Method for forming film having low resistance and shallow junction depth

Information

  • Patent Grant
  • 9478415
  • Patent Number
    9,478,415
  • Date Filed
    Friday, February 13, 2015
    9 years ago
  • Date Issued
    Tuesday, October 25, 2016
    7 years ago
Abstract
A method for forming on a substrate a doped silicon oxide film with a cap film, includes: forming an arsenosilicate glass (ASG) film as an arsenic (As)-doped silicon oxide film on a substrate; continuously treating a surface of the ASG film with a treating gas constituted by Si, N, and H without excitation; and continuously forming a silicon nitride (SiN) film as a cap film on the treated surface of the ASG film.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to a method for forming on a substrate an arsenosilicate glass (ASG or AsSG) film with a cap film.


2. Related Art


Metal-oxide-semiconductor field effect transistors (MOSFETs) are fundamental switching devices to perform logic operations in large scale integrated circuits (LSIs). As the downsizing of MOSFETs progress, decrease in junction depth (Xj) and increase in doping concentration are indispensable in the scaling trend. FinFETs and Tri-gate FETs have fin structures for source/drain extension, and such devices require reduction of lateral resistance (or sheet resistance) of the source/drain extension regions to obtain larger drain current by scaling down of MOSFETs. Therefore, both shallow Xj (Xj is defined as the depth where dopant concentration is 5×1018/cm3) and low sheet resistance (Rs) of the source/drain extension regions are indispensable for further scaling down of MOSFETs. However, reducing Rs at shallow regions (e.g., Xj<10 nm) has not been successful. The above characteristics also are important to turn-on voltage-modulation by Ground-Plane (GP) technique for Tunnel Field-Effect Transistor (TFET).


Any discussion of problems and solutions in relation to the related art has been included in this disclosure solely for the purposes of providing a context for the present invention, and should not be taken as an admission that any or all of the discussion was known at the time the invention was made.


SUMMARY OF THE INVENTION

Some embodiments provide a method for providing a thin film having a sheet resistance (Rs) of less than 1,000 ohm/sq with a junction depth (Xj) of less than 10 nm (preferably, an Rs of less than 500 ohm/sq with an Xj of less than 5 nm). In some embodiments, an arsenosilicate glass (ASG) film using arsenic (As) as n-type dopant is used in combination with a SiN cap, wherein a surface of the ASG film is treated in situ with a particular gas before forming the SiN cap. In some embodiments, the gas used for treating the surface of the ASG film is a combination of nitrogen gas, silane gas, hydrogen gas, and a noble gas. In some embodiments, the SiN cap is formed by plasma-enhanced atomic layer deposition (PEALD). In some embodiments, the ASG film is formed using solid-state doping. In some embodiments, the doping method is suitable for extension-doping in FinFETs or ground-plane doping in TFETs. In accordance with further exemplary embodiments, a method of realizing an Rs of less than 1,000 ohm/sq with an Xj of less than 10 nm is provided.


For purposes of summarizing aspects of the invention and the advantages achieved over the related art, certain objects and advantages of the invention are described in this disclosure. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.


Further aspects, features and advantages of this invention will become apparent from the detailed description which follows.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will now be described with reference to the drawings of preferred embodiments which are intended to illustrate and not to limit the invention. The drawings are greatly simplified for illustrative purposes and are not necessarily to scale.



FIG. 1A is a schematic representation of a PEALD (plasma-enhanced atomic layer deposition) apparatus for depositing a dielectric film usable in an embodiment of the present invention.



FIG. 1B illustrates a schematic representation of switching flow of an inactive gas and flow of a precursor gas usable in an embodiment of the present invention.



FIG. 2 is a schematic representation of lamination processes (a) to (b), indicating schematic cross sections of a partially fabricated integrated circuit according to a comparative example.



FIG. 3 is a schematic representation of lamination processes (a) to (c), indicating schematic cross sections of a partially fabricated integrated circuit according to an embodiment of the present invention.



FIG. 4 is a graph showing a target area defined by sheet resistance (Rs) and junction depth (Xj) according to an embodiment of the present invention, in relation to those of comparative examples.



FIG. 5 is an illustrative representation of the graph of FIG. 4.





DETAILED DESCRIPTION OF EMBODIMENTS

In this disclosure, “gas” may include vaporized solid and/or liquid and may be constituted by a single gas or a mixture of gases. In this disclosure, a process gas introduced to a reaction chamber through a showerhead may be comprised of, consist essentially of, or consist of a silicon-containing gas and an additive gas. The silicon-containing gas and the additive gas can be introduced as a mixed gas or separately to a reaction space. The silicon-containing gas can be introduced with a carrier gas such as a noble gas. A gas other than the process gas, i.e., a gas introduced without passing through the showerhead, may be used for, e.g., sealing the reaction space, which includes a seal gas such as a noble gas. In some embodiments, “film” refers to a layer continuously extending in a direction perpendicular to a thickness direction substantially without pinholes to cover an entire target or concerned surface, or simply a layer covering a target or concerned surface. In some embodiments, “layer” refers to a structure having a certain thickness formed on a surface or a synonym of film or a non-film structure. A film or layer may be constituted by a discrete single film or layer having certain characteristics or multiple films or layers, and a boundary between adjacent films or layers may or may not be clear and may be established based on physical, chemical, and/or any other characteristics, formation processes or sequence, and/or functions or purposes of the adjacent films or layers.


Further, in this disclosure, the article “a” or “an” refers to a species or a genus including multiple species unless specified otherwise. The terms “constituted by” and “having” refer independently to “typically or broadly comprising”, “comprising”, “consisting essentially of”, or “consisting of” in some embodiments. Also, in this disclosure, any defined meanings do not necessarily exclude ordinary and customary meanings in some embodiments.


Additionally, in this disclosure, any two numbers of a variable can constitute a workable range of the variable as the workable range can be determined based on routine work, and any ranges indicated may include or exclude the endpoints. Additionally, any values of variables indicated (regardless of whether they are indicated with “about” or not) may refer to precise values or approximate values and include equivalents, and may refer to average, median, representative, majority, etc. in some embodiments.


In the present disclosure where conditions and/or structures are not specified, the skilled artisan in the art can readily provide such conditions and/or structures, in view of the present disclosure, as a matter of routine experimentation. In all of the disclosed embodiments, any element used in an embodiment can be replaced with any elements equivalent thereto, including those explicitly, necessarily, or inherently disclosed herein, for the intended purposes. Further, the present invention can equally be applied to apparatuses and methods.


The embodiments will be explained with respect to preferred embodiments. However, the present invention is not limited to the preferred embodiments.


In some embodiments, a method for forming on a substrate a doped silicon oxide film with a cap film, comprises: (i) forming an arsenosilicate glass (ASG) film as an arsenic (As)-doped silicon oxide film on a substrate; (ii) continuously treating a surface of the ASG film with a treating gas constituted by Si, N, and H without excitation; and (iii) continuously forming a silicon nitride (SiN) film as a cap film on the treated surface of the ASG film. By using the ASG film, in place of phosphorus-doped silicon dioxide glass (PSG) film, in combination with the SiN cap in place of a SiO cap, and treating in situ a surface of the ASG film with the treating gas prior to depositing the SiN cap thereon, a structure where a sheet resistance (Rs) is as low as 1,000 ohm/sq (preferably 500 ohm/sq or less), and a junction depth (Xj) (as the depth of 5E+18 atom/cm3) is as small as 10 nm (preferably 5 nm or less) can be fabricated, indicating that the concentration of dopant (As) is high only in a top surface of the substrate at the interface (i.e., high concentration and shallow diffusion of dopant into the substrate). In some embodiments, the in-film concentration of As in the ASG film is approximately 1E+22 atom/cm3. Conventionally, it was not successful to reduce Rs when Xj was as small as 10 nm. Arsenic does not diffuse as much in a silicon substrate as does phosphorus, thereby contributing to a small junction depth, and also, the SiN cap blocks diffusion of As more than does a SiO cap if the interface is not exposed to air, thereby contributing to higher concentration of As on the substrate side than the cap side. Without being limited by the theory, as a result, both a low Rs and a low Xj can be achieved according to some embodiments. In this disclosure, the “ASG” film and “SiN” film can contain impurities including unavoidable elements to the extent accepted by one of ordinary skill in the art as an “ASG” film and “SiN” film, respectively. In some embodiments, the substrate is a silicon wafer or has an underlying semiconductor layer such as a silicon layer.


