TiO


x


. See for example: B. K. Moon et al.,


Jpn. J. Appl. Phys


., Vol. 33 (1994), pp. 1472-1477. These thick buffer layers would limit the application for transistors.




Monocrystalline high-k oxides are of great importance for the next generation MOSFET applications. In this context, the term “monocrystalline” shall have the meaning commonly used within the semiconductor industry. The term shall refer to materials that are a single crystal or that are substantially a single crystal and shall include those materials having a relatively small number of defects such as dislocations and the like as are commonly found in substrates of silicon or germanium or mixtures of silicon and germanium and epitaxial layers of such materials commonly found in the semiconductor industry. Typically, in all of these known structures, they are prepared using molecular beam epitaxy (MBE), pulsed laser deposition (PLD), sputtering, and/or metal-organic chemical vapor deposition (MOCVD). In these types of methods of preparation, it is difficult to control the silicon oxide interface to achieve low density of interfacial traps, low leakage current, and for thickness and composition uniformity over large areas, such as 8″ and above, and conformity over trenches. Accordingly, there is a need for a method that provides for a better interface between a silicon substrate and the metal oxide layer, that is conducive to the nucleation of a monocrystalline metal oxide layer, simple to manufacture, controllable, has suppressed fringing effects in MOSFET devices, and suitable for mass production.




Accordingly, it is a purpose of the present invention to provide for a method of fabricating a thin, monocrystalline stable silicate interface with silicon which would allow for the nucleation of a monocrystalline metal oxide layer on silicon.




It is yet another purpose of the present invention to provide for a method of fabricating a semiconductor structure including a monocrystalline metal oxide interface with silicon that is reliable and amenable to high throughput manufacturing.




SUMMARY OF THE INVENTION




The above problems and others are at least partially solved and the above purposes and others are realized in a method of fabricating a semiconductor structure including the steps of providing a silicon substrate having a surface, forming on the surface of the silicon substrate, by atomic layer deposition (ALD), a seed layer comprising a silicate material and forming, by atomic layer deposition (ALD) one or more layers of a monocrystalline high dielectric constant oxide on the seed layer.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

illustrates a cross-sectional view of a first embodiment of a clean semiconductor substrate having a plurality of oxide layers formed thereon and in accordance with the present invention;





FIG. 2

illustrates a cross-sectional view of a semiconductor substrate having an interface seed layer formed of a silicate layer utilizing atomic layer deposition in accordance with the present invention;





FIG. 3

illustrates a cross-sectional view of second embodiment of a clean semiconductor structure having a hydrogen layer formed thereon and in accordance with the present invention;





FIG. 4

illustrates a cross-sectional view of a semiconductor structure having an oxide layer formed thereon and in accordance with the present invention;





FIG. 5

illustrates a cross-sectional view of a semiconductor substrate having an interface seed layer formed of a silicate layer utilizing atomic layer deposition in accordance with the present invention;





FIG. 6

illustrates the method of forming the interface seed layer utilizing atomic layer deposition in accordance with the present invention;





FIG. 7

illustrates a cross-sectional view of a semiconductor substrate having a high dielectric constant metal oxide layer formed on the structure illustrated in

FIGS. 2 and 5

utilizing atomic layer deposition in accordance with the present invention;





FIG. 8

illustrates the method of forming the high dielectric constant metal oxide layer utilizing atomic layer deposition in accordance with the present invention; and





FIG. 9

illustrates a cross-sectional view of a semiconductor substrate having a monocrystalline high-k metal oxide layer formed on the structure illustrated in

FIGS. 2 and 5

utilizing atomic layer deposition in accordance with the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




A method of fabricating a high dielectric constant (high-k) metal oxide comprises an interface with a silicon substrate and is based on the use of atomic layer deposition (ALD) to form a stable silicate seed layer necessary for the subsequent growth of monocrystalline alkaline-earth metal oxide layers. Accordingly, disclosed is a new method of growing a seed layer and metal oxide layer utilizing atomic layer deposition.




To form the novel interface between a silicon (Si) substrate and one or more layers of a high dielectric constant (high-k) metal oxide, two specific approaches utilizing atomic layer deposition may be used dependent upon the substrate. A first example will be provided for starting with a Si substrate having silicon dioxide (SiO


2


) formed on the surface. The silicon dioxide is formed as a native oxide, or by utilizing thermal, or chemical techniques. SiO


2


is amorphous rather than single crystalline and it is desirable for purposes of growing the seed layer material on the substrate to create the interfacial layer. The second example will be provided for starting with a Si substrate which undergoes hydrogen (H) passivation, thereby having formed on the surface a layer of hydrogen (H).




Turning now to the drawings in which like elements are designated with like numbers throughout the FIGs.,

FIG. 1

illustrates a Si substrate


10


having a surface


12


, and a layer


14


of SiO


2


thereupon. In this particular embodiment, layer


14


of SiO


2


naturally exists (native oxide) once the silicon substrate


10


is exposed to air (oxygen). Alternatively, layer


14


of SiO


2


may be formed purposely in a controlled fashion well known in the art, e.g., thermally by applying oxygen onto the surface


12


at a high temperature, or chemically using a standard chemical etch process. Layer


14


is formed with a thickness in a range of 5-100 Å thick, and more particularly with a thickness in a range of 10-25 Å. A novel seed layer (discussed presently) is formed utilizing atomic layer deposition. First, a thin layer, less than 20 Å, of a metal oxide


18


, such as zirconium oxide (ZrO


2


), hafnium oxide (HfO


2


), strontium oxide (SrO


2


), or the like, is deposited onto surface


16


of layer


14


of SiO


2


using chloride or a β-Diketonate precursor and oxygen (O


2


), water (H


2


O), nitrous oxide (N


2


O), or nitric oxide (NO) at a relatively low temperature, such as less than 600° C. More particularly, Si substrate


10


and the amorphous SiO


2


layer


14


are heated to a temperature below the sublimation temperature of the SiO


2


layer


14


, generally below 900° C., and in a preferred embodiment below 600° C. prior to the deposition of metal oxide


18


.




Next, the temperature of substrate


10


is then raised above 600° C. in order for the layer


18


metal oxide (MO


x


) and the layer


14


of SiO


2


to react to form a monocrystalline seed layer


20


of MSiO


x


(silicate), as illustrated in FIG.


2


.




This step provides for the formation of a stable silicate on the silicon substrate, more particularly the formation of monocrystalline seed layer


20


having a crystal structure which will allow for the nucleation of monocrystalline metal oxide layers. The thickness of silicate, or seed, layer


20


is approximately a few monolayers, more specifically in the range of 1-50 Å, with a preferred thickness in the range of 3-20 Å. In this particular embodiment, the application of metal oxide


18


to the surface


16


of layer


14


and subsequent flushing with nitrogen (N


2


), argon (Ar), or helium (He), and heating causes a chemical reaction, forming hafnium silicon oxide (HfSiO


4


), zirconium silicon oxide (ZrSiO


4


), strontium silicon oxide (SrSiO


4


), or the like, as seed layer


20


. Monitoring of the semiconductor structure can be accomplished utilizing any surface sensitive technique, such as reflection difference spectroscopy, spectroscopic ellipsometry, or the like wherein the surface is monitored by in situ techniques.




It should be understood by those skilled in the art that the temperatures given for these processes are recommended for the particular embodiment described, but the invention is not limited to a particular temperature or pressure range.




In an alternative embodiment, and as illustrated in

FIGS. 3-6

, disclosed is Si substrate


10


′ having a surface


12


′, having undergone hydrogen (H) passivation, thereby having a layer


13


of hydrogen (H) formed thereon. It should be noted that all components of

FIGS. 1 and 2

that are similar to components of the

FIGS. 3-5

, are designated with similar numbers, having a single prime added to indicate the different embodiment. In this particular embodiment, layer


13


of hydrogen (H) is formed in a controlled fashion by hydrogen passivation techniques.




A novel seed layer (discussed presently) is formed utilizing atomic layer deposition. First, layer


13


of hydrogen (H) is desorbed from surface


12


′ at a high temperature, preferably in excess of 300° C. Next, surface


12


′ of the Si substrate


10


′ is exposed to a Si precursor, such as silane (SiH


4


), disilane (SiH


6


), or the like, and a metal precursor, such as hafnium (Hf), strontium (Sr), zirconium (Zr), or the like, generally referenced


15


of

FIG. 4

, during a time equal to T1, as shown in

FIG. 6

, referenced


30


. Substrate


10


′ is exposed to the precursors at a temperature of generally between 100° C.-500°, and in a preferred embodiment at a temperature of 250° C. and at an atmospheric pressure of 0.5 mTorr. Once the precursors are deposited, a surface


17


is flushed


32


with an inert gas, such as argon (Ar), nitrogen (N


2


), or helium (He), for a time, T2, as illustrated in

FIGS. 4 and 6

to remove any excess material. The stack is then exposed


34


to oxygen (O) with or without plasma, water (H


2


O), nitrous oxide (N


2


O), or nitric oxide (NO) for a time, T3, to oxidize layer


15


of Si and metal, thereby forming seed layer


20


′, generally similar to seed layer


20


of FIG.


2


. Finally, seed layer


20


′ is flushed


36


, as illustrated in

FIG. 6

, with argon (Ar), nitrogen (N


2


) or helium (He) to eliminate any excess oxygen (O).




This step provides for the formation of a stable silicate on the silicon substrate which has been hydrogen passivated, more particularly the formation of monocrystalline seed layer


20


′ having a crystal structure which enables the nucleation of monocrystalline metal oxide layers. The thickness of seed layer


20


′ is approximately a few monolayers, more specifically in the range of 1-50 Å, with a preferred thickness in the range of 3-20 Å. In this particular embodiment, the atomic layer deposition is repeated for a few cycles, preferably 4-5 cycles, to form a few monolayers. Thus, a chemical reaction takes place forming hafnium silicon oxide (HfSiO


4


), zirconium silicon oxide (ZrSiO


4


), strontium silicon oxide (SrSiO


4


), or the like, as the seed layer


20


′.




