1. Field of the Invention
The present invention relates to methods for fabricating semiconductor packages, and more particularly, to a method for fabricating a semiconductor package having an interposer.
2. Description of Related Art
Flip-chip technologies facilitate to reduce chip packaging sizes and shorten signal transmission paths and therefore have been widely used for chip packaging. Various types of packages such as chip scale packages (CSPs), direct chip attached (DCA) packages and multi-chip module (MCM) packages can be achieved through flip-chip technologies.
In a flip-chip packaging process, a big CTE (Coefficient of Thermal Expansion) mismatch between a chip and a packaging substrate adversely affects the formation of joints between conductive bumps of the chip and contacts of the packaging substrate, thus easily resulting in delamination of the conductive bumps from the packaging substrate. On the other hand, along with increased integration of integrated circuits, a CIE mismatch between a chip and a packaging substrate induces more thermal stresses and leads to more serious warpage, thereby reducing the product reliability and easily resulting in failure of a reliability test.
In view of the above-described drawbacks, an interposer made of a semiconductor material is provided. That is, a through silicon interposer is disposed between a packaging substrate and a semiconductor chip. Since the through silicon interposer is close in material to the semiconductor chip, the above-described drawbacks caused by a CTE mismatch can be effectively overcome.
For example, the packaging substrate 13 generally has a minimum line width/pitch of 12/12 um. If the semiconductor chip 11 is directly mounted on the packaging substrate 13, when the I/O count of the semiconductor chip 11 increases, the area of the packaging substrate 13 must also be increased to provide sufficient electrical connection with the semiconductor chip 11. On the other hand, in the package structure of
However, in such a package structure, warpage of the through silicon interposer easily occurs to cause solder bridging (as shown in
Therefore, there is a need to provide a method for fabricating a semiconductor package so as to overcome the above-described drawbacks.
In view of the above-described drawbacks, the present invention provides a method for fabricating a semiconductor package, which comprises the steps of: providing a carrier having at least a semiconductor chip disposed thereon, wherein the semiconductor chip has a first surface attached to the carrier, and a second surface opposite to the first surface and having a plurality of first conductive elements formed thereon; disposing an interposer on the first conductive elements, wherein the interposer has opposite third and fourth surfaces, the interposer is disposed on the first conductive elements via the third surface thereof, and a plurality of conductive posts are embedded in the interposer and electrically connected to the third surface of the interposer; forming an encapsulant on the carrier for encapsulating the semiconductor chip and the interposer, wherein the encapsulant has a lower surface adjacent to the carrier and an upper surface opposite to the lower surface; removing a portion of the encapsulant from the upper surface thereof and a portion of the interposer from the fourth surface thereof so as to expose an end of each of the conductive posts; and removing the carrier.
After removing portions of the interposer and the encapsulant, the method can further comprise forming a redistribution layer on the fourth surface of the interposer and the upper surface of the encapsulant, wherein the redistribution layer is electrically connected to the conductive posts. Further, the method can comprise forming a plurality of second conductive elements on the redistribution layer.
After removing portions of the interposer and the encapsulant, the method can further comprise performing a singulation process. The encapsulant can be made of a molding compound or a dry film, and portions of the interposer and the encapsulant can be removed by grinding.
In the above-described method, the first conductive elements and the second conductive elements can be solder balls, and the carrier can be a tape.
In the above-described method, the conductive posts can be electrically connected to a circuit layer formed on the third surface of the interposer, and the semiconductor chip can be a known good die.
Therefore, by encapsulating the interposer and the semiconductor chip with the encapsulant, the present invention can effectively prevent warpage of the interposer and improve the connection quality between the interposer and the semiconductor chip. Further, by forming the fan-out redistribution layer outside the interposer, the present invention can effectively reduce the size of the interposer, increase the I/O count and reduce the overall cost. Furthermore, the present invention can reconfigure a plurality of semiconductor chips in a semiconductor package so as to increase the overall yield.
The following illustrative embodiments are provided to illustrate the disclosure of the present invention, these and other advantages and effects can be apparent to those in the art after reading this specification.
It should be noted that all the drawings are not intended to limit the present invention. Various modifications and variations can be made without departing from the spirit of the present invention. Further, terms such as “upper”, “lower”, “a” etc. are merely for illustrative purposes and should not be construed to limit the scope of the present invention.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Therefore, by encapsulating the interposer and the semiconductor chip with the encapsulant, the present invention can effectively prevent warpage of the interposer and improve the connection quality between the interposer and the semiconductor chip. Further, by forming the fan-out redistribution layer outside the interposer, the present invention can effectively reduce the size of the interposer, increase the I/O count and reduce the overall cost. Furthermore, the present invention can reconfigure a plurality of semiconductor chips in a semiconductor package so as to increase the overall yield.
The above-described descriptions of the detailed embodiments are only to illustrate the preferred implementation according to the present invention, and it is not to limit the scope of the present invention. Accordingly, all modifications and variations completed by those with ordinary skill in the art should fall within the scope of present invention defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
102145088 | Dec 2013 | TW | national |