In some embodiments, a sheet resistance (Rs) and an As junction depth (Xj) at an interface between the ASG film and the substrate after an annealing step are approximately 500 ohm/sq or less (e.g., 100 ohm/sq to 400 ohm/sq), and approximately 5 nm or less (e.g., 1 nm to 4 nm), respectively.


In this disclosure, the word “continuously” refers to at least one of the following: without breaking a vacuum, without being exposed to air, without opening a chamber, as an in-situ process, without interruption as a step in sequence, without changing process conditions, and without causing chemical changes on a substrate surface between steps, depending on the embodiment. In some embodiments, an auxiliary step such as purging or other negligible step in the context does not count as a step, and thus, the word “continuously” does not exclude being intervened with the auxiliary step. By continuously conducting steps (i) through step (iii), the surface of the ASG film is treated with the treating gas fully without being exposed to air or any other oxygen-containing atmosphere throughout steps (i) to (iii), so that the high concentration of dopant can be maintained in the ASG film. In some embodiments, steps (i) to (iii) are conducted in a same reaction chamber. Accordingly, productivity can significantly be improved. Since step (ii) is conducted without exciting gases, substantially no film is formed on the surface of the ASG film, but gases are adsorbed on the surface of the ASG film. By way of step (ii), the interface between the ASG film and the SiN cap can effectively block diffusion or migration of As from the ASG film toward the SiN cap. A combination of Si, N, and H included in the treating gas is effective because these gases can be used for SiN cap formation and their flow can fully be stabilized before the SiN cap formation starts.


In some embodiments, all the gases including the treatment gas used in step (ii) are identical to all the gases used in step (iii), so that step (ii) and step (iii) can continuously be conducted without any interruption or any intervention therebetween, thereby not only increasing productivity but also forming the SiN cap layer having a more effective interface for blocking diffusion of the dopant. In some embodiments, all the gases including the treatment gas used in step (ii) are identical to all the gases used in step (iii) not only in kind but also in quantity (flow rate). In some embodiments, in step (ii), the treating gas is supplied with a noble gas such as helium (He), neon (Ne), argon (Ar), krypton (Kr), and/or xenon (Xe). In some embodiments, the treating gas in step (ii) comprises N2 gas, SiH4 gas, and H2 gas, or other silicon-containing gas such as Si2H6 and other nitrogen- and hydrogen-containing gas such as NH3. Due to the surface treatment, gas feeds for the SiN cap formation can effectively be stabilized before starting the SiN cap formation, and changing the recipe for the SiN cap formation (mainly changing the setting of a plasma generator) can smoothly be accomplished.


In some embodiments, the concentration of As in the ASG film is approximately 1E+22 atom/cm3, and the thickness of the ASG film formed in step (i) is approximately 5 nm or less (typically 0.5 nm to 5 nm).


In some embodiments, in step (i), the ASG film is formed by atomic layer deposition (ALD) with solid-state doping. In some embodiments, the solid-state doping is conducted at a temperature of approximately 300° C. or lower. In some embodiments, the ALD is a plasma-enhanced ALD. In some embodiments, the solid-state doping is conducted based on the disclosure of U.S. Patent Application Publication No. 2013/0115763, the disclosure of which is herein incorporated by reference in its entirety. Any suitable method of forming an ASG film, including any conventional methods such as plasma doping, ion-assisted deposition and doping (IADD), spin-on coating, sub-atmospheric pressure chemical vapour deposition (SACVD), or ALD, can be used in some embodiments.


In some embodiments, the thickness of the SiN film formed in step (iii) is approximately 5 nm or less (typically 0.5 nm to 5 nm). In some embodiments, the SiN film is deposited by atomic layer deposition (ALD). In some embodiments, the ALD is a plasma-enhanced ALD. Any suitable method of forming a SiN cap, including any conventional methods such as low-pressure CVD or PEALD (such as U.S. Patent Application Publication No. 2014/0141625 and No. 2013/0330933, each disclosure of which is herein incorporated by reference in its entirety), can be used in some embodiments.


In some embodiments, the method further comprises, after step (iii), annealing the SiN film formed on the ASG film. In this disclosure, “annealing” refers to a process which dopant such as phosphorous or arsenic is diffused into the silicon substrate.


In some embodiments, the ASG film may be formed as a solid-state doping (SSD) layer by PEALD, one cycle of which is conducted under conditions shown in Table 1 below.









TABLE 1





(the numbers are approximate)


Conditions for ASG Film Deposition
















Substrate temperature
50 to 400° C. (preferably 100 to 300° C.)


Pressure
133 to 800 Pa (preferably 200 to 600 Pa)


Silicon precursor
Silicon-containing precursor such as



bis(diethylamino)silane (BDEAS),


Silicon precursor pulse
0.05 to 5.0 sec (preferably 0.2 to



1.0 sec)


Silicon precursor purge
0.1 to 10.0 sec (preferably 0.3 to



1.0 sec)


Dopant precursor
Arsenic-containing precursor such



as arsenic triethoxide


Dopant precursor pulse
0.05 to 5.0 sec (preferably 0.1 to 3,



or 0.2 to 1.0 sec)


Dopant precursor purge
0.1 to 10.0 sec (preferably 0.3 to 5,



or 0.3 to 1.0 sec)


Reactant
Oxidizing gas such as oxygen, ozone


Flow rate of reactant
10 to 4000 sccm (preferably 1000 to


(continuous)
2000 sccm)


Dilution gas (rare gas)
He, Ar


Flow rate of dilution gas
100 to 6000 sccm (preferably 2000 to


(continuous)
4000 sccm)


RF power (13.56 MHz) for
10 to 1,000 W (preferably 30 to 500 W)


a 300-mm wafer


RF power pulse
0.1 to 10 sec (preferably 0.1 to 5 sec)


Purge upon the RF power
0.1 to 10 sec (preferably 0.05 to 4 sec)


pulse


Thickness of film
0.5 to 10 nm (preferably 0.5 to 5 nm)









The dopant precursor may be provided with the aid of a carrier gas. Since ALD is a self-limiting adsorption reaction process, the number of deposited precursor molecules is determined by the number of reactive surface sites and is independent of the precursor exposure after saturation, and a supply of the precursor is such that the reactive surface sites are saturated thereby per cycle.


In some embodiments, an arsenosilicate glass ALD cycle comprises a silicon phase, a dopant phase and an oxidation phase. The silicon phase comprises providing a pulse of BDEAS to a reaction chamber comprising a substrate. Excess BDEAS is removed and the substrate is contacted with a pulse of a dopant precursor in the dopant phase. Excess dopant precursor and reaction by-products, if any, are removed. The substrate is then contacted with oxygen plasma to form a boron or phosphorous-arsenosilicate glass. The oxygen plasma may be generated in situ, for example in an oxygen gas that flows continuously throughout the ALD cycle. In other embodiments the oxygen plasma may be generated remotely and provided to the reaction chamber.


As mentioned above, each pulse or phase of each ALD cycle is preferably self-limiting. An excess of reactants is supplied in each phase to saturate the susceptible structure surfaces. Surface saturation ensures reactant occupation of all available reactive sites (subject, for example, to physical size or “steric hindrance” restraints) and thus ensures excellent step coverage. In some embodiments the pulse time of one or more of the reactants can be reduced such that complete saturation is not achieved and less than a monolayer is adsorbed on the substrate surface. However, in some embodiments the dopant precursor step is not self-limiting, for example, due to decomposition or gas phase reactions.


In some embodiments, the silicon precursor and the dopant precursor are both provided prior to any purge step. Thus, in some embodiments a pulse of silicon precursor is provided, a pulse of dopant precursor is provided, and any unreacted silicon and dopant precursor is purged from the reaction space. The silicon precursor and the dopant precursor may be provided sequentially, beginning with either the silicon precursor or the dopant precursor, or together. In some embodiments, the silicon precursor and dopant precursor are provided simultaneously. The ratio of the dopant precursor to the silicon precursor may be selected to obtain a desired concentration of dopant in the deposited thin film.