It should be understood that the component (x), where x=0 to 1 in layer


20


′, having the composition of M


x


Si


1-x


O, can be adjusted using precursor flows of metal and silicon mixed prior to the introduction in the reaction chamber for better control. More particularly, a graded composition could be used whereby, the resultant final layer deposition using ALD renders a solely metal oxide layer, containing no silicon and having a monocrystalline surface with a known crystal structure.




Referring now to

FIGS. 7

,


8


, and


9


, the formation of monocrystalline high dielectric constant oxide layer


40


is accomplished by atomic layer deposition. First, seed layer


20


is exposed


50


to a metal precursor, such as hafnium (Hf), strontium (Sr), zirconium (Zr), lanthanum (La), aluminum (Al), yttrium (Y), titanium (Ti), barium (Ba), lanthanum scandium (LaSc), or the like, during a time, T1, thereby forming a layer


42


on surface


21


of seed layer


20


. Seed layer


20


is exposed


50


to the metal precursors at a temperature of generally between 100° C.-500°, and in a preferred embodiment at a temperature of 250° C. and at an atmospheric pressure of 0.5 mTorr. A surface


43


, of layer


42


is next flushed


52


with an inert gas, such as argon (Ar), nitrogen (N


2


) or helium (He) for a time, T2, to remove any excess metal precursor. Finally, the semiconductor structure is exposed


54


to oxygen (O


2


) with or without plasma, water (H2O), nitrous oxide (N


2


O), or nitric oxide (NO) for a time, T3, to oxidize layer


42


, more particularly the metal precursor, forming monocrystalline high-k metal oxide layer


40


, as illustrated in FIG.


9


. It is disclosed that high-k metal oxide layer


40


thus includes at least one of a high dielectric constant oxide selected from the group of hafnium oxide (HfO


2


), zirconium oxide (ZrO


2


), strontium titanate (SrTiO


3


), lanthanum oxide (La


2


O


3


), yttrium oxide (Y


2


O


3


), titanium oxide (TiO


2


), barium titanate (BaTiO


3


), lanthanum aluminate (LaAlO


3


), lanthanum scandium oxide (LaScO


3


) and aluminum oxide (Al


2


O


3


).




As a final step, layer


40


is flushed


56


with argon (Ar), nitrogen (N


2


), helium (He) or the like, to remove any excess oxygen. This atomic layer deposition is repeated for a given number of cycles to form to form a monocrystalline high-k oxide of a desired thickness.




Accordingly, disclosed is a method for fabricating a thin, seed layer


20


with silicon


10


as been described herein using atomic layer deposition (ALD). This forcing of the formation of a monocrystalline silicate layer by atomic layer deposition provides for high precision control of the thickness and composition over large areas. In addition, conformity of growth in trenches is achieved. In each cycle of the deposition process, the migration of species is enhanced on the surface.



