This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2011-076443, filed Mar. 30, 2011, the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to a pattern forming method used in a semiconductor device manufacturing process, hard disk manufacturing process, photo array manufacturing process or the like.
Recently, in a fabrication of devices such as semiconductor devices, HDDs and photo arrays, an imprinting method, which transfer a mold (template) of an original plate onto a substrate to be processed, has been attracting attention. In the imprinting method, first, a template having formed a concave-shaped pattern thereon is pressed down onto filling material applied on a substrate such that the template pattern is filled with the filling material, and after the filling material is cured, the template is separated from the filling material to form a pattern on the substrate.
However, in the pattern forming which uses this imprinting method, the filling rate of the filling material becomes low in some cases.
Embodiments are explained below with reference to the drawings.
In general, according to one embodiment, a method for forming a pattern is disclosed. The method includes forming a film on a substrate to be processed. The method further includes forming gaps in a surface of the film. The method further includes supplying a photo-curable imprinting agent on the film surface in which the gaps are formed. The method further includes contacting the photo-curable imprinting agent with a template. Here, the template includes a concave pattern, and the contacting is configured to fill the concave pattern with the photo-curable imprinting agent. The method further includes applying light to the photo-curable imprinting agent while the photo-curable imprinting agent is being contacted with the template. Here, the photo-curable imprinting agent is cured by the light applied thereto. The method further includes separating the template from the substrate. As a result a pattern of the cured photo-curable imprinting agent is formed on the substrate.
According to another embodiment, a method for forming a pattern is disclosed. The method includes forming a first film on a substrate to be processed. The method further includes forming a second film on the first film. The method further includes forming gaps in a surface of the second film. The method further includes supplying a photo-curable imprinting agent on the surfaces of the first and second films. The method further includes contacting the photo-curable imprinting agent with a template. Here, the template includes a concave pattern, and the contacting is configured to fill the concave pattern with the photo-curable imprinting agent. The method further includes applying light to the photo-curable imprinting agent while the photo-curable imprinting agent is being contacted with the template. Here, the photo-curable imprinting agent is cured by the light applied thereto. The method further includes separating the template from the substrate. As a result, a pattern of the cured photo-curable imprinting agent is formed on the substrate.
A pattern forming method by imprinting method in accordance with a first embodiment is explained with reference to
First, an imprint apparatus used for the pattern forming method in accordance with the present embodiment is schematically explained.
An imprint apparatus 100 comprises a substrate chuck 104 configured to fix a substrate 200 (substrate to be processed) with a main surface (pattern forming surface) thereof set up, a substrate stage 103 configured to move the substrate chuck 104 three-dimensionally, a photo-curable imprinting agent coating module 105 for selectively supplying a photo-curable imprinting agent (filling material) onto the substrate 200, a template holding module 108 for holding an imprinting template 300 having a concave pattern formed thereon with a concave pattern forming surface thereof set down, and a light source (for example, UV lamp) 106 that applies light used for curing the photo-curable imprinting agent via the template 300. The imprinting template 300 is formed by, for example, forming a concave pattern in a transparent quartz substrate by plasma etching. The substrate 200 and template 300 are set in the apparatus when the apparatus 100 of
Next, the pattern forming method using the imprint apparatus is explained with reference to
First, as shown in
Further, as shown in
Thereafter, the substrate 200 is moved into the apparatus 100 shown in
Then, as shown in
Since the crack portion (gap) of the surface of the second SOG film 225 is formed with hydrophile property by the plasma process, a hydrophobic photo-curable imprinting agent 230 containing a hydrophobic component does not penetrate into the cracks formed in the surface of the second SOG film 225.
Further, as shown in
In the conventional imprinting lithography, in the initial process of filling, an atmosphere existing between the concave pattern of the template and the photo-curable imprinting agent is introduced into a space of the concave pattern, the filling pressure rises due to the capillary phenomenon and the introduced atmosphere is compressed. Since the conventional process of filling the photo-curable imprinting agent is performed while air in the concave pattern is being compressed, a relatively long time is required for complete filling.
According to the pattern forming method of the present embodiment, a part of an atmosphere introduced in the space of the concave pattern is diffused into the photo-curable imprinting agent 230 at the time of filling the photo-curable imprinting agent 230 in the concave pattern of the template 300 and can be discharged into a space of the second SOG film 225 under the photo-curable imprinting agent 230. Therefore, the photo-curable imprinting agent 230 can be easily filled in the concave pattern of the template 300 and the filling time can be greatly reduced.