The ratio of silicon precursor cycles to dopant precursor cycles may be selected to control the dopant concentration in the ultimate film deposited by the PEALD process. For example, for a low dopant density, the ratio of dopant precursor cycles to silicon precursor cycles may be on the order of 1:10. For a higher concentration of dopant, the ratio may range up to about 1:1 or higher such as 1.5:1, 2:1, 2.5:1, 3:1, 4:1, etc. In some embodiments all of the deposition cycles in an ALD process may be dopant precursor cycles. The ratio of deposition cycles comprising dopant to deposition cycles that do not include dopant (such as the ratio of dopant precursor cycles to silicon precursor cycles, or the ratio of dopant oxide cycles to silicon precursor cycles) may be referred to as the control knob. For example, if one dopant precursor cycle is provided for every four silicon precursor cycles, the control knob is 0.25. If no undoped oxide cycles are used, the control knob may be considered to be infinite.


By controlling the ratio of dopant precursor cycle to silicon precursor cycle, the dopant concentration can be controlled from a density range of about 0 atoms of dopant to about 5E+22/cm3 atoms of dopant. Density may be measured, for example, by SIMS (secondary-ion-probe mass spectrometry).


In addition, the dopant density can be varied across the thickness of the film by changing the ratio of dopant precursor cycles to silicon precursor cycles during the deposition process. For example, a high density of dopant may be provided near the substrate surface (lower ratio of silicon precursor cycles to dopant precursor cycle), such as near a Si surface and the density of dopant at the top surface away from the substrate may be low (higher ratio of silicon precursor cycles to dopant precursor cycles). In other embodiments a high density of dopant may be provided at the top surface with a lower density near the substrate surface.


In some embodiments, an arsenosilicate glass layer is formed by providing a dopant precursor cycle at certain intervals in a silicon oxide deposition process. The interval may be based, for example, on cycle number or thickness. For example, one or more dopant precursor deposition cycles may be provided after each set of a predetermined number of silicon precursor deposition cycles, such as after every 10, 20, 50, 100, 200, 500 etc. cycles. In some embodiments, undoped silicon oxide deposition cycles may be repeated until a silicon oxide layer of a predetermined thickness is reached, at which point one or more dopant precursor cycles are then carried out. This process is repeated such that dopant is incorporated in the film at specific thickness intervals. For example, one or more dopant precursor cycles may be provided after each 5 nm of undoped SiO2 that is deposited. The process is then repeated until an arsenosilicate glass thin film of a desired thickness and composition has been deposited.


In some embodiments in an ALD process for producing arsenosilicate glass films, one or more “dopant oxide” deposition cycles are provided along with undoped silicon oxide deposition cycles. The process may also include one or more arsenosilicate glass deposition cycles.


In the “dopant oxide” deposition cycles, the silicon precursor is omitted from the arsenosilicate glass deposition cycles described above. Thus, the substrate is exposed to alternating and sequential pulses of dopant precursor and an oxidant, such as oxygen plasma. Other reactive oxygen sources may be used in some embodiments. In some embodiments, an arsenosilicate glass film is provided by conducting multiple dopant oxide deposition cycles and multiple silicon oxide deposition cycles. The ratio of dopant oxide cycles to silicon precursor cycles may be selected to control the dopant concentration in the ultimate arsenosilicate glass film. For example, for a low dopant density, the ratio of dopant oxide cycles to silicon precursor cycles may be on the order of 1:10. In other embodiments a high dopant density is achieved by increasing the ratio of dopant oxide cycles to silicon precursor cycles to 1:1 or even higher, such as 1.5:1, 2:1, 2.5:1, 3:1, 4:1 etc. For example, for a high dopant density, such as a high B density, the ratio of dopant oxide cycles to silicon precursor cycles may be on the order of 6:1, or even 10:1.


The density can be varied across the thickness of the film by changing the ratio of dopant oxide cycles to silicon oxide cycles during the deposition process. For example, a high density of dopant may be provided near the substrate surface by using a lower ratio of silicon oxide cycles to dopant oxide cycles and the density of dopant at the top surface may be lower by providing a higher ratio of silicon oxide cycles to dopant oxide cycles.


In some embodiments, an in-situ plasma pre-treatment of the substrate is conducted before SSD layer deposition to enhance doping efficiency into the Si fin. For example, H2 plasma pre-treatment can provide some tuning space for FinFET device design. The pre-treatment is not limited only H2 plasma. In some embodiments, the pre-treatment plasma may be selected from Ar, He, H2, fluorine-containing gas, and their mixed gas plasma.


In some embodiments, the ALD cycle disclosed in U.S. Patent Application Publication No. 2013/0115763, the disclosure of which is incorporated by reference in its entirety, can be employed for the ASG film (referred to also as “dopant layer”).


In some embodiments, the dopant layer is treated with a treating gas under conditions shown in Table 2 below.









TABLE 2





(the numbers are approximate)


Conditions for Surface Treatment
















Susceptor temperature
100 to 550° C. (preferably 200 to 300° C.)



(the temperature of the wall is typically



about 130° C., and the temperature of



the showerhead is typically about 150° C.)


Pressure
50 to 1,000 Pa (preferably 200 to 400 Pa)


Si-containing gas
SiH4, Si2H6.


Flow rate of Si-containing
10 to 500 sccm (preferably 50 to


gas (continuous)
400 sccm)


N-containing gas
N2


Flow rate of N-containing
250 to 3,000 sccm (preferably 500 to


gas (continuous)
1500 sccm)


H-containing gas
H2, NH3


Flow rate of H-containing
100 to 2,000 sccm (preferably 250 to


gas (continuous)
500 sccm)


Alternatively, N/H-containing
NH3, N2H2.


gas (continuous)


Flow rate of N/H-containing
100 to 2,000 sccm (preferably 250 to


gas (continuous)
500 sccm)


Ratio of Si/N/H
2/(5-20)/(3-10) (preferably 2/(8-12)/(3-8)


Dilution gas
Inert gas such as Ar, He, N2


Flow rate of dilution gas
Ar: 0 to 2,000 sccm (preferably 0 to


(continuous)
1000 sccm);



He: 0 to 2,000 sccm (preferably 0 to



1000 sccm)


Seal gas
Noble gas such as He (about 200 sccm)


Duration of Treatment
1 to 30 sec (preferably 10 to 20 sec)









Although the surface treatment is continuously conducted after completion of the ALD cycle, the surface treatment is not conducted as a part of the ASG film formation, but is a discrete step which is distinguished from the ASG film formation, i.e., the surface treatment is initiated after the ASG film formation is completely finished. For example, the surface treatment is not any part of ALD cycles for the ASG film and is initiated after purging upon completion of the ALD cycles (which purging is conducted using, e.g., a noble gas as such as Ar at a flow rate of 950 to 2,000 sccm for 3 to 60 seconds to remove O2 used in the ASG film formation prior to feeding SiH4 used in the surface treatment). Further, although the SiN cap formation is continuously conducted after completion of the surface treatment, the surface treatment is not conducted as a part of the SiN cap formation, i.e., the surface treatment is not initiated as a start-up step of the SiN cap formation although the SiN cap formation is continuously conducted upon the surface treatment (without any intervening step including purging). For example, the surface treatment is not any part of ALD cycles for the SiN cap. However, in some embodiments, gases which are the same as those used in the ALD cycles for the SiN cap can be used for the surface treatment. Further, in some embodiments, the flow rates of these gases in the surface treatment can be the same as those for the ALD cycles for the SiN cap. In some embodiments, continuingly fed gas such as dilution gas in the surface treatment can be continuously fed to the reaction space for the ALD cycles for the SiN cap after completion of the surface treatment without interruption. Alternatively, in some embodiments, at least some conditions for the surface treatment can be different from those for the ALD cycles for the SiN cap.


By avoiding exposure of the surface of the dopant layer to air or other oxygen-containing atmosphere, and by exposing the surface to a Si/N/H gas (i.e., a gas constituted by Si, N, and H), when the surface is covered with a cap layer, loss of dopant from the dopant layer can effectively be inhibited. Since the gases are not excited, the gases are adsorbed on the surface in a manner of chemisorption, typically, no film is formed on the surface of the dopant layer, but a layer similar to an atomic layer may be formed on the surface. The ratio of Si/N/H (i.e., the ratio of Si-containing gas/N-containing gas/H-containing gas) may be in a range of 2/(5-20)/(3-10) (Si<H<N), typically 2/10/5. Additionally, if the duration of the surface treatment is shorter than 3 seconds, whereas if the duration of the surface treatment is longer than 20 seconds.