Claims
  • 1. A method of fabricating a semiconductor structure comprising:providing a silicon substrate having a surface; forming by atomic layer deposition a monocrystalline seed layer on the surface of the silicon substrate, the seed layer formed of a silicate material; and forming by atomic layer deposition one or more layers of a monocrystalline high dielectric constant oxide on the seed layer, wherein forming by atomic layer deposition the seed layer of a silicate material includes forming the seed layer of a silicate material selected from the group of strontium silicon oxide (SrSiO4), zirconium silicon oxide (ZrSiO4), and hafnium silicon oxide (HfSiO4), wherein forming by atomic layer deposition one or more layers of a monocrystalline high dielectric constant oxide on the seed layer includes forming the layer of high dielectric constant oxide selected from the group of hafnium oxide (HfO2), zirconium oxide (ZrO2), strontium titanate (SrTiO3), lanthanum oxide (La2O3), yttrium oxide (Y2O3), titanium oxide (TiO2), barium titanate (BaTiO3), lanthanum aluminate (LaAlO3), lanthanum scandium oxide (LaScO3) and aluminum oxide (Al2O3), wherein providing a substrate includes providing a substrate having formed thereon a silicon oxide, and wherein forming by atomic layer deposition a monocrystalline seed layer further includes depositing a layer of a metal oxide onto a surface of the silicon oxide, flushing the layer of metal oxide with an inert gas, reacting the metal oxide with the silicon oxide to form the silicate selected from the group of strontium silicon oxide (SrSiO4), zirconium silicon oxide (ZrSiO4), and hafnium silicon oxide (HfSiO4).
  • 2. A method of fabricating a semiconductor structure comprising:providing a silicon substrate having a surface; forming by atomic layer deposition a monocrystalline seed layer on the surface of the silicon substrate, the seed layer formed of a silicate material; and forming by atomic layer deposition one or more layers of a monocrystalline high dielectric constant oxide on the seed layer, wherein forming by atomic layer deposition the seed layer of a silicate material includes forming the seed layer of a silicate material selected from the group of strontium silicon oxide (SrSiO4), zirconium silicon oxide (ZrSiO4), and hafnium silicon oxide (HfSiO4), wherein forming by atomic layer deposition one or more layers of a monocrystalline high dielectric constant oxide on the seed layer includes forming the layer of high dielectric constant oxide selected from the group of hafnium oxide (HfO2), zirconium oxide (ZrO2), strontium titanate (SrTiO3), lanthanum oxide (La2O3), yttrium oxide (Y2O3), titanium oxide (TiO2), barium titanate (BaTiO3), lanthanum aluminate (LaAlO3), lanthanum scandium oxide (LaScO3) and aluminum oxide (Al2O3), wherein providing a substrate includes providing a substrate having a layer of hydrogen formed thereon by hydrogen passivation.
  • 3. A method of fabricating a semiconductor structure as claimed in claim 2 wherein forming by atomic layer deposition a seed layer further includes desorbing the layer of hydrogen formed on the substrate, exposing the silicon substrate to a silicon precursor and at least one metal precursor forming a layer of a silicon and a metal on the surface of the silicon substrate, flushing the layer of silicon with an inert gas to remove any excess silicon and metal precursor material, exposing the surface of the layer of silicon to at least one of oxygen (O2) with or without plasma, water (H2O), nitrous oxide (N2O), or nitric oxide (NO) to oxidize the layer of silicon and metal thereby forming a single oxidized monolayer, and flushing the oxidized monolayer with an inert gas.
  • 4. A method of fabricating a semiconductor structure as claimed in claim 3 further including repeating the atomic layer deposition to form oxidized monolayers.
  • 5. A method of fabricating a semiconductor structure comprising:providing a silicon substrate having a surface; forming by atomic layer deposition a monocrystalline seed layer on the surface of the silicon substrate, the seed layer formed of a silicate material; and forming by atomic layer deposition one or more layers of a monocrystalline high dielectric constant oxide on the seed layer, wherein forming by atomic layer deposition the seed layer of a silicate material includes forming the seed layer of a silicate material selected from the group of strontium silicon oxide (SrSiO4), zirconium silicon oxide (ZrSiO4), and hafnium silicon oxide (HfSiO4), wherein forming by atomic layer deposition one or more layers of a monocrystalline high dielectric constant oxide on the seed layer includes forming the layer of high dielectric constant oxide selected from the group of hafnium oxide (HfO2), zirconium oxide (ZrO2), strontium titanate (SrTiO3), lanthanum oxide (La2O3), yttrium oxide (Y2O3), titanium oxide (TiO2), barium titanate (BaTiO3), lanthanum aluminate (LaAlO3), lanthanum scandium oxide (LaScO3) and aluminum oxide (Al2O3), whereby the forming by atomic layer deposition one or more layers of a monocrystalline high dielectric constant oxide includes exposing the monocrystalline seed layer to a metal precursor, thereby forming a layer of metal, flushing the layer of metal with an inert gas, exposing the layer of metal to at least one of oxygen (O) with or without plasma, water (H2O), nitrous oxide (N2O), or nitric oxide (NO) to oxidize the layer of metal thereby forming a single monocrystalline high-k oxidized monolayer, and flushing the oxidized monolayer with an inert gas.
  • 6. A method of fabricating a semiconductor structure as claimed in claim 5 further including repeating the atomic layer deposition to form monocrystalline high-k oxide of a desired thickness.
US Referenced Citations (519)
Number Name Date Kind
3617951 Anderson Nov 1971 A
3670213 Nakawaga et al. Jun 1972 A
3766370 Walther Oct 1973 A
3802967 Ladany et al. Apr 1974 A
3914137 Huffman et al. Oct 1975 A
3935031 Adler Jan 1976 A
4006989 Andringa Feb 1977 A
4084130 Holton Apr 1978 A
4120588 Chaum Oct 1978 A
4146297 Alferness et al. Mar 1979 A
4174422 Matthews et al. Nov 1979 A
4177094 Kroon Dec 1979 A
4242595 Lehovec Dec 1980 A
4284329 Smith et al. Aug 1981 A
4289920 Hovel Sep 1981 A
4297656 Pan Oct 1981 A
4392297 Little Jul 1983 A
4398342 Pitt et al. Aug 1983 A
4404265 Manasevit Sep 1983 A
4424589 Thomas et al. Jan 1984 A
4439014 Stacy et al. Mar 1984 A
4442590 Stockton et al. Apr 1984 A
4452720 Harada et al. Jun 1984 A
4459325 Nozawa et al. Jul 1984 A
4482422 McGinn et al. Nov 1984 A
4482906 Hovel et al. Nov 1984 A
4484332 Hawrylo Nov 1984 A
4503540 Nakashima et al. Mar 1985 A
4523211 Morimoto et al. Jun 1985 A
4594000 Falk et al. Jun 1986 A
4629821 Bronstein-Bonte et al. Dec 1986 A
4661176 Manasevit Apr 1987 A
4667088 Kramer May 1987 A
4667212 Nakamura May 1987 A
4681982 Yoshida Jul 1987 A
4695120 Holder Sep 1987 A
4748485 Vasudev May 1988 A
4756007 Qureshi et al. Jul 1988 A
4772929 Manchester Sep 1988 A
4773063 Hunsperger et al. Sep 1988 A
4774205 Choi et al. Sep 1988 A
4777613 Shahan et al. Oct 1988 A
4793872 Meunier et al. Dec 1988 A
4801184 Revelli Jan 1989 A
4802182 Thornton et al. Jan 1989 A
4804866 Akiyama Feb 1989 A
4815084 Scifres et al. Mar 1989 A
4841775 Ikeda et al. Jun 1989 A
4845044 Ariyoshi et al. Jul 1989 A
4846926 Kay et al. Jul 1989 A
4855249 Akasaki et al. Aug 1989 A
4866489 Yokogawa et al. Sep 1989 A
4868376 Lessin et al. Sep 1989 A
4872046 Morkoc et al. Oct 1989 A
4876208 Gustafson et al. Oct 1989 A
4876219 Eshita et al. Oct 1989 A
4882300 Inoue et al. Nov 1989 A
4885376 Verkade Dec 1989 A
4888202 Murakami et al. Dec 1989 A
4889402 Reinhart Dec 1989 A
4891091 Shastry Jan 1990 A
4896194 Suzuki Jan 1990 A
4901133 Curran et al. Feb 1990 A
4910164 Shichijo Mar 1990 A
4912087 Aslam et al. Mar 1990 A
4928154 Umeno et al. May 1990 A
4934777 Jou et al. Jun 1990 A
4952420 Walters Aug 1990 A
4959702 Moyer et al. Sep 1990 A
4963508 Umeno et al. Oct 1990 A
4963949 Wanlass et al. Oct 1990 A
4965649 Zanio et al. Oct 1990 A
4981714 Ohno et al. Jan 1991 A
4984043 Vinal Jan 1991 A
4999842 Huang et al. Mar 1991 A
5018816 Murray et al. May 1991 A
5028563 Feit et al. Jul 1991 A
5028976 Ozaki et al. Jul 1991 A
5051790 Hammer Sep 1991 A
5053835 Horikawa et al. Oct 1991 A
5055445 Belt et al. Oct 1991 A
5055835 Sutton Oct 1991 A
5057694 Idaka et al. Oct 1991 A
5060031 Abrokwah et al. Oct 1991 A