After the photo-curable imprinting agent 230 is filled in the template pattern, the substrate 200 and template pattern are aligned. After the alignment, light from the light source 106 (not shown in the drawing) is applied to the photo-curable imprinting agent 230 via the template 300 to cure the photo-curable imprinting agent 230. As the light source 106, a lamp that emits light in the wavelength range of 300 nm to 400 nm is used. It is required for the wavelength of the light source 106 to include the wavelength that permits the photo-curable imprinting agent 230 to absorb light and exhibit a cross-linking reaction and, for example, one of a high pressure mercury lamp, tungsten lamp, UV-LED and ultraviolet laser can be selected according to the absorbing range of the photo-curable imprinting agent 230.
Next, as shown in
Subsequently, as shown in
Further, as shown in
In the pattern forming method of the present embodiment, a laminated film is formed by sequentially laminating the first SOG film 210 and second SOG film 220 on the substrate 200. However, if shallow cracks can be formed in an SOG film, a single-layered SOG film may be formed on the substrate 200 and shallow cracks may be formed in the surface of the SOG film.
A pattern forming method by imprinting method in accordance with a second embodiment is explained with reference to
The pattern forming method of the present embodiment using the imprint apparatus 100 shown in
First, as shown in
Next, as shown in
Further, as shown in
The second coat-type carbon film 420 is a film that includes hydrogen and whose hydrogen content is lower than carbon content. By subjecting the surface of the second carbon film 420 to a plasma process by using fluorocarbon-series etching gas, hydrogen in the surface of the carbon film 420 is replaced by fluorine and the volume of the carbon film 420 expands. Gaps can be formed in the carbon film 420 by expansion of the volume.
Subsequently, as shown in
As a photo-curable imprinting agent (filling material) that fills the concave pattern of the template 300, siloxane-series resin is used. Resin that can be used as a photo-curable imprinting agent in the present embodiment is not limited to siloxane-series resin, and another photo-curable imprinting agent can be used if it is a photo-curable imprinting agent having a selective etching ratio with respect to the first and second coat-type carbon films.
First, after the substrate 200 is held on the substrate chuck 104 (not shown in the drawing) with the main surface thereof set up, the substrate 200 is moved to a portion directly below photo-curable imprinting agent coating module 105 and a photo-curable imprinting agent 430 is coated and formed in a pattern forming region of a second coat-type carbon film 425 on the substrate 200. The photo-curable imprinting agent 430 is coated by scanning the photo-curable imprinting agent coating module 105. Further, the photo-curable imprinting agent 430 can be coated in a liquid drop form.
Since the crack portion (gap) formed in the surface of the second coat-type carbon film 425 is formed with hydrophobic property, a hydrophilic siloxane-series photo-curable imprinting agent 430 containing a hydrophilic component does not penetrate into cracks formed in the surface of the second coat-type carbon film 425.
Further, as shown in
According to the pattern forming method of the present embodiment, a part of an atmosphere introduced in the space of the concave pattern is diffused into the photo-curable imprinting agent 230 at the time of filling the photo-curable imprinting agent 230 in the concave pattern of the template 300 and can be discharged into a space of the second coat-type carbon film 425 under the photo-curable imprinting agent 230. Therefore, the photo-curable imprinting agent 230 can be easily filled into the concave pattern of the template 300 and the filling time can be greatly reduced.
After the photo-curable imprinting agent 230 is filled into the template pattern, the substrate 200 and template pattern are aligned. After the alignment, light from a light source 106 (not shown in the drawing) is applied to the photo-curable imprinting agent 230 via the template 300 to cure the photo-curable imprinting agent 230. As the light source 106, a lamp that emits light in the wavelength range of 300 nm to 400 nm is used. It is required for the wavelength of the light source 106 to include the wavelength that permits the photo-curable imprinting agent 230 to absorb light and exhibit a cross-linking reaction and, for example, one of a high pressure mercury lamp, tungsten lamp, UV-LED and ultraviolet laser can be selected according to the absorbing range of the photo-curable imprinting agent 230.
Next, as shown in
Subsequently, as shown in
Further, as shown in
In the pattern forming method of the present embodiment, a laminated film is formed by sequentially laminating the first carbon film 410 and second carbon film 420 on the substrate 200. However, if shallow cracks can be formed in a carbon film, a single-layered carbon film may be formed on the substrate 200 and shallow cracks may be formed in the surface of the carbon film.
The pattern forming methods of the above two embodiments can be used as a pattern forming method in a semiconductor device manufacturing process, hard disk manufacturing process and photoarray manufacturing process.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2011-076443 | Mar 2011 | JP | national |