Upon the surface treatment of the surface of the dopant layer, a SiN cap layer is continuously formed without being exposed to air or other oxygen-containing atmosphere. In some embodiments, the SiN cap layer may be formed by cyclic CVD or PEALD, one cycle of which cyclic CVD is conducted under conditions shown in Table 3 below. In cyclic CVD, a precursor for a SiN cap layer is typically pulsed while other gases and RF power are continuously charged; however, in place of or in addition to the precursor flow, RF power and any of the other gases can be pulsed as long as plasma reaction can occur in the reaction space, rather than on the substrate surface as in ALD. In some embodiments, the pressure of the reaction space is substantially constant while conducting cyclic CVD, wherein the pressure can be maintained by, e.g., switching precursor flow and inactive gas flow while continuously feeding the precursor and the inactive gas using a gas flow system illustrated in FIG. 1B which is explained later.









TABLE 3





(the numbers are approximate)


Conditions for SiN Cap Formation (cyclic CVD)
















Substrate temperature
100 to 550° C. (preferably 200 to 300° C.)



(the temperature of the wall is typically



about 130° C., and the temperature of the



showerhead is typically about 150° C.)


Pressure
50 to 1,000 Pa (preferably 200 to 400 Pa)


Silicon precursor
Silicon-containing precursor such as SiH4,



Si2H6.


Silicon precursor pulse
0.05 to 5.0 sec (preferably 0.1 to 3)


Reactant
Nitridizing gas such as nitrogen gas, NH3


Flow rate of reactant
10 to 2000 sccm (preferably 50 to 1000


(continuous)
sccm)


Dilution gas (rare gas)
He, Ar


Flow rate of dilution gas
100 to 6000 sccm (preferably 1000 to


(continuous)
5000 sccm)


RF power (13.56 MHz) for a
10 to 1,000 W (preferably 20 to 500 W)


300-mm wafer (continuous)


Thickness of film
0.5 to 10 nm (preferably 0.5 to 5 nm)









In some embodiments, the SiN cap formation can be accomplished by PEALD under conditions similar to those indicated in Table 3 except that purging (e.g., 0.1 to 10.0 seconds, preferably 0.3 to 5 seconds) is conducted after the silicon precursor pulse, RF power is pulsed (e.g., 0.1 to 10 seconds, preferably 0.5 to 5 seconds), and after the RF power pulse, purging is conducted (e.g., 0.1 to 10 seconds, preferably 0.1 to 4 seconds).


In some embodiments, the gases and their flow rates used for the SiN cap formation are identical to those used for the surface treatment, and the SiN cap formation can be continuously conducted upon completion of the surface treatment. In some embodiments, Ar is used as a purge gas and continuously flows through its supply line, thereby flowing into the reaction space when the silicon precursor is not fed to the reaction space or flowing into a vent line when the silicon precursor is fed to the reaction space by valve switching. In some embodiments, the purge gas is Ar at a flow rate of about 950 sccm to about 2,000 sccm.


In some embodiments, the cap layer is directly over and contacting the dopant layer which has been treated with a treating gas. The cap layer is constituted by SiN. Since the surface of the dopant layer is covered with the SiN cap layer without being exposed to air, the SiN cap layer can effectively maintain As concentration in the dopant layer even if the thickness of the SiN cap layer is small such as less than 2 nm in some embodiments.


In some embodiments, the ALD cycle disclosed in U.S. Patent Application Publication No. 2013/0115763, the disclosure of which is incorporated by reference in its entirety, can be employed for the cap layer.


In some embodiments, after depositing the cap layer, the substrate is subjected to annealing to diffuse As into substrate. In some embodiments, the annealing may be conducted under conditions shown in Table 4 below.









TABLE 4





(the numbers are approximate)


Conditions for Annealing
















Substrate temperature
600 to 1500° C. (preferably 900 to 1100° C.)


Pressure
101325 Pa


Atmosphere
N2, H2


Duration of annealing
1 to 120 sec (preferably 1 to 60 sec)









The embodiments will be explained with respect to preferred embodiments. However, the present invention is not limited to the preferred embodiments.



FIG. 1A is a schematic view of a PEALD apparatus, desirably in conjunction with controls programmed to conduct the sequences described below, usable in some embodiments of the present invention. In this figure, by providing a pair of electrically conductive flat-plate electrodes 4, 2 in parallel and facing each other in the interior 11 of a reaction chamber 3, applying HRF power (13.56 MHz or 27 MHz) 5 and LRF power of 5 MHz or less (400 kHz˜500 kHz) 50 to one side, and electrically grounding 12 to the other side, a plasma is excited between the electrodes. A temperature regulator is provided in a lower stage 2 (the lower electrode), and a temperature of a substrate 1 placed thereon is kept constant at a given temperature. The upper electrode 4 serves as a shower plate as well, and reaction gas and rare gas are introduced into the reaction chamber 3 through a gas flow controller 23, a pulse flow control valve 31, and the shower plate. Additionally, in the reaction chamber 3, an exhaust pipe 6 is provided, through which gas in the interior 11 of the reaction chamber 3 is exhausted. Additionally, the reaction chamber is provided with a seal gas flow controller 24 to introduce seal gas into the interior 11 of the reaction chamber 3 (a separation plate for separating a reaction zone and a transfer zone in the interior of the reaction chamber is omitted from this figure). In some embodiments, the deposition of ASG film, surface treatment, and deposition of SiN cap are performed in the same apparatus such as that described above, so that all the steps can continuously be conducted without exposing the substrate to air or other oxygen-containing atmosphere. In some embodiments, a remote plasma unit can be used for exciting a gas.


In some embodiments, in the apparatus depicted in FIG. 1A, in place of the pulse flow control valve 31, a system of switching flow of an inactive gas and flow of a precursor gas can be used. FIG. 1B illustrates a schematic representation of such a switching flow system. In (a) in FIG. 1B, valves V1 (X) and V2 (R) are closed, and valves V1 (R) and V2 (X) are open, so that a precursor gas flows to a vent via valve V1 (R), and an inactive gas flows to a reactor via valve V2 (X). In (b) in FIG. 1B, by simultaneously closing valves V1 (R) and V2 (X) and opening valves V1 (X) and V2 (R), the precursor gas is instantly directed to flow to the reactor, and the inactive gas is instantly directed to flow to the vent, without substantial changes in the flow rate while maintaining continuous flows. The vent can be set downstream of an exhaust, for example.


In some embodiments, the surface treatment can be continuously conducted in a chamber different from the chamber used for the deposition of ASG film using a cluster apparatus (a substrate is transferred between chambers via a wafer-handling chamber without being exposed to air.


A skilled artisan will appreciate that the apparatus includes one or more controller(s) (not shown) programmed or otherwise configured to cause the deposition and reactor cleaning processes described elsewhere herein to be conducted. The controller(s) are communicated with the various power sources, heating systems, pumps, robotics and gas flow controllers or valves of the reactor, as will be appreciated by the skilled artisan.



FIG. 2 is a schematic representation of lamination processes (a) to (b), indicating schematic cross sections of a partially fabricated integrated circuit according to a comparative example. In this example, an n-type doped film 21 is deposited on a Si substrate 22 in process (a), wherein the n-type dopant may be phosphorus. Thereafter, a SiO2 cap film 23 is deposited on the surface of the n-type doped film 21 in process (b). Since phosphorus is used as n-type dopant, no surface treatment is conducted, and the SiO2 cap film is used, high concentration of dopant with deep diffusion into the Si substrate is likely to occur. In contrast, FIG. 3 is a schematic representation of lamination processes (a) to (c), indicating schematic cross sections of a partially fabricated integrated circuit according to an embodiment of the present invention. In this embodiment, an n-type doped film 31 is deposited on a Si substrate 32 in process (a), wherein the n-type dopant is arsenic. Thereafter, the surface of the As-doped film 31 is treated in situ with a treating gas in process (b), thereby covering the surface with a chemisorbed treating gas 33. Thereafter, a SiN cap film 34 is deposited on the treated surface of the As-doped film 31 in process (c) (in the figure, “LT-SiN cap” refers to low-temperature SiN cap deposited by cyclic CVD or PEALD). Since arsenic is used as n-type dopant, surface treatment is conducted in situ, and the SiN cap film is formed in situ, high concentration of dopant with shallow diffusion into the Si substrate can occur (i.e., a low sheet resistance (Rs) and a low junction depth (Xj) are realized at the interface).