5063081 Cozzette et al. Nov 1991 A
5063166 Mooney et al. Nov 1991 A
5067809 Tsubota Nov 1991 A
5073981 Giles et al. Dec 1991 A
5075743 Behfar-Rad Dec 1991 A
5081062 Vasudev et al. Jan 1992 A
5081519 Nishimura et al. Jan 1992 A
5087829 Ishibashi et al. Feb 1992 A
5103494 Mozer Apr 1992 A
5116461 Lebby et al. May 1992 A
5119448 Schaefer et al. Jun 1992 A
5122852 Chang et al. Jun 1992 A
5127067 Delcoco et al. Jun 1992 A
5130762 Kulick Jul 1992 A
5132648 Trinh et al. Jul 1992 A
5140387 Okazaki et al. Aug 1992 A
5140651 Soref et al. Aug 1992 A
5141894 Bisaro et al. Aug 1992 A
5143854 Pirrung et al. Sep 1992 A
5144409 Ma Sep 1992 A
5148504 Levi et al. Sep 1992 A
5155658 Inam et al. Oct 1992 A
5159413 Calviello et al. Oct 1992 A
5163118 Lorenzo et al. Nov 1992 A
5173474 Connell et al. Dec 1992 A
5173835 Cornett et al. Dec 1992 A
5181085 Moon et al. Jan 1993 A
5185589 Krishnaswamy et al. Feb 1993 A
5191625 Gustavsson Mar 1993 A
5194397 Cook et al. Mar 1993 A
5194917 Regener Mar 1993 A
5198269 Swartz et al. Mar 1993 A
5208182 Narayan et al. May 1993 A
5210763 Lewis et al. May 1993 A
5216359 Makki et al. Jun 1993 A
5216729 Berger et al. Jun 1993 A
5221367 Chisholm et al. Jun 1993 A
5225031 McKee et al. Jul 1993 A
5227196 Itoh Jul 1993 A
5244818 Jokers et al. Sep 1993 A
5248564 Ramesh Sep 1993 A
5260394 Tazaki et al. Nov 1993 A
5262659 Grudkowski et al. Nov 1993 A
5266355 Wernberg et al. Nov 1993 A
5268327 Vernon Dec 1993 A
5270298 Ramesh Dec 1993 A
5280013 Newman et al. Jan 1994 A
5281834 Cambou et al. Jan 1994 A
5283462 Stengel Feb 1994 A
5286985 Taddiken Feb 1994 A
5293050 Chapple-Sokol et al. Mar 1994 A
5306649 Hebert Apr 1994 A
5310707 Oishi et al. May 1994 A
5312765 Kanber May 1994 A
5314547 Heremans et al. May 1994 A
5323023 Fork Jun 1994 A
5326721 Summerfelt Jul 1994 A
5334556 Guldi Aug 1994 A
5352926 Andrews Oct 1994 A
5356509 Terranova et al. Oct 1994 A
5356831 Calviello et al. Oct 1994 A
5357122 Okubora et al. Oct 1994 A
5358925 Neville Connell et al. Oct 1994 A
5362972 Yazawa et al. Nov 1994 A
5371621 Stevens Dec 1994 A
5371734 Fischer Dec 1994 A
5372992 Itozaki et al. Dec 1994 A
5373166 Buchan et al. Dec 1994 A
5391515 Kao et al. Feb 1995 A
5393352 Summerfelt Feb 1995 A
5394489 Koch Feb 1995 A
5395663 Tabata et al. Mar 1995 A
5397428 Stoner et al. Mar 1995 A
5399898 Rostoker Mar 1995 A
5404581 Honjo Apr 1995 A
5405802 Yamagata et al. Apr 1995 A
5406202 Mehrgardt et al. Apr 1995 A
5410622 Okada et al. Apr 1995 A
5418216 Fork May 1995 A
5418389 Watanabe May 1995 A
5420102 Harshavardhan et al. May 1995 A
5427988 Sengupta et al. Jun 1995 A
5436759 Dijaili et al. Jul 1995 A
5438584 Paoli et al. Aug 1995 A
5441577 Sasaki et al. Aug 1995 A
5442191 Ma Aug 1995 A
5442561 Yoshizawa et al. Aug 1995 A
5444016 Abrokwah et al. Aug 1995 A
5446719 Yoshida et al. Aug 1995 A
5450812 McKee et al. Sep 1995 A
5452118 Maruska Sep 1995 A
5453727 Shibasaki et al. Sep 1995 A
5466631 Ichikawa et al. Nov 1995 A
5473047 Shi Dec 1995 A
5473171 Summerfelt Dec 1995 A
5477363 Matsuda Dec 1995 A
5478653 Guenzer Dec 1995 A
5479033 Baca et al. Dec 1995 A
5479317 Ramesh Dec 1995 A
5480829 Abrokwah et al. Jan 1996 A
5481102 Hazelrigg, Jr. Jan 1996 A
5482003 McKee et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5486406 Shi Jan 1996 A
5491461 Partin et al. Feb 1996 A
5492859 Sakaguchi et al. Feb 1996 A
5494711 Takeda et al. Feb 1996 A
5504035 Rostoker et al. Apr 1996 A
5504183 Shi et al. Apr 1996 A
5508554 Takatani et al. Apr 1996 A
5510665 Conley Apr 1996 A
5511238 Bayraktaroglu Apr 1996 A
5512773 Wolf et al. Apr 1996 A
5514484 Nashimoto May 1996 A
5514904 Onga et al. May 1996 A
5515047 Yamakido et al. May 1996 A
5515810 Yamashita et al. May 1996 A
5516725 Chang et al. May 1996 A
5519235 Ramesh May 1996 A
5528057 Yanagase et al. Jun 1996 A
5528067 Farb Jun 1996 A
5528209 Macdonald et al. Jun 1996 A
5528414 Oakley Jun 1996 A
5530235 Stefik et al. Jun 1996 A
5538941 Findikoglu et al. Jul 1996 A
5541422 Wolf et al. Jul 1996 A
5549977 Jin et al. Aug 1996 A
5551238 Prueitt Sep 1996 A
5552547 Shi Sep 1996 A
5553089 Seki et al. Sep 1996 A
5556463 Guenzer Sep 1996 A
5559368 Hu et al. Sep 1996 A
5561305 Smith Oct 1996 A
5569953 Kikkawa et al. Oct 1996 A
5570226 Ota Oct 1996 A
5572052 Kashihara et al. Nov 1996 A
5574296 Park et al. Nov 1996 A
5574589 Feuer et al. Nov 1996 A
5576879 Nashimoto Nov 1996 A
5578162 D'Asaro et al. Nov 1996 A
5585167 Satoh et al. Dec 1996 A
5585288 Davis et al. Dec 1996 A
5588995 Sheldon Dec 1996 A
5589284 Summerfelt et al. Dec 1996 A
5596205 Reedy et al. Jan 1997 A
5596214 Endo Jan 1997 A
5602418 Imai et al. Feb 1997 A
5603764 Matsuda et al. Feb 1997 A
5606184 Abrokwah et al. Feb 1997 A
5608046 Cook et al. Mar 1997 A
5610744 Ho et al. Mar 1997 A
5614739 Abrokwah et al. Mar 1997 A
5619051 Endo Apr 1997 A
5621227 Joshi Apr 1997 A
5623439 Gotoh et al. Apr 1997 A
5623552 Lane Apr 1997 A
5629534 Inuzuka et al. May 1997 A
5633724 King et al. May 1997 A
5635433 Sengupta Jun 1997 A
5635453 Pique et al. Jun 1997 A
5640267 May et al. Jun 1997 A
5650646 Summerfelt Jul 1997 A
5656382 Nashimoto Aug 1997 A
5659180 Shen et al. Aug 1997 A
5661112 Hatta et al. Aug 1997 A
5666376 Cheng Sep 1997 A
5668048 Kondo et al. Sep 1997 A
5670798 Schetzina Sep 1997 A
5670800 Nakao et al. Sep 1997 A
5674366 Hayashi et al. Oct 1997 A
5674813 Nakamura et al. Oct 1997 A
5679947 Doi et al. Oct 1997 A
5679965 Schetzina Oct 1997 A
5682046 Takahashi et al. Oct 1997 A
5684302 Wersing et al. Nov 1997 A
5686741 Ohori et al. Nov 1997 A
5689123 Major et al. Nov 1997 A
5693140 McKee et al. Dec 1997 A
5719417 Roeder et al. Feb 1998 A
5725641 MacLeod Mar 1998 A
5729394 Sevier et al. Mar 1998 A
5729641 Chandonnet et al. Mar 1998 A
5731220 Tsu et al. Mar 1998 A
5733641 Fork et al. Mar 1998 A
5734672 McMinn et al. Mar 1998 A
5735949 Mantl et al. Apr 1998 A
5741724 Ramdani et al. Apr 1998 A
5745631 Reinker Apr 1998 A
5753300 Wessels et al. May 1998 A
5753928 Krause May 1998 A
5754319 Van De Voorde et al. May 1998 A
5760426 Marx et al. Jun 1998 A
5760427 Onda Jun 1998 A
5764676 Paoli et al. Jun 1998 A
5767543 Ooms et al. Jun 1998 A
5770887 Tadatomo et al. Jun 1998 A
5772758 Collins et al. Jun 1998 A
5776359 Schultz et al. Jul 1998 A
5776621 Nashimoto Jul 1998 A
5777350 Nakamura et al. Jul 1998 A
5777762 Yamamoto Jul 1998 A
5778018 Yoshikawa et al. Jul 1998 A
5778116 Tomich Jul 1998 A
5780311 Beasom et al. Jul 1998 A
5789733 Jachimowicz et al. Aug 1998 A
5789845 Wadaka et al. Aug 1998 A
5790583 Ho Aug 1998 A
5792569 Sun et al. Aug 1998 A
5792679 Nakato Aug 1998 A
5796648 Kawakubo et al. Aug 1998 A
5801072 Barber Sep 1998 A
5801105 Yano et al. Sep 1998 A
5807440 Kubota et al. Sep 1998 A
5810923 Yano et al. Sep 1998 A
5812272 King et al. Sep 1998 A
5814583 Itozaki et al. Sep 1998 A
5825055 Summerfelt Oct 1998 A
5825799 Ho Oct 1998 A
5827755 Yonehara et al. Oct 1998 A
5828080 Yano et al. Oct 1998 A
5830270 McKee et al. Nov 1998 A
5831960 Jiang et al. Nov 1998 A
5833603 Kovacs et al. Nov 1998 A
5834362 Miyagaki et al. Nov 1998 A
5838035 Ramesh Nov 1998 A
5838053 Bevan et al. Nov 1998 A
5844260 Ohori Dec 1998 A
5846846 Suh et al. Dec 1998 A
5852687 Wickham Dec 1998 A
5857049 Beranek et al. Jan 1999 A
5858814 Goossen et al. Jan 1999 A
5861966 Ortel Jan 1999 A
5863326 Nause et al. Jan 1999 A
5864171 Yamamoto et al. Jan 1999 A
5869845 Vander Wagt et al. Feb 1999 A
5872493 Ella Feb 1999 A
5873977 Desu et al. Feb 1999 A
5874860 Brunel et al. Feb 1999 A
5878175 Sonoda et al. Mar 1999 A
5879956 Seon et al. Mar 1999 A
5880452 Plesko Mar 1999 A
5882948 Jewell Mar 1999 A
5883564 Partin Mar 1999 A
5883996 Knapp et al. Mar 1999 A
5886867 Chivukula et al. Mar 1999 A
5888296 Ooms et al. Mar 1999 A
5889296 Imamura et al. Mar 1999 A
5896476 Wisseman et al. Apr 1999 A
5905571 Butler et al. May 1999 A
5907792 Droopad et al. May 1999 A
5912068 Jia Jun 1999 A
5926493 O'Brien et al. Jul 1999 A
5926496 Ho et al. Jul 1999 A
5937115 Domash Aug 1999 A
5937274 Kondow et al. Aug 1999 A
5937285 Abrokwah et al. Aug 1999 A
5948161 Kizuki Sep 1999 A
5953468 Finnila et al. Sep 1999 A
5955591 Imbach et al. Sep 1999 A
5959308 Shichijo et al. Sep 1999 A
5959879 Koo Sep 1999 A
5962069 Schindler et al. Oct 1999 A
5963291 Wu et al. Oct 1999 A
5966323 Chen et al. Oct 1999 A
5976953 Zavracky et al. Nov 1999 A
5977567 Verdiell Nov 1999 A
5981400 Lo Nov 1999 A
5981976 Murasato Nov 1999 A
5981980 Miyajima et al. Nov 1999 A
5984190 Nevill Nov 1999 A
5987011 Toh Nov 1999 A