The present invention is further explained with reference to working examples below. However, the examples are not intended to limit the present invention. In the examples where conditions and/or structures are not specified, the skilled artisan in the art can readily provide such conditions and/or structures, in view of the present disclosure, as a matter of routine experimentation. Also, the numbers applied in the specific examples can be modified by a range of at least ±50% in some embodiments, and the numbers are approximate.


EXAMPLES

An arsenosilicate glass (ASG) film was formed on a Si substrate (Φ300 mm) by PEALD, one cycle of which was conducted under the conditions shown in Table 5 below using the PEALD apparatus illustrated in FIG. 1A (including a modification illustrated in FIG. 1B) with the sequence illustrated in FIG. 3.









TABLE 5





(the numbers are approximate)


Conditions for ASG Film Deposition
















Substrate temperature
300° C.


Pressure
400 Pa


Silicon precursor
bis(diethylamino)silane (BDEAS)


Silicon precursor pulse
0.3 sec


Silicon precursor purge
0.8 sec


Dopant precursor
Arsenic triethoxide


Dopant precursor pulse
0.3 sec


Dopant precursor purge
5.0 sec


Reactant
O2


Flow rate of reactant
500 sccm


(continuous)


Dilution gas (rare gas)
Ar


Flow rate of dilution gas
2200 sccm


(continuous)


RF power (13.56 MHz) for a
200 W


300-mm wafer


RF power pulse
0.4. sec


Purge upon the RF power pulse
0.1 sec


Thickness of film
5 nm









The dopant layer was treated in situ with a treating gas under conditions shown in Table 6 below in the same apparatus.









TABLE 6





(the numbers are approximate)


Conditions for Surface Treatment
















Substrate temperature
300° C.


Pressure
300 Pa


Si-containing gas
SiH4


Flow rate of Si-containing gas
200 sccm


(continuous)


N-containing gas
N2


Flow rate of N-containing gas
1,000 sccm


(continuous)


H-containing gas
H2


Flow rate of H-containing gas
500 sccm


(continuous)


Ratio of Si/N/H
2/10/5


Dilution gas (continuous)
Ar (1,800 sccm); He (1,500 sccm)


Duration of Treatment
20 sec









Thereafter, a SiN cap layer was formed in situ by cyclic CVD, one cycle of which was conducted under conditions shown in Table 7 below in the same apparatus (the gases and their flow rates were substantially the same as those for the surface treatment).









TABLE 7





(the numbers are approximate)


Conditions for SiN Cap Formation
















Substrate temperature
300° C.


Pressure
300 Pa


Silicon precursor
SH4


Silicon precursor pulse
0.2 sec


Reactant
H2, N2


Flow rate of reactant (continuous)
H2: 500 sccm; N2: 1,000 sccm


Dilution gas (rare gas)
Ar, He


Flow rate of dilution gas (continuous)
Ar: 1,800 sccm; He: 1,500 sccm


Purge gas
Ar


Flow rate of purge gas (switching
1,800 sccm


between precursor and purge gas)


RF power (13.56 MHz) (continuous) for
35 W


a 300-mm wafer


Thickness of film
5 nm









After depositing the cap layer, the substrate was subjected to annealing to diffuse As into Si substrate under conditions shown in Table 8 below.









TABLE 8





(the numbers are approximate)


Conditions for Annealing


















Substrate temperature
1035.° C.



Pressure
101325 Pa



Atmosphere
He



Duration of annealing
1.5 sec










As comparative examples, the following structures were produced:










TABLE 9





Name in FIG. 4
Remarks







“▴SiO2 cap”
A SiO2 cap was formed by PEALD



in place of the SiN cap of the example.


“▴HT-SiN cap”
A SiN cap was formed by LPCVD (at 690° C.)



without the surface treatment of the example.


“●No cap”
No cap was formed on a PSG film formed in place of



the ASG film of the example.


“●SiO2 cap”
A SiO2 cap was formed by PEALD



in place of the SiN cap of the example, on a PSG



film formed in place of the ASG film of the example.


“⋄As I/I”
As was doped by ion implantation.









Upon the annealing, the obtained films were analyzed in terms of sheet resistance (Rs) and junction depth (Xj). The results are shown in Table 10 below. The results are also shown in FIG. 4. FIG. 4 is a graph showing a target area defined by sheet resistance (Rs) and junction depth (Xj) according to the example of the present invention, in relation to those of the comparative examples. The sheet resistance was measured using a CDE ResMAP 463 tool at 49 points on the substrate, and the junction depth was measured using an Atomika 4100 SIMS tool with a Cs primary beam.









TABLE 10







(the numbers are approximate)

















In-film





Dopant
Surface

conc.
Xj@5E+18
Rs


In FIG. 4
layer
treatment
Cap
(atom/cm3)
(atom/cm3)
(ohm/sq)
















▴ LT-SiN
ASG
Yes
LT-SiN
1.0E+22
2.7
354


cap


5 nm


▴ SiO2
ASG
No
SiO
1.0E+22
1.5
3206


cap”


5 nm


▴ HT-SiN
ASG
No (air
HT-SiN
1.0E+22
2.9
6732


cap

exposure)
5 nm


● No cap
PSG
No
SiO
6.0E+21
26.5
798





5 nm


● SiO2 cap
PSG
No
No
6.0E+21
13.5
3276


⋄As I/I
N/A
N/A
N/A
N/A
40
312









As shown in Table 10 and FIG. 4, except for “LT-SiN cap” (an example of the invention), none of the other films satisfied an Rs of 1000 ohm/seq or less and an Xj of 10 nm or less. Even the film doped by As ion implantation did not satisfy the above criteria. Further, even though the ASG film was used, and the SiN cap was formed thereon (in “HT-SiN cap”), when the surface treatment was not conducted (in that case, in order to deposit the SiN cap by PLCVD, the substrate was transferred from the ALD chamber to the CVD chamber and was exposed to air for about 3600 seconds), although diffusion of dopant was shallow (Xj=2.9 nm), dopant concentration was low (Rs=6732 ohm/sq). Only “LT-SiN cap” satisfied high concentration of dopant (Rs=354) with shallow diffusion of dopant (Xj=2.7 nm). FIG. 5 is an illustrative representation of the graph of FIG. 4. It is surprising that by forming on a Si substrate an ASG film which is surface-treated and then covered with a SiN cap (in-situ SiN cap), high concentration and shallow diffusion of dopant can be satisfied to the extent satisfying an Rs of less than 1000 ohm/seq and an Xj (depth of 5E+18) of less than 10 nm, more preferably an Rs of less than 500 ohm/seq and an Xj (depth of 5E+18) of less than 5 nm. The above properties are highly suitable for extension doping for FinFET devices, especially where the fin width is 10 nm (if dopant diffuses at a depth of 5 nm from both sides of the fin, the device will remain in an ON state, and will become non-functional).


It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the present invention are illustrative only and are not intended to limit the scope of the present invention.