5987196 Noble Nov 1999 A
5990495 Ohba Nov 1999 A
5995359 Klee et al. Nov 1999 A
5995528 Fukunaga et al. Nov 1999 A
5998781 Vawter et al. Dec 1999 A
5998819 Yokoyama et al. Dec 1999 A
6002375 Corman et al. Dec 1999 A
6008762 Nghiem Dec 1999 A
6011641 Shin et al. Jan 2000 A
6011646 Mirkarimi et al. Jan 2000 A
6013553 Wallace et al. Jan 2000 A
6020222 Wollesen Feb 2000 A
6022140 Fraden et al. Feb 2000 A
6022410 Yu et al. Feb 2000 A
6022963 McGall et al. Feb 2000 A
6023082 McKee et al. Feb 2000 A
6028853 Haartsen Feb 2000 A
6039803 Fitzgerald et al. Mar 2000 A
6045626 Yano et al. Apr 2000 A
6046464 Schetzina Apr 2000 A
6048751 D'Asaro et al. Apr 2000 A
6049110 Koh Apr 2000 A
6049702 Tham et al. Apr 2000 A
6051858 Uchida et al. Apr 2000 A
6055179 Koganei et al. Apr 2000 A
6058131 Pan May 2000 A
6064078 Northrup et al. May 2000 A
6064092 Park May 2000 A
6064783 Congdon et al. May 2000 A
6078717 Nashimoto et al. Jun 2000 A
6080378 Yokota et al. Jun 2000 A
6083697 Beecher et al. Jul 2000 A
6087681 Shakuda Jul 2000 A
6088216 Laibowitz et al. Jul 2000 A
6090659 Laibowitz et al. Jul 2000 A
6093302 Montgomery Jul 2000 A
6096584 Ellis-Monaghan et al. Aug 2000 A
6100578 Suzuki Aug 2000 A
6103008 McKee et al. Aug 2000 A
6103403 Grigorian et al. Aug 2000 A
6107653 Fitzgerald Aug 2000 A
6107721 Lakin Aug 2000 A
6108125 Yano Aug 2000 A
6110813 Ota et al. Aug 2000 A
6113225 Miyata et al. Sep 2000 A
6113690 Yu et al. Sep 2000 A
6114996 Nghiem Sep 2000 A
6121642 Newns Sep 2000 A
6121647 Yano et al. Sep 2000 A
6124158 Dautartas et al. Sep 2000 A
6128178 Newns Oct 2000 A
6134114 Ungermann et al. Oct 2000 A
6136666 So Oct 2000 A
6137603 Henmi Oct 2000 A
6139483 Seabaugh et al. Oct 2000 A
6143072 McKee et al. Nov 2000 A
6143366 Lu Nov 2000 A
6146906 Inoue et al. Nov 2000 A
6150239 Goesele et al. Nov 2000 A
6153010 Kiyoku et al. Nov 2000 A
6153454 Krivokapic Nov 2000 A
6156581 Vaudo et al. Dec 2000 A
6173474 Conrad Jan 2001 B1
6174755 Manning Jan 2001 B1
6175497 Tseng et al. Jan 2001 B1
6175555 Hoole Jan 2001 B1
6180252 Farrell et al. Jan 2001 B1
6180486 Leobandung et al. Jan 2001 B1
6184044 Sone et al. Feb 2001 B1
6184144 Lo Feb 2001 B1
6191011 Gilboa et al. Feb 2001 B1
6194753 Seon et al. Feb 2001 B1
6197503 Vo-Dinh et al. Mar 2001 B1
6198119 Nabatame et al. Mar 2001 B1
6200893 Sneh Mar 2001 B1
6204737 Ella Mar 2001 B1
6208453 Wessels et al. Mar 2001 B1
6210988 Howe et al. Apr 2001 B1
6211096 Allman et al. Apr 2001 B1
6222654 Frigo Apr 2001 B1
6224669 Yi et al. May 2001 B1
6225051 Sugiyama et al. May 2001 B1
6229159 Suzuki May 2001 B1
6232910 Bell et al. May 2001 B1
6235145 Li et al. May 2001 B1
6235649 Kawahara et al. May 2001 B1
6238945 Kaneko May 2001 B1
6239012 Kinsman May 2001 B1
6239449 Fafard et al. May 2001 B1
6241821 Yu et al. Jun 2001 B1
6242686 Kishimoto et al. Jun 2001 B1
6248459 Wang et al. Jun 2001 B1
6248621 Wilk et al. Jun 2001 B1
6252261 Usui et al. Jun 2001 B1
6255198 Linthicum et al. Jul 2001 B1
6256426 Duchet Jul 2001 B1
6265749 Gardner et al. Jul 2001 B1
6268269 Lee et al. Jul 2001 B1
6271619 Yamada et al. Aug 2001 B1
6275122 Speidell et al. Aug 2001 B1
6277436 Stauf et al. Aug 2001 B1
6278137 Shimoyama et al. Aug 2001 B1
6278138 Suzuki Aug 2001 B1
6278523 Gorecki Aug 2001 B1
6291319 Yu et al. Sep 2001 B1
6297598 Wang et al. Oct 2001 B1
6297842 Koizumi et al. Oct 2001 B1
6300615 Shinohara et al. Oct 2001 B1
6306668 McKee et al. Oct 2001 B1
6307996 Nashimoto et al. Oct 2001 B1
6312819 Jia et al. Nov 2001 B1
6313486 Kencke et al. Nov 2001 B1
6316785 Nunoue et al. Nov 2001 B1
6316832 Tsuzuki et al. Nov 2001 B1
6319730 Ramdani et al. Nov 2001 B1
6320238 Kizilyalli et al. Nov 2001 B1
6326637 Parkin et al. Dec 2001 B1
6326645 Kadota Dec 2001 B1
6338756 Dietze Jan 2002 B2
6339664 Farjady et al. Jan 2002 B1
6340788 King et al. Jan 2002 B1
6343171 Yoshimura et al. Jan 2002 B1
6345424 Hasegawa et al. Feb 2002 B1
6346477 Kaloyeros et al. Feb 2002 B1
6348373 Ma et al. Feb 2002 B1
6359330 Goudard Mar 2002 B1
6362017 Manabe et al. Mar 2002 B1
6367699 Ackley Apr 2002 B2
6372356 Thornton et al. Apr 2002 B1
6372813 Johnson et al. Apr 2002 B1
6376337 Wang et al. Apr 2002 B1
6389209 Suhir May 2002 B1
6391674 Ziegler May 2002 B2
6392253 Saxena May 2002 B1
6392257 Ramdani et al. May 2002 B1
6393167 Davis et al. May 2002 B1
6404027 Hong et al. Jun 2002 B1
6410941 Taylor et al. Jun 2002 B1
6410947 Wada Jun 2002 B1
6411756 Sadot et al. Jun 2002 B2
6417059 Huang Jul 2002 B2
6427066 Grube Jul 2002 B1
6432546 Ramesh et al. Aug 2002 B1
6438281 Tsukamoto et al. Aug 2002 B1
6452232 Adan Sep 2002 B1
6461927 Mochizuki et al. Oct 2002 B1
6462360 Higgins, Jr. et al. Oct 2002 B1
6477285 Shanley Nov 2002 B1
6496469 Uchizaki Dec 2002 B1
6504189 Matsuda et al. Jan 2003 B1
20010013313 Droopad et al. Aug 2001 A1
20010020278 Saito Sep 2001 A1
20010036142 Kadowaki et al. Nov 2001 A1
20020006245 Kubota et al. Jan 2002 A1
20020008234 Emrick Jan 2002 A1
20020030246 Eisenbeiser et al. Mar 2002 A1
20020047123 Ramdani et al. Apr 2002 A1
20020047143 Ramdani et al. Apr 2002 A1
20020072245 Ooms et al. Jun 2002 A1
20020079576 Seshan Jun 2002 A1
20020131675 Litvin Sep 2002 A1
20020140012 Droopad Oct 2002 A1
20020145168 Bojarczuk et al. Oct 2002 A1
20020195610 Klosowiak Dec 2002 A1
Foreign Referenced Citations (137)
Number Date Country
196 07 107 Aug 1997 DE
197 12 496 Oct 1997 DE
100 17 137 Oct 2000 DE
0 250 171 Dec 1987 EP
0 300 499 Jan 1989 EP
0 309 270 Mar 1989 EP
0 331 338 Sep 1989 EP
0 331 467 Sep 1989 EP
0 342 937 Nov 1989 EP
0 412 002 Feb 1991 EP
0 455 526 Jun 1991 EP
0 483 993 May 1992 EP
0 514 018 Nov 1992 EP
0 538 611 Apr 1993 EP
0 581 239 Feb 1994 EP
0 600 658 Jun 1994 EP
0 602 568 Jun 1994 EP
0 607 435 Jul 1994 EP
0 614 256 Sep 1994 EP
0 619 283 Oct 1994 EP
0 630 057 Dec 1994 EP
0 661 561 Jul 1995 EP
0 860 913 Aug 1995 EP
0 682 266 Nov 1995 EP
0 711 853 May 1996 EP
0 875 922 Nov 1996 EP
0 777 379 Jun 1997 EP
0 810 666 Dec 1997 EP
0 852 416 Jul 1998 EP
0 881 669 Dec 1998 EP
0 884 757 Dec 1998 EP
0 926 739 Jun 1999 EP
0 957 522 Nov 1999 EP
0 964 259 Dec 1999 EP
0 964 453 Dec 1999 EP
0 993 027 Apr 2000 EP
0 999 600 May 2000 EP
1 001 468 May 2000 EP
1 035 759 Sep 2000 EP
1 043 426 Oct 2000 EP
1 043 765 Oct 2000 EP
1 054 442 Nov 2000 EP
1 069 606 Jan 2001 EP
1 085 319 Mar 2001 EP
1 089 338 Apr 2001 EP
1 109 212 Jun 2001 EP
2 779 843 Dec 1999 FR
1 319 311 Jun 1970 GB
2 335 792 Sep 1999 GB
52-88354 Jul 1977 JP
52-89070 Jul 1977 JP
52-135684 Nov 1977 JP
54-134554 Oct 1979 JP
55-87424 Jul 1980 JP
58-075868 May 1983 JP
58-213412 Dec 1983 JP
60-210018 Oct 1985 JP
60-212018 Oct 1985 JP
61-36981 Feb 1986 JP
61-63015 Apr 1986 JP
61-108187 May 1986 JP
62-245205 Oct 1987 JP
63-34994 Feb 1988 JP
63-131104 Jun 1988 JP
63-198365 Aug 1988 JP
63-289812 Nov 1988 JP
64-50575 Feb 1989 JP
64-52329 Feb 1989 JP
1-102435 Apr 1989 JP
1-179411 Jul 1989 JP
01-196809 Aug 1989 JP
03-149882 Nov 1989 JP
HEI 2-391 Jan 1990 JP
02051220 Feb 1990 JP
3-41783 Feb 1991 JP
3-171617 Jul 1991 JP
03-188619 Aug 1991 JP
5-48072 Feb 1993 JP
5-086477 Apr 1993 JP
05150143 Jun 1993 JP
5-152529 Jun 1993 JP
05 221800 Aug 1993 JP
5-232307 Sep 1993 JP
5-243525 Sep 1993 JP
05243525 Sep 1993 JP
5-291299 Nov 1993 JP
06-069490 Mar 1994 JP
6-232126 Aug 1994 JP
6-291299 Oct 1994 JP
6-334168 Dec 1994 JP
0812494 Jan 1996 JP
10-256154 Sep 1996 JP
9-67193 Mar 1997 JP
9-82913 Mar 1997 JP
10-303396 Nov 1998 JP
10-321943 Dec 1998 JP
11135614 May 1999 JP
11-238683 Aug 1999 JP
11-260835 Sep 1999 JP
01 294594 Nov 1999 JP
11340542 Dec 1999 JP
2000-068466 Mar 2000 JP
2 000 1645 Jun 2000 JP
2000-349278 Dec 2000 JP
2000-351692 Dec 2000 JP
2002-9366 Jan 2002 JP
WO 9210875 Jun 1992 WO
WO 937647 Apr 1993 WO
WO 9403908 Feb 1994 WO
WO 9745827 Dec 1997 WO
WO 9805807 Jan 1998 WO
WO 9820606 May 1998 WO
WO 9914797 Mar 1999 WO
WO 9914804 Mar 1999 WO
WO 9919546 Apr 1999 WO
WO 9963580 Dec 1999 WO
WO 0006812 Feb 2000 WO
WO 0016378 Mar 2000 WO
WO 0033363 Jun 2000 WO
WO 0048239 Aug 2000 WO
WO 0104943 Jan 2001 WO
WO 0116395 Mar 2001 WO
WO 0133585 May 2001 WO
WO 0137330 May 2001 WO
WO 0159814 Aug 2001 WO
WO 0159820 Aug 2001 WO
WO 0159821 Aug 2001 WO
WO 0159837 Aug 2001 WO
WO 02 01648 Jan 2002 WO
WO 0203113 Jan 2002 WO
WO 0203467 Jan 2002 WO
WO 0203480 Jan 2002 WO
WO 0208806 Jan 2002 WO
WO 0209160 Jan 2002 WO
WO 0233385 Apr 2002 WO
WO 0247127 Jun 2002 WO
WO 0250879 Jun 2002 WO
Non-Patent Literature Citations (162)
Entry
Nakagawara et al., Effects of Buffer Layers in Epitaxial Growth of SrTiO3 Thin Film on Si(100), J. Appl. Phys., 78(12), Dec. 15, 1995, pp. 7226-7230.