Claims
  • 1. A method for forming on a substrate a doped silicon oxide film with a cap film, comprising: (i) forming an arsenosilicate glass (ASG) film having a desired thickness as an arsenic (As)-doped silicon oxide film on a substrate;(ii) after completion of step (i), continuously treating a surface of the ASG film with a treating gas constituted by Si, N, and H without excitation of the treating gas so as to adsorb the treating gas on the surface of the ASG film; and(iii) after completion of step (ii), continuously forming a silicon nitride (SiN) film as a cap film on the treating gas-adsorbed surface of the ASG film.
  • 2. The method according to claim 1, wherein all the gases including the treating gas used in step (ii) are identical to all the gases used in step (iii).
  • 3. The method according to claim 1 wherein in step (ii), the treating gas is supplied with a noble gas.
  • 4. The method according to claim 1, wherein the treating gas comprises N2 gas, SiH4 gas, and H2 gas.
  • 5. The method according to claim 1, wherein step (ii) is conducted at a temperature of 100° C. to 300° C.
  • 6. The method according to claim 1, wherein the concentration of As in the ASG film is approximately 1E+22 atom/cm3.
  • 7. The method according to claim 1, wherein the thickness of the ASG film formed in step (i) is approximately 5 nm or less.
  • 8. The method according to claim 1, wherein in step (i), the ASG film is formed by atomic layer deposition (ALD) with solid-state doping.
  • 9. The method according to claim 8, wherein the solid-state doping is conducted at a temperature of approximately 300° C. or lower.
  • 10. The method according to claim 8, wherein the ALD is a plasma-enhanced ALD.
  • 11. The method according to claim 1, wherein the thickness of the SiN film formed in step (iii) is approximately 5 nm or less.
  • 12. The method according to claim 1, wherein the substrate is a silicon wafer.
  • 13. The method according to claim 1, wherein the SiN film is deposited by cyclic CVD.
  • 14. The method according to claim 13, wherein the cyclic CVD comprises feeding a precursor for the SiN film in pulses to a reaction space while maintaining pressure of the reaction space.
  • 15. The method according to claim 1, further comprising, after step (iii), annealing the SiN film formed on the ASG film.
  • 16. The method according to claim 15, wherein a sheet resistance (Rs) and an As-junction depth (Xj) of 5E+18 atom/cm3 at an interface between the ASG film and the substrate after the annealing step are approximately 500 ohm/sq or less, and approximately 5 nm or less, respectively.
  • 17. The method according to claim 15, wherein the in-film concentration of As in the ASG film is approximately 1E+22 atom/cm3.
  • 18. The method according to claim 1, wherein steps (i) to (iii) are conducted in a same reaction chamber.
US Referenced Citations (1283)
Number Name Date Kind
D56051 Cohn Aug 1920 S
2161626 Loughner et al. Jun 1939 A
2745640 Cushman May 1956 A
2990045 Root Sep 1959 A
3089507 Drake et al. May 1963 A
3094396 Sylvester et al. Jun 1963 A
3232437 Hultgren Feb 1966 A
3833492 Bollyky Sep 1974 A
3854443 Baerg Dec 1974 A
3862397 Anderson et al. Jan 1975 A
3887790 Ferguson Jun 1975 A
4054071 Patejak Oct 1977 A
4058430 Suntola et al. Nov 1977 A
4134425 Gussefeld et al. Jan 1979 A
4145699 Hu et al. Mar 1979 A
4176630 Elmer Dec 1979 A
4181330 Kojima Jan 1980 A
4194536 Stine et al. Mar 1980 A
4322592 Martin Mar 1982 A
4389973 Suntola et al. Jun 1983 A
4393013 McMenamin Jul 1983 A
4401507 Engle Aug 1983 A
4414492 Hanlet Nov 1983 A
4436674 McMenamin Mar 1984 A
4479831 Sandow et al. Oct 1984 A
4499354 Hill et al. Feb 1985 A
4512113 Budinger Apr 1985 A
4570328 Price et al. Feb 1986 A
4579623 Suzuki et al. Apr 1986 A
D288556 Wallgren Mar 1987 S
4653541 Oehlschlaeger et al. Mar 1987 A
4654226 Jackson et al. Mar 1987 A
4681134 Paris Jul 1987 A
4718637 Contin Jan 1988 A
4722298 Rubin et al. Feb 1988 A
4735259 Vincent Apr 1988 A
4753192 Goldsmith et al. Jun 1988 A
4756794 Yoder Jul 1988 A
4780169 Stark et al. Oct 1988 A
4789294 Sato et al. Dec 1988 A
4821674 deBoer et al. Apr 1989 A
4827430 Aid et al. May 1989 A
4837185 Yau et al. Jun 1989 A
4854263 Chang et al. Aug 1989 A
4857137 Tashiro et al. Aug 1989 A
4857504 Hermann et al. Aug 1989 A
4882199 Sadoway et al. Nov 1989 A
4976996 Monkowski et al. Dec 1990 A
4978567 Miller Dec 1990 A
4984904 Nakano et al. Jan 1991 A
4985114 Okudaira Jan 1991 A
4986215 Yamada Jan 1991 A
4987856 Hey Jan 1991 A
4991614 Hammel Feb 1991 A
5013691 Lory et al. May 1991 A
5027746 Frijlink Jul 1991 A
5028366 Harakal et al. Jul 1991 A
5060322 Delepine Oct 1991 A
5062386 Christensen Nov 1991 A
5065698 Koike Nov 1991 A
5074017 Toya et al. Dec 1991 A
5098638 Sawada Mar 1992 A
5104514 Quartarone Apr 1992 A
5116018 Friemoth et al. May 1992 A
D327534 Manville Jun 1992 S
5119760 McMillan et al. Jun 1992 A
5167716 Boitnott et al. Dec 1992 A
5178682 Tsukamoto et al. Jan 1993 A
5183511 Yamazaki et al. Feb 1993 A
5192717 Kawakami Mar 1993 A
5194401 Adams et al. Mar 1993 A
5199603 Prescott Apr 1993 A
5221556 Hawkins et al. Jun 1993 A
5242539 Kumihashi et al. Sep 1993 A
5243195 Nishi Sep 1993 A
5246500 Samata et al. Sep 1993 A
5271967 Kramer et al. Dec 1993 A
5288684 Yamazaki et al. Feb 1994 A
5306946 Yamamoto Apr 1994 A
5315092 Takahashi et al. May 1994 A
5326427 Jerbic Jul 1994 A
5336327 Lee Aug 1994 A
5354580 Goela et al. Oct 1994 A
5356478 Chen et al. Oct 1994 A
5360269 Ogawa et al. Nov 1994 A
5380367 Bertone Jan 1995 A
5382311 Ishikawa et al. Jan 1995 A
5404082 Hernandez et al. Apr 1995 A
5413813 Cruse et al. May 1995 A
5415753 Hurwitt et al. May 1995 A
5421893 Perlov Jun 1995 A
5422139 Fischer Jun 1995 A
5430011 Tanaka et al. Jul 1995 A
5494494 Mizuno et al. Feb 1996 A
5496408 Motoda et al. Mar 1996 A
5504042 Cho et al. Apr 1996 A
5518549 Hellwig May 1996 A
5527417 Iida et al. Jun 1996 A
5531835 Fodor et al. Jul 1996 A
5574247 Nishitani et al. Nov 1996 A
5577331 Suzuki Nov 1996 A
5589002 Su Dec 1996 A
5589110 Motoda et al. Dec 1996 A