Suzuki et al., “A Proposal of Epitaxial Oxide Thin Film Structures For Future Oxide Electronics,” Materials Science and Engineering B41, (1996), pp. 166-173.
W. F. Egelhoff et al., “Optimizing GMR Spin Valves: The Outlook for Improved Properties”, 1998 Intl Non Volatile Memory Technology Conference, pp. 34-37.
Wang et al., “Processing and Performance of Piezoelectric Films”, Univ. Of MD, Wilcoxon Research Col, and Motorola Labs, May 11, 2000.
M. Rotter et al., “Nonlinear Acoustoelectric interactions in GaAs/LiNbO3 Structures”, Applied Physics Letters, vol. 75(7), Aug. 15, 1999, pp. 965-967.
K. Sreenivas et al., “Surface Acoustic Wave Propagation on Lead Zirconate Titanate Thin Films,” Appl. Phys. Lett. 52 (9), Feb. 29, 1998, pp. 709-711.
M. Rotter et al., “Single Chip Fused Hybrids for Acousto-Electric and Acousto-Optic Applications,” 1997 Applied Physics Letters, vol. 70(16), Apr. 21, 1997, pp. 2097-2099.
A. Mansingh et al., “Surface Acoustic Wave Propagation in PZT/YBCO/SrTiO3 and PbTiO3/YBCO/SrTiO3 Epitaxial Heterostructures,” Ferroelectric, vol. 224, pp. 275-282, 1999.
S. Mathews et al., “Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures”, Science, vol. 276, Apr. 11, 1997, pp. 238-240.
R. Houdre et al., “Properties of GaAs on Sl Grown by Molecular Beam Epitaxy,” Solid State and Materials Sciences, vol. 16, Issue 2, 1990, pp. 91-114.
S. F. Fang et al., “Gallium Arsenide and Other Compound Semiconductors on Silicon,” J. Appl. Phys., 68(7), Oct. 1, 1990, pp. R31-R58.
Carlin et al., Impact of GaAs Buffer Thickness on Electronic Quality of GaAs Grown on Graded Ge/GeSi/Sl Substrates, Appl. Phys. Letter, vol. 76, No. 14, Apr. 2000, pp. 1884-1886.
Ringel et al., “Epitaxial Integration of III-V Materials and Devices with Si Using Graded GeSi Buffers,” 27th International Symposium on Compound Semiconductors, Oct. 2000.
Zogg et al., “Progress in Compound-Semiconductor-on-Silicon-Heteroepitaxy with Fluoride Buffer Layers,” J. Electrochem Soc., vol. 136, No. 3, Mar. 1998, pp. 775-779.
Gong et al., “Oxide Defined GaAs Vertical-Cavity Surface-Emitting Lasers on Si Substrates,” IEEE Photonics Technology Letters, vol. 12, No. 2, Feb. 2000, pp. 110-112.
Clem et al., “Investigation of PZT//LSCO//Pt//Aerogel Thin Film Composites for Uncooled Pyroelectric IR Detectors,” Met. Res. Soc. Symp. Proc., vol. 541, pp. 661-666, 1999.
Gunapata et al., “Bound-To-Quasl-Bound Quantum-Well Infrared Photodetectors,” NASA Tech Brief, vol. 22, No. 9, Sep. 1998.
Abhay M. Joshi et al., “Monolithic InGaAs-on-silicon Wave Infrared Detector Arrays,” Intn. Society for Optical Engineering, vol. 2999, pp. 211-224.
Bruley et al., “Nanostructure and Chemistry of a (100) MgO/(100) GaAs Interface,” Appl. Phys Lett, 65(5), Aug. 1994, pp. 564-566.
Fork et al., “Epitaxial MgO On Si(001) for Y-Ba-Cu-O Thin Film Growth by Pulsed Laser Deposition,” Appl. Phys Lett., 58(20), May 20, 1991, pp. 2294-2296.
Himpsel et al., “Dialectrics on Semiconductors,” Materials Science and Engineering, B1(1988), pp. 9-13.
Li et al., “Epitaxial La 0.67Sr0.33MnO3 Magnetic Tunnel Junctions,” J. Appl. Phys. 81(8), Apr. 15, 1997, pp. 5509-5511.
O'Donnell et al., “Colossal Magnetoresistance Magnetic Tunnel Junctions Grown by Molecular-Beam Epitaxy,” Appl. Physics Letters, vol. 76, No. 14, Apr. 3, 2000, pp. 1914-1916.
Mikami et al., “Formation of Si Epi/MgO-Al2O2Epi./SiO3/Si and Its Epitaxial Film Quality,” Fundamental Research Laboratories and Microelectronics Laboratories, pp. 31-34, 1983.
T. Asano et al., “An Epitaxial Si/Insulator/Sl Structure Prepared by Vacuum Deposition of CaF2 and Silicon,” Thin Solid Films, vol. 93 (1982), pp. 143-150.
T. Chikyow et al., “Reaction and Regrowth Control of CeO2 on Si(111) Surface for the Silicon-On-Insulator Structure,” Appl. Phys. Lett., vol. 55, No. 8, Aug. 22, 1994, pp. 1030-1032.
J.F. Kang, et al., “Epitaxial Growth of CeO2(100) Films on Si(100) Substrate by Dual Ion Beams Reactive Sputtering,” Solid State Communications, vol. 108, No. 4, pp. 225-227, 1998.
R.A. Morgan et al., “Vertical-Cavity Surface-Emitting Lasers Come of Age.” SPIE, vol. 2683, pp. 18-29.
“Technical Analysis of Qualcomm QCP-800 Portable Cellular Phone (Transmitter Circuitry),” Talus Corporation, Qualcomm QCP-800 Technical Analysis Report, Dec. 10, 1996, pp. 5-8.
Jo-Ey Wong, et al.; “An Electrostatically-Actuated Mems Switch For Power Applications”; IEEE, 2000; pp. 633-638.
T. Mizuno, et al.; “Electron and Hole Mobility Enhancement in Strained-Si MOSFET's on SlGe-on-Insulator Substrates Fabricated by SIMOX Technology”; IEEE Electron Device Letters, vol. 21, No. 5, May 2000; pp. 230-232.
F.M. Buffer, et al.; “Strain-dependence of electron transport in bulk Si and deep-submicron MOSFET's” Computatural Electronics, 2000, Book of Abstracts, IWCE Glasgow 2000, 7th Int'l Workshop on, 2000; pp. 64-65.
S.S. Lu. et al.; “Pielectric field effect transistor (PEFET) using In0.2Ga0.8As/Al0.35Ga0.65As/In0.2Ga0.8As/GaAs Strained layer structure on (111)B GaAs Substrate”; Electronics Letters, 12™ Ma 1994, vol. 30, No. 10; pp. 823-825.
Kihong Kim, et al.“On-Chip Wireless Interconnection with Integrated Antennas”; 2000 IEEE; pp. 20.2.1-20.3.4.
G. Passiopoulos, et al.; “V-Band Single Chip, Direct Carrier BPSK Modulation Transmitter With Integrated Patch Antenna”; 1998 IEEE MTT-S Digest; pp. 305-308.
Mau-Chung Frank Chang, et al.; “RF/Wireless Interconnect for Inter- and Intra-Chip Communications”; Proceedings of the IEEE, vol. 89, No. 4, Apr. 2001; pp. 456-466.
The Electronic Industry Report; Prismark; 2001; pp. 111-120.
J.K. Abrokwah, et al.; “A Manufacturable Complementary GaAs Process”; GaAs IC Symposium, IEEE, 1993; pp. 127-130.
H. Nagata, “A Preliminary Consideration of the Growth Behaviour of CeO2, SrTiO3 and SrVO3 Films on Si Substrate,” Thin Solid Films, 224, 1993, pp. 1-3.
Nagata et al., “Heteroepitaxial Growth of CeO2(001) Films on Si(001) Substrates by Pulsed Laser Deposition in Ultrahigh Vacuum,” Jpn. Jour. Appl. Phys., vol. 30, No. 6B, Jun. 1991, pp. L1136-L1138.
Kado et al., “Heleroepitaxial Growth of SrO Films on Si Substrates,” J. Appl. Phys., 61(6), Mar. 15, 1987, pp. 2398-2400.
H. Ishiwara et al., “Epitaxial Growth of Perovskile Type Oxide Films on Substrates”; Materials Research Symposium Proceedings, vol. 220, pp. 595-600, Apr. 29—May 3, 1991.
J.K. Abrokwah, et al.; “A Manufacturable High-Speed Low-Power Complementary GaAs Process”; Extended Abstracts of the 1994 International Conference on Solid Devices and Materials, Yokohama, 1994, pp. 592-594.
C.J. Palmslrom et al.; “Stable and Epitaxial Contacts to III-V Compound Semiconductors”; Contacts to Semiconductors Fundamentals and Technology: Noyles Publications, 1993; pp. 67-150.
Jayshri Sabarinathat, et al.; “Submicron three-dimensional infrared GaAs/AlxOy-based photonic crystal using single-step epitaxial growth”; Applied Physics Letters. vol. 78, No. 20, May 14, 2001; pp. 3024-3026.
Philip Ball; “The Next Generation of Optical Fibers”; Technology Review. May 2001; pp. 55-61.
John D. Joannopoulos, et al.; “Molding the Flow of Light”; Photonic Crystals; Princeton University Press, 1995.
Thomas F. Krauss, et al.; “Photonic crystals in the optical regime—past, present and future”; Progress in Quantum Electronics 23 (1999) 51-96.
G. H. Jin, et al.; “PLZT Film Waveguide Mach-Zehnder Electrooptic Modulator”; Journal of Lightwave Technology, vol. 18, No. 5. Jun. 2000; pp. 807-812.
D.E. Aspnes, et al.; “Steps on (001) silicon surfaces”; J. Vac Sci. Technol. B, vol. 5, No. 4, Jul./Aug. 1987; pp. 939-944.
D.M. Newns, et al.; “Mott transilion field effect transistor”; Applied Physics Letters, vol. 73, No. 6, Aug. 10, 1998, pp. 780-782.
Lucent Technologies, Inc. “Arrayed Waveguide Grating Multiplexer/Demultiplexer”; Jan. 2000; 4 pages.
Hisashi Schichijo, et al.; “Co-Integration of GaAs MESFET and Si CMOS Circuits”; IEEE Electron Device Letters, vol. 9, No. 9, Sep. 1988; pp. 444-446.
H. Shichijo, et al.: “GaAs MESFET and Si CMOS Cointegration and Circuit Techniques”; 1988 IEEE; GaAs IC Symposium 239-242.
H. Shichijo, et al.: “Monolithic Process for Co-Integration of GaAs and Sllicon Circuits”; 1988 IEEE; pp. 778-781.
Z.H. Zhu, et al. “Growth of InGaAs multi-quantum wells at 1.3 m wavelength on GaAs compliant substrates”; Applied Physics Letters, vol. 72, No. 20, May 18, 1998; pp. 2598-2600.