5595606 Fujikawa et al. Jan 1997 A
5601641 Stephens Feb 1997 A
5604410 Vollkommer et al. Feb 1997 A
5616947 Tamura Apr 1997 A
5621982 Yamashita et al. Apr 1997 A
5632919 MacCracken et al. May 1997 A
D380527 Velez Jul 1997 S
5679215 Barnes et al. Oct 1997 A
5681779 Pasch et al. Oct 1997 A
5683517 Shan Nov 1997 A
5695567 Kordina Dec 1997 A
5718574 Shimazu Feb 1998 A
5724748 Brooks Mar 1998 A
5728223 Murakami et al. Mar 1998 A
5730801 Tepman et al. Mar 1998 A
5732744 Barr et al. Mar 1998 A
5736314 Hayes et al. Apr 1998 A
5777838 Tamagawa et al. Jul 1998 A
5781693 Ballance et al. Jul 1998 A
5796074 Edelstein et al. Aug 1998 A
5801104 Schuegraf et al. Sep 1998 A
5819434 Herchen et al. Oct 1998 A
5827757 Robinson, Jr. et al. Oct 1998 A
5836483 Disel Nov 1998 A
5837320 Hampden-Smith et al. Nov 1998 A
5852879 Schumaier Dec 1998 A
5853484 Jeong Dec 1998 A
5855680 Soininen et al. Jan 1999 A
5855681 Maydan et al. Jan 1999 A
5873942 Park Feb 1999 A
5877095 Tamura et al. Mar 1999 A
D409894 McClurg May 1999 S
5908672 Ryu Jun 1999 A
5916365 Sherman Jun 1999 A
5920798 Higuchi et al. Jul 1999 A
5968275 Lee et al. Oct 1999 A
5975492 Brenes Nov 1999 A
5979506 Aarseth Nov 1999 A
5997588 Goodwin Dec 1999 A
5997768 Scully Dec 1999 A
D419652 Hall et al. Jan 2000 S
6013553 Wallace Jan 2000 A
6015465 Kholodenko et al. Jan 2000 A
6017779 Miyasaka Jan 2000 A
6024799 Chen et al. Feb 2000 A
6035101 Sajoto et al. Mar 2000 A
6042652 Hyun Mar 2000 A
6044860 Neu Apr 2000 A
6050506 Guo et al. Apr 2000 A
6060691 Minami et al. May 2000 A
6074443 Venkatesh Jun 2000 A
6083321 Lei et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6099302 Hong et al. Aug 2000 A
6122036 Yamasaki et al. Sep 2000 A
6124600 Moroishi et al. Sep 2000 A
6125789 Gupta et al. Oct 2000 A
6129044 Zhao et al. Oct 2000 A
6134807 Komino Oct 2000 A
6137240 Bogdan et al. Oct 2000 A
6140252 Cho et al. Oct 2000 A
6148761 Majewski et al. Nov 2000 A
6160244 Ohashi Dec 2000 A
6161500 Kopacz et al. Dec 2000 A
6162323 Koshimizu et al. Dec 2000 A
6180979 Hofmann et al. Jan 2001 B1
6187691 Fukuda Feb 2001 B1
6190634 Lieber et al. Feb 2001 B1
6194037 Terasaki et al. Feb 2001 B1
6201999 Jevtic Mar 2001 B1
6207932 Yoo Mar 2001 B1
6212789 Kato Apr 2001 B1
6218288 Li et al. Apr 2001 B1
6250250 Maishev et al. Jun 2001 B1
6271148 Kao Aug 2001 B1
6274878 Li et al. Aug 2001 B1
6281098 Wang Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
D449873 Bronson Oct 2001 S
6296909 Spitsberg Oct 2001 B1
6299133 Waragai et al. Oct 2001 B2
6302964 Umotoy et al. Oct 2001 B1
6303523 Cheung Oct 2001 B2
6305898 Yamagishi et al. Oct 2001 B1
6312525 Bright et al. Nov 2001 B1
6315512 Tabrizi et al. Nov 2001 B1
D451893 Robson Dec 2001 S
D452220 Robson Dec 2001 S
6325858 Wengert Dec 2001 B1
6326597 Lubomirsky et al. Dec 2001 B1
6329297 Balish Dec 2001 B1
6342427 Choi et al. Jan 2002 B1
6347636 Xia Feb 2002 B1
6352945 Matsuki Mar 2002 B1
6367410 Leahey et al. Apr 2002 B1
6368987 Kopacz et al. Apr 2002 B1
6370796 Zucker Apr 2002 B1
6372583 Tyagi Apr 2002 B1
6374831 Chandran Apr 2002 B1
6375312 Ikeda et al. Apr 2002 B1
D457609 Piano May 2002 S
6383566 Zagdoun May 2002 B1
6383955 Matsuki May 2002 B1
6387207 Janakiraman May 2002 B1
6391803 Kim et al. May 2002 B1
6398184 Sowada et al. Jun 2002 B1
6410459 Blalock et al. Jun 2002 B2
6413321 Kim et al. Jul 2002 B1
6413583 Moghadam et al. Jul 2002 B1
6420279 Ono et al. Jul 2002 B1
D461233 Whalen Aug 2002 S
D461882 Piano Aug 2002 S
6435798 Satoh Aug 2002 B1
6436819 Zhang Aug 2002 B1
6437444 Andideh Aug 2002 B2
6445574 Saw et al. Sep 2002 B1
6446573 Hirayama et al. Sep 2002 B2
6450757 Saeki Sep 2002 B1
6454860 Metzner et al. Sep 2002 B2
6455445 Matsuki Sep 2002 B2
6461435 Littau et al. Oct 2002 B1
6468924 Lee Oct 2002 B2
6472266 Yu et al. Oct 2002 B1
6475276 Elers et al. Nov 2002 B1
6475930 Junker et al. Nov 2002 B1
6478872 Chae et al. Nov 2002 B1
6482331 Lu et al. Nov 2002 B2
6482663 Backlund Nov 2002 B1
6483989 Okada et al. Nov 2002 B1
6494065 Babbitt Dec 2002 B2
6499533 Yamada Dec 2002 B2
6503562 Saito et al. Jan 2003 B1
6503826 Oda Jan 2003 B1
6511539 Raaijmakers Jan 2003 B1
6521295 Remington Feb 2003 B1
6521547 Chang et al. Feb 2003 B1
6528430 Kwan Mar 2003 B2
6528767 Bagley et al. Mar 2003 B2
6531193 Fonash et al. Mar 2003 B2
6531412 Conti et al. Mar 2003 B2
6534395 Werkhoven et al. Mar 2003 B2
6558755 Berry et al. May 2003 B2
6569239 Arai et al. May 2003 B2
6573030 Fairbairn et al. Jun 2003 B1
6576062 Matsuse Jun 2003 B2
6576064 Griffiths et al. Jun 2003 B2
6576300 Berry et al. Jun 2003 B1
6579833 McNallan et al. Jun 2003 B1
6583048 Vincent et al. Jun 2003 B1
6590251 Kang et al. Jul 2003 B2
6594550 Okrah Jul 2003 B1
6598559 Vellore et al. Jul 2003 B1
6627503 Ma et al. Sep 2003 B2
6632478 Gaillard et al. Oct 2003 B2
6633364 Hayashi Oct 2003 B2
6635117 Kinnard et al. Oct 2003 B1
6638839 Deng et al. Oct 2003 B2
6645304 Yamaguchi Nov 2003 B2
6648974 Ogliari et al. Nov 2003 B1
6649921 Cekic et al. Nov 2003 B1
6652924 Sherman Nov 2003 B2
6673196 Oyabu Jan 2004 B1
6682973 Paton et al. Jan 2004 B1
D486891 Cronce Feb 2004 S
6688784 Templeton Feb 2004 B1
6689220 Nguyen Feb 2004 B1
6692575 Omstead et al. Feb 2004 B1
6692576 Halpin et al. Feb 2004 B2
6699003 Saeki Mar 2004 B2
6709989 Ramdani et al. Mar 2004 B2
6710364 Guldi et al. Mar 2004 B2
6713824 Mikata Mar 2004 B1
6716571 Gabriel Apr 2004 B2
6723642 Lim et al. Apr 2004 B1
6730614 Lim et al. May 2004 B1
6734090 Agarwala et al. May 2004 B2
6740853 Johnson et al. May 2004 B1
6743475 Skarp et al. Jun 2004 B2
6743738 Todd et al. Jun 2004 B2
6753507 Fure et al. Jun 2004 B2
6756318 Nguyen et al. Jun 2004 B2
6759098 Han Jul 2004 B2
6760981 Leap Jul 2004 B2
6784108 Donohoe et al. Aug 2004 B1
D497977 Engelbrektsson Nov 2004 S
6815350 Kim et al. Nov 2004 B2
6820570 Kilpela et al. Nov 2004 B2
6821910 Adomaitis et al. Nov 2004 B2
6824665 Shelnut et al. Nov 2004 B2
6825134 Law et al. Nov 2004 B2
6846515 Vrtis Jan 2005 B2
6847014 Benjamin et al. Jan 2005 B1
6858524 Haukka et al. Feb 2005 B2
6858547 Metzner Feb 2005 B2
6863019 Shamouilian et al. Mar 2005 B2
6864041 Brown Mar 2005 B2