Kurt Eisenbeiser, et al.; “Metamorphic InAlAs/InGaAs Enchancement Mode HEMT's on GaAs Substrates”; IEEE Electron Device Letters, vol. 20, No. 10, Oct. 1999; pp. 507-509.
Tomonori NAGASHIMA, et al.; “Three-Terminal Tandem Solar Cells With a Back-Contact Type Bottom Cell ” Higashifuji Technical Center, Toyota Motor Corporation; 4 pages.
James Schellenberg, et al.; “Low-Loss, Planar Monolithic Baluns for K/Ka-Band Applications”; 1999 IEEE MTT-s Digestp pp. 1733-1736.
Arnold Leitner et al; “Pulsed Laser Deposition of Superconducting Strontium Titanate Thin-Films”; ; Session K11-Thin Films and Borocarbides; Mixed Session, Wednesday Afternoon; Mar. 19 1997; Room 1202 B, Conv. Center (Abstract).
R.D. Vispute; “High quality optoelectronic grade apitaxial AlN films on -Al203, Si and 6H-SiC by pulsed laser deposition”; Thin Solid Films 299 (1997), pp. 94-103.
T. Warren Weeks, et al.; “GaN thin films deposited via organometallic vapor phase epitaxy on (6H)-SiC(0001) using high-temperature monocrystalline AlN buffer layers” 320 Applied Physics Letters, vol. 67, No. 3, Jul. 17, 1995, pp 1401-1403.
Z. Yu, et al.; “Epitaxial oxide thin films on Sl(001)”; J. Vac. Sci. Technol. B. vol. 18, No. 4, Jul./Aug. 2000; pp. 2139-2145.
Gentex Corporate Website; Photoelectric Smoke Detectors—How They Work; 2001.
Jeffrey B. Casady, et al.; “A Hybrid 6H-SiC Temperature Sensor Operational from 25 C to 500 C”; IEEE Transactions On Components, Packaging, And Manufacturing Technology—Part A, vol. 19, No. 3, Sep. 1996; pp. 416-422.
Ronald W. Waynant, et al.; “Optoelectronic Integrated Circuits”; Electro-Optics Handbook, McGraw-Hill, Inc., 1994; Chapter Twenty Seven.
Antonio Mecozzi, et al.; “The Roles of Semiconductor Optical Amplifiers in Optical Networks”; Optics & Photonics News; Mar. 2001; pp. 37-42.
D.A. Francis, et al.; “A single-chip linear optical amplifier”; OFC, 2001; Mar. 17-22, 2001.
G. Vogg et al.; “Epitaxial alloy films of zintl-phase Ca(Si1-xGex)2”, Journal of Crystal Growth 223 (2001); pp. 573-576.
Peter S. Guilfoyle, et al.; “Optoelectronic Architecture for High-Speed Switching and Processing Applications”; 1998 The Photonics Design and Applications Handbook; pp. H-399-H-406.
Gerald B. Stringfellow; “Organometallic Vapor-Phase Epitaxy: Theory and Practice”; Departments of Materials Science and Engineering and Electrical Engineering, University of Utah; Academic Press, 1989.
M.A. Herman, et al.; “Molecular Beam Epitaxy Fundamentals and Current Status”; Springer-Verlag Berlin Heidelberg, 1989, 1996.
“Integration of GaAs on Si Using a Spinel Buffer Layer”, IBM Technical Bulletin, vol. 30, No. 6, Nov. 1987, p. 365.
“GainAs Superconducting FET,” IBM Technical Bulletin, vol. 36, No. 8, Aug. 1993, p. 655-656.
“Epitaxial 3d Structure Using Mixed Spinels,” IBM Technical Bulletin vol. 30, No. 3, Aug. 1987, p. 1271.
Moon et al., “Roles of Buffer Layers in Epitaxial Growth of SrTiO3 Films on Silicon Substrates,” Japan J of Appl. Phys., vol. 33, Mar. 1994, pp. 1472-1477.
Yodo et al., GaAs Heteroepitaxial Growth on Sl Substrates with Thin Si Interlayers in situ Annealed at High Temperatures, 8257b Journal of Vacuum Science & Technology, 1995 May/Jun., vol. 13, No. 3, pp. 1000-1005.
Cuomo et al., “Substrate Effect on the Superconductivity of YBa2Cu3O7 Thin Films,” AIP Conference 1988, pp. 141-148.
McKee et al., “Crystalline Oxides on Silicon: The First Five Monolayers,” Physical Review Letters, vol. 81, No. 14, Oct. 1998, pp. 3014-3017.
McKee et al., “Molecular Beam Epitaxy Growth of Epitaxial Barium Silicide, Barium Oxide, and Barium Titanate on Silicon,” 1991 American Institute of Physics, pp. 782-784, Aug. 13, 1991.
Tambo et al., Molecular Beam Epitaxy Growth of SrTiO3 Films on Sl(100)-2x1 with SrO Buffer Layer, Jpn. J. Appl. Phys., vol. 37, 1996, pp. 4454-4459.
McKee et al., “The MBE Growth and Optical Quality of BaTiO3 and SrTiO3 Thin Films on MgO,” Mat. Res. Soc. Symp. Proc., vol. 341, Apr. 1994, pp. 309-314.
McKee et al., “BaSi2 and Thin Film Alkaline Earth Silicides,” Appl. Phys. Lett., 63 (20), Nov. 1993, pp. 2818-2820.
McKee et al., “Surface Structures and the Orthorhombic Transformation of Thin Film BaSi2 on Silicon,” Mat. Res. Soc. Symp. Proc., vol. 221, pp. 131-136.
Brain A. Floyd, et al.; “The projected Power Consumption of a Wireless Clock Distribution System and Comparison to Conventional Distribution Systems”; IEEE, 1999; pp. IITC99-249-IITC99-250.
Mori et al., “Epitaxial Growth of SrTiO3 Films on Si(100) Substrates Using a Focused Electron Beam Evaporation Method,” Jpn. J. of Apl. Phys., vol. 30, No. 8A, Aug. 1991, pp. L1415-L1417.
Moon et al., “Growth of Crystalline SrTiO3 Films on Si Substrates Using Thin Fluoride Buffer Layers and Their Electrical Properties,” Jpn. J. of Appl. Phys., vol. 33, (1994), pp. 5911-5916.
Farrow et al., “Heteroepitaxy of Dissimilar Materials,” Mat. Res. Soc. Symposium Proceedings, vol. 221, pp. 29-34, Apr. 29—May 2, 1991.
Ishiwara et al., “Heteroepitaxy of Silicon: Fundamentals, Structure, and Devices,” Mat. Res. Soc., Symposium Proceedings, vol. 116, pp. 369-374, Apr. 5-8, 1988.
Douglas B. Chrisey, et al; Pulsed Laser Deposition of Thin Films; pp. 273-285.
B.A. Block, et al; “Photoluminescence properties of Er3-doped BaTiO3 thin films”; Appl. Phys. Lett. 65 (1), Jul. 4, 1994, pp. 25-27.
Kevin J. Chen et al; “A Novel Ultrafast Functional Device: Resonant Tunneling High Electron Mobility Transistor”; Electron Devices Meetingk 1996; IEEE Hong Kong; Jun. 29, 1996; pp. 60-63, XP010210167.
Wenhua Zhu et al.; “Molecular Beam Epitaxy of GaAs on Si-on-Insulator”; 320 Applied Physics Letters 59(1991) Jul. 8 No. 2; pp. 210-212.
Umesh K. Mishra et al; “Oxide Based Compound Semiconductor Electronics”; Electron Devices Meeting; 1997; Technical Digest, International; Washington, D.C.; Dec. 7-10, 1997; pp. 545-548.
J.M. Daughlon et al.; “Application of Spin Dependent Transport Materials”; J. Phys. D. Appl. Phys. 32(1999) R169-R177.
Wei Zhang et al.; “Stress Effect and Enhanced Magnetoresistance in La0.67Ca0.33MnO3-8 Films”; Physical Review, B. Condensed Matter; American Institute of Physics; vol. 58, No. 21, Part 1; Dec. 1, 1998; pp. 14143-14146.
Q.-Y. Tong et al.; “IOS-anew type of materials combination for system-on-a chip preparation”; 1999 IEEE International SOI Conference, Oct. 1999; pp. 104-105.
T. Kanniainen et al.; “Growth of Dielectric 1hlo2/Ta205 Thin Film Nanolaminate Capacitors By Atomic Layer Epitaxy”; Electrochemical Society Proceedings, U.S. Electrochemical Society; Pennington, N.J.; Aug. 31, 1997; pp. 36-46.
Myung Bok Lee; “Heteroepitaxial Growth of BaTio3 Films on Si by Pulsed Laser Deposition”; Applied Physics Letters; Mar. 13, 1995; pp. 1331-1333.
Myung Bok Lee; “Formation and Characterization of Epitaxial TiO2 and BaTiO3/TiO2 Films on Si Substrate”; Japan Journal Applied Physics Letters; vol. 34; 1995; pp. 808-811.
Gilbert Lecarpentier et al.; “High Accuracy Machine Automated Assembly for Opto Electronics”; 2000 Electronic Components and Technology Conference; pp. 1-4.
R. Ramesh; “Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O Heterostructures on Silicon via Template Growth”; 320 Applied Physics Letters; 63(1993); Dec. 27; No. 26; pp. 3592-3594.
K. Eisenbeiser; “Field Effect Transistors with SrTiO3 Gate Dielectric on Si”; Applied Physics Letters; vol. 76, No. 10; Mar. 6, 200; pp. 1324-1326.
Stephen A. Mass; “Microwave Mixers”; Second Edition; 2pp.
Douglas J. Hamilton er al.; “Basic Integrated Circuit Engineering”; pp. 2; 1975.
Takeshi Obata; “Tunneling Magnetorestitance at Up to 270 K in La0.8Sr0.2MnO3/SrTiO3/La0.8Sr0.2MnO3 Junctions with 1.6-nm-Thick Barriers”; Applied Physics Letters; vol. 74, No. 2; Jan. 11, 1999; pp. 290-292.
Wel Zhang et al.; “Enhanced Magnetoresistance in La-Ca-Mn-O Films on Si Substrates Using YbaCuO/CeO2 Heterostructures”; Physica C: vol. 282-287, No. 2003; Aug. 1, 1997; pp. 1231-1232.
Shogo Imada et al; “Epitaxial Growth of Ferroelectridc YmnO3 Thin Films on Si (111) Substrates by Molecular Beam Epitaxy”; Jpn. J. Appl. Phys. vol. 37 (1998); pp. 6497-6501; Part 1, No. 12A, Dec. 1998.
Ladislav Pust et al.; “Temperture Dependence of the Magnetization Reversal in Co(fcc)-BN-Co(poly hcp) Structures”; Journal of Applied Physics; vol. 85, No. 8; Apr. 15, 1999; pp. 5765-5767.
C. Martinez; “Epitaxial Metallic Nanostructures on GaAs”; Surface Science; vol. 482-485; pp. 910-915; 2001.
Wen-Ching Shih et al.; “Theoretical Investigation of the SAW Properties of Ferroelectric Film Composite Structures”; IEEE Transaction of Ultrasonics, Ferroelectrics, and Frequency Control; vol. 45, No. 2; Mar. 1998; pp. 305-316.
Zhu Dazhong et al.; “Design of ZnO/SiO2/Si Monolithic Integrated Programmable SAW Filter”; Proceedings of Fifth International Conference on Solid-State and Integrated Circuit Technology; 21-23; Oct. 1998; pp. 826-829.
Kirk-Othmer Encyclopedia of Chemical Technology; Fourth Edition, vol. 12; Fuel Resources to Heat Stabilizers; A Wiley-Interscience Publication: John Wiley & Sons.
Joseph W. Goodman et al; “Optical Interconnections For VLSI Systems”; Proceedings of the IEEE, vol. 72, No. 7 Jul. 1984.
Fathimulla et al.; “Monolithic Integration Of InGaAs/InAlAs MODFETs and RTDs on inP-bonded-to Si SUBSTRATE”; Fourth International Conference on indium Phosphide and Related Materials, Newport, RI, USA; Apr. 21-24, 1992 ; pp. 167-170; XP000341253; IEEE, New York, NY, USA; ISBN; 0-7803-0522-1.
H. Takahashi et al.; “Arrayed-Waveguide Grating For Wavelength Division Multi/Demultiplexer With Nanometre Resolution”; Electronics Letters; vol. 28, No. 2, Jan. 18, 1990.
Pierret, R.F.; “1/J-FET and MESFET”; Field Effect Devices; MA, Addison-Wesley; 1990; pp. 9-22.
M. Schreiter, et al.; “Sputtering of Self-Polarized PZT Films for IR-Detector Arrays”; 1998 IEEE; pp. 181-185.
Hideaki Adachi et al., “Sputtering Preparation of Ferroelectric PLZT Thin Films and Their Optical Applications”; IEEE Transactions of Ultrasonics, Ferroelectrics and Frequency Control, vol. 38, No. 6, Nov. 1991.
A.J. Moulson et al.; “Electroceramics Materials Properties Applications”; Chapman & Hall; pp. 366-369.
P.A. Langiahr et al.; “Epitaxial Growth and Structure of Cubic and Pseudocubic Perovskite Films on Perovskite Substrates”; Mat. Res. Soc. Symp. Proc., vol. 401; 1995 Materials Research Society; pp. 109-114.
Wang et al.; “Depletion-Mode GaAs MOSFETs with Negligible Drain Current Drift and Hysterasis”; Electron Devices Meeting, 1998, IEDM '98 Technical Digest; pp. 67-70.
Ben G. Streetman; “Solid State Electronic Devices”; 1990, Prentice Hall; Third Edition; pp. 320-322.
A.Y Wu et al.; “Highly Oriented (Pb,La)(ZR,Ti)O3 Thin Films on Amorphous Substrates”; IEEE, 1992; pp. 301-304.
Timothy E. Glassman et al.; “Evidence for Cooperative Oxidation of MoCVD Precursors Used in BaxSr1-x TiO3 Film Growth”; Mat. Res. Soc. Symp. Proc. vol. 446, 1997 Materials Research Society; pp. 321-326.
S.N. Subbarao et al.; “Monolithic PiN Photodetector and FET Amplifier on GaAs-os-Si”; IEEE; GaAs IC Symposium-163-166; 1989.
T.A. Langdo et al.; “High Quality Ge on Si by Epitaxial Necking”; Applied Physics Letters; vol. 76, No. 25; pp. 3700-3702; Jun. 19, 2000.
Chenning Hu et al.; Solar Cells From Basics to Advanced Systems; McGraw-Hill Book Company; 1983.
O.J. Painter et al; “Room Temperature Photonic Crystal Defect Lasers at Near-Infrared Wavelengths in inGaAsp”; Journal of Lightwave Technology, vol. 17, No. 11; Nov. 1999.
C. Donn et al.; “A 16-Element, K-Band Monolithic Active Receive Phased Array Antenna”; Antennas and Propagation Society International Symposium, 1988; pp. 188-191, vol. 1; Jun. 6-10, 1988.
Don W. Shaw; “Epitaxial GaAs on Sl: Progress and Potential Applications”; Mat. Res. Soc. Symp. Proc.; pp. 15-30; 1987.
G.J.M. Dormans, et al.; “PbTiO/3Thin Films Grown by Organometallic Chemical Vapour Deposition”; Third International Symposium on Integrated Ferroelectrics; Apr. 3-5, 1991 (Abstract).
P.J. Borrelli et al.; “Compositional and Structural Properties of Sputtered PLZT Thin Films”; Ferroelectric Thin Films II Symposium; Dec. 2-4, 1991 (Abstract).
Ranu Nayak et al; “Enhanced acousto-optic diffraction efficiency in a symmetric SrRiO3/BaTiO3/SrTiO3 thin-film heterostructure”; Nov. 1, 2000; vol. 39, No. 31; Applied Optics; pp. 5847-5853.
Ranu Nayak et al; “Studies on acousto-optical interaction in SrTiO3/BaTiO3/SrTiO3 epitaxial thin film heterostructures”; J. Phys. D: Appl. Phys. 32 (1999) 280-387.
S.K. Tewksbury et al.; “Cointegration of Optoelectronics and Submicron CMOS”; Wafer Scale Integration; 1993; Proceedings, Fifth Annual IEEE; Jan. 20, 1993; pp. 358-367.
V. Kaushik et al.; “Device Characteristics of Crystalline Epitaxial Oxides on Silicon”; Device Research Conference, 2000; Conference Digest 58th DRC; pp. 17-20; Jun. 19-21, 2000.
Katherine Derbyshire; “Prospects Bright for Optoelectronics Volume, Cost Drive Manufacturing for Optical Applications”; Semiconductor Magazine; vol. 3, No. 3; Mar. 2002.
Alex Chedlak et al; “Integration of GaAs/Sl with Buffer Layers and Its Impact on Device Integration”; TICS 4, Prof. Sands. MSE 225, Apr. 12, 2002; pp. 1-5.
S.A. Chambers et al.; “Band Discontinuities at Epitaxial SrTiO3/Si(001) Heterojunctions”; Applied Physics Letters; vol. 77, No. 11; Sep. 11, 2000; pp. 1662-1664.
H. Wang et al.; “GaAs/GaAlAs Power HBTs for Mobile Communications”; Microwave Symposium Digest; 1993 IEEE; vol. 2.; pp. 549-562.
Y. Ota et al.; “Application of Heterojunction FET to Power Amplifier for Cellular Telephone”; Electronics Letters; May 26, 1994; vol. 30, No. 11; pp. 906-907.
Keiichi Sakuno et al; “A 3.5W HBT MMIC Power Amplifier Module for Mobile Communications”; IEEE 1994; Microwave and Millimeter-Wave Monolithic Circuits Symposium; pp. 63-66.
Mitsubishi Semiconductors Press Release (GaAs FET's) Nov. 8, 1999 pp. 1-2.
R.J. Matyi et al; “Selected Area Heteroepitaxial Growth of GaAs on Silicon for Advanced Device Structures”; 2194 Thin Solid Films; 181 (1989) Dec. 10; No. 1; pp. 213-225.
K. Nashimolo et al; “Patterning of Nb, LaOnZr, TiO3 Waveguides for Fabricating Micro-Optics Using Wet Etching and Solid-Phase Epitaxy”; Applied Physics Letters; vol. 75, No. 8; Aug. 23, 1999; pp. 1054-1056.
Bang-Hung Tsao et al; “Sputtered Barium Titanate and Barium Strontium Titanate Films for Capacitor Applications”; Applications of Ferroelectrics 2000; Proceedings of the 2000 12th International Symposium on vol. 2; pp. 837-840.
Man Fai Ng et al; “Heteroepitaxial growth of lanthanum aluminate films derived from mixed metal nitrates”; Journal of Materials Research; vol. 12, No. 5; pp. 1306.
Yuji Matsumoto et al.; “Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide”; Science; Feb. 2, 2001; vol. 291; pp. 854-858.
S.A. Chambers et al.; “Epitaxial Growth and Properties of Ferromagnetic Co-Doped TiO2 Anatase”; Applied Physics Letters; vol. 79, No. 21; Nov. 19, 2002; pp. 3467-3469.
Charles Kittel: “Introduction to Solid State Physics”; John Wiley & Sons, Inc. Fifth Edition; pp. 416.
Chyuan-Wei Chen et al.; “Liquid-phase epitaxial growth and characterization of InGaAsP layers grown on GaAsP substrates for application to orange light-emitting diodes”; 931 Journal of Applied Physics; 77 (1995) Jan. 15, No. 2; Woodbury, NY, US; pp. 905-909.
W. Zhu et al.; “Oriented diamond files grown on nickel substrates”; 320 Applied Physics Letters; 63(1993) Sep., No. 12, Woodbury, NY, US; pp. 1640-1642.
M. Schreck et al. : “Diamond/Ir/SrTiO3: A material combination for improved heteroepitaxial diamond films”; Applied Physics Letters: vol. 74, No. 5; Feb. 1, 1999; pp. 650-652.
Yoshihiro Yokata et al. ; “Cathodoluminescence of boron-doped heteroepitaxial diamond films on platinum”; Diamond and Related Materials 8(1999) ; pp. 1587-1591.
J.R. Busch et al. : “Linear Electro-Optic Response In Sol-Gel PZT Planar Wavegide” : Electronic Letters: Aug. 13, 1992; vol. 28, No. 17; pp. 1591-1592.
R. Drooped et al: “Epitaxial Oxide Films on Silicon: Growth, Modeling and Device Properties” ; Mat. Res. Soc. Symp. Proc. vol. 519; 2000 Materials Research Society; pp. 155-165.
H. Ohkubo et al. : “Fabrication of High Quality Perovskite Oxide Films by Lateral Epitaxy Verified with RHEED Oscillation” ; 2419A Int. Conf. on Solid State Devices & Materials, Tsukuba, Aug. 26-28 (1992); pp. 457-459.
Lin Li: “Ferroelectric/Superconductor Heterostructures” ; Materials Science and Engineering; 29 (2000) pp. 153-181.
I. Fan et al.; “Dynaamic Beam Switching of Vertical-Cavity Surface-Emitting Lasers with Integrated Optical Beam Routers”; IEEE Photonics Technology Letters; vol. 9, No. 4; Apr. 4, 1997; pp. 505-507.
Y. O. Xu. et al.: “(Mn, Sb) dropped-Pb(Zr,Ti)03 infrared detector arrays” ; Journal of Applied Physics; vol. 88, No. 2; Jul. 15, 2000; pp. 1004-1007.
Kiyoko Kato et al. ; “Reduction of dislocations in InGaAs layer on GaAs using epitaxial lateral overgrowth” ; 2300 Journal of Crystal Growth 115 (1991) pp. 174-179; Dec. 1991.