6872258 Park et al. Mar 2005 B2
6872259 Strang Mar 2005 B2
6874247 Hsu Apr 2005 B1
6874480 Ismailov Apr 2005 B1
6875677 Conley, Jr. et al. Apr 2005 B1
6876017 Goodner Apr 2005 B2
6884066 Nguyen et al. Apr 2005 B2
6884319 Kim Apr 2005 B2
6889864 Lindfors et al. May 2005 B2
6895158 Aylward et al. May 2005 B2
6899507 Yamagishi et al. May 2005 B2
6909839 Wang et al. Jun 2005 B2
6911092 Sneh Jun 2005 B2
6913796 Albano et al. Jul 2005 B2
6930059 Conley, Jr. et al. Aug 2005 B2
6935269 Lee et al. Aug 2005 B2
6939817 Sandhu et al. Sep 2005 B2
6951587 Narushima Oct 2005 B1
6953609 Carollo Oct 2005 B2
6955836 Kumagai et al. Oct 2005 B2
6972478 Waite et al. Dec 2005 B1
6974781 Timmermans et al. Dec 2005 B2
6976822 Woodruff Dec 2005 B2
6984595 Yamazaki Jan 2006 B1
6990430 Hosek Jan 2006 B2
7021881 Yamagishi Apr 2006 B2
7045430 Ahn et al. May 2006 B2
7049247 Gates et al. May 2006 B2
7053009 Conley, Jr. et al. May 2006 B2
7055875 Bonora Jun 2006 B2
7071051 Jeon et al. Jul 2006 B1
7084079 Conti et al. Aug 2006 B2
7088003 Gates et al. Aug 2006 B2
7092287 Beulens et al. Aug 2006 B2
7098149 Lukas Aug 2006 B2
7109098 Ramaswamy et al. Sep 2006 B1
7115838 Kurara et al. Oct 2006 B2
7122085 Shero et al. Oct 2006 B2
7122222 Xiao et al. Oct 2006 B2
7129165 Basol et al. Oct 2006 B2
7132360 Schaeffer et al. Nov 2006 B2
7135421 Ahn et al. Nov 2006 B2
7143897 Guzman et al. Dec 2006 B1
7147766 Uzoh et al. Dec 2006 B2
7153542 Nguyen et al. Dec 2006 B2
7163721 Zhang et al. Jan 2007 B2
7163900 Weber Jan 2007 B2
7172497 Basol et al. Feb 2007 B2
7192824 Ahn et al. Mar 2007 B2
7192892 Ahn et al. Mar 2007 B2
7195693 Cowans Mar 2007 B2
7201943 Park et al. Apr 2007 B2
7204887 Kawamura et al. Apr 2007 B2
7205246 MacNeil et al. Apr 2007 B2
7205247 Lee et al. Apr 2007 B2
7207763 Lee Apr 2007 B2
7208389 Tipton et al. Apr 2007 B1
7211524 Ryu et al. May 2007 B2
7234476 Arai Jun 2007 B2
7235137 Kitayama et al. Jun 2007 B2
7235482 Wu Jun 2007 B2
7235501 Ahn et al. Jun 2007 B2
7238596 Kouvetakis et al. Jul 2007 B2
7265061 Cho et al. Sep 2007 B1
D553104 Oohashi et al. Oct 2007 S
7290813 Bonora Nov 2007 B2
7294581 Iyer et al. Nov 2007 B2
7297641 Todd et al. Nov 2007 B2
7298009 Yan et al. Nov 2007 B2
D557226 Uchino et al. Dec 2007 S
7307178 Kiyomori et al. Dec 2007 B2
7312148 Ramaswamy et al. Dec 2007 B2
7312162 Ramaswamy et al. Dec 2007 B2
7312494 Ahn et al. Dec 2007 B2
7323401 Ramaswamy et al. Jan 2008 B2
7326657 Xia et al. Feb 2008 B2
7327948 Shrinivasan Feb 2008 B1
7329947 Adachi et al. Feb 2008 B2
7335611 Ramaswamy et al. Feb 2008 B2
7354847 Chan et al. Apr 2008 B2
7357138 Ji et al. Apr 2008 B2
7381644 Subramonium et al. Jun 2008 B1
7393418 Yokogawa Jul 2008 B2
7393736 Ahn et al. Jul 2008 B2
7393765 Hanawa et al. Jul 2008 B2
7396491 Marking et al. Jul 2008 B2
7399388 Moghadam et al. Jul 2008 B2
7402534 Mahajani Jul 2008 B2
7405166 Liang et al. Jul 2008 B2
7405454 Ahn et al. Jul 2008 B2
D575713 Ratcliffe Aug 2008 S
7411352 Madocks Aug 2008 B2
7414281 Fastow Aug 2008 B1
7416989 Liu et al. Aug 2008 B1
7422653 Blahnik et al. Sep 2008 B2
7422775 Ramaswamy et al. Sep 2008 B2
7429532 Ramaswamy et al. Sep 2008 B2
7431966 Derderian et al. Oct 2008 B2
7437060 Wang et al. Oct 2008 B2
7442275 Cowans Oct 2008 B2
7476291 Wang et al. Jan 2009 B2
7479198 Guffrey Jan 2009 B2
D585968 Elkins et al. Feb 2009 S
7489389 Shibazaki Feb 2009 B2
7494882 Vitale Feb 2009 B2
7498242 Kumar et al. Mar 2009 B2
7501292 Matsushita et al. Mar 2009 B2
7503980 Kida et al. Mar 2009 B2
D590933 Vansell et al. Apr 2009 S
7514375 Shanker et al. Apr 2009 B1
D593969 Li Jun 2009 S
7541297 Mallick et al. Jun 2009 B2
7547363 Tomiyasu et al. Jun 2009 B2
7550396 Frohberg et al. Jun 2009 B2
7566891 Rocha-Alvarez et al. Jul 2009 B2
7575968 Sadaka et al. Aug 2009 B2
7579785 Shinmen et al. Aug 2009 B2
7582555 Lang Sep 2009 B1
7589003 Kouvetakis et al. Sep 2009 B2
7589029 Derderian et al. Sep 2009 B2
D602575 Breda Oct 2009 S
7598513 Kouvetakis et al. Oct 2009 B2
7601223 Lindfors et al. Oct 2009 B2
7601225 Tuominen et al. Oct 2009 B2
7611751 Elers Nov 2009 B2
7611980 Wells et al. Nov 2009 B2
7618226 Takizawa Nov 2009 B2
D606952 Lee Dec 2009 S
7629277 Ghatnagar Dec 2009 B2
7632549 Goundar Dec 2009 B2
7640142 Tachikawa et al. Dec 2009 B2
7651583 Kent et al. Jan 2010 B2
7651961 Clark Jan 2010 B2
D609652 Nagasaka Feb 2010 S
D609655 Sugimoto Feb 2010 S
7678197 Maki Mar 2010 B2
7678715 Mungekar et al. Mar 2010 B2
7682657 Sherman Mar 2010 B2
D613829 Griffin et al. Apr 2010 S
D614153 Fondurulia et al. Apr 2010 S
D614267 Breda Apr 2010 S
D614268 Breda Apr 2010 S
D614593 Lee Apr 2010 S
7690881 Yamagishi Apr 2010 B2
7691205 Ikedo Apr 2010 B2
7713874 Milligan May 2010 B2
7720560 Menser et al. May 2010 B2
7723648 Tsukamoto et al. May 2010 B2
7727864 Elers Jun 2010 B2
7732343 Niroomand et al. Jun 2010 B2
7740705 Li Jun 2010 B2
7745346 Hausmann et al. Jun 2010 B2
7748760 Kushida Jul 2010 B2
7754621 Putkonen Jul 2010 B2
7763869 Matsushita et al. Jul 2010 B2
7767262 Clark Aug 2010 B2
7771796 Kohno et al. Aug 2010 B2
7780440 Shibagaki et al. Aug 2010 B2
7789965 Matsushita et al. Sep 2010 B2
7790633 Tarafdar et al. Sep 2010 B1
7803722 Liang Sep 2010 B2
7807578 Bencher et al. Oct 2010 B2
7816278 Reid et al. Oct 2010 B2
7824492 Tois et al. Nov 2010 B2
7825040 Fukazawa et al. Nov 2010 B1
7833353 Furukawahara et al. Nov 2010 B2
7838084 Derderian et al. Nov 2010 B2
7842518 Miyajima Nov 2010 B2
7842622 Lee et al. Nov 2010 B1
D629874 Hermans Dec 2010 S
7851019 Tuominen et al. Dec 2010 B2
7851232 van Schravendijk et al. Dec 2010 B2
7865070 Nakamura Jan 2011 B2
7884918 Hattori Feb 2011 B2
7888233 Gauri Feb 2011 B1
D634719 Yasuda et al. Mar 2011 S
7897215 Fair et al. Mar 2011 B1
7902582 Forbes et al. Mar 2011 B2
7910288 Abatchev et al. Mar 2011 B2
7915139 Lang Mar 2011 B1
7919416 Lee et al. Apr 2011 B2
7925378 Gilchrist et al. Apr 2011 B2
7935940 Smargiassi May 2011 B1
7939447 Bauer et al. May 2011 B2
7955516 Chandrachood et al. Jun 2011 B2
7963736 Takizawa et al. Jun 2011 B2
7972980 Lee et al. Jul 2011 B2
7981751 Zhu et al. Jul 2011 B2
D643055 Takahashi Aug 2011 S
7992318 Kawaji Aug 2011 B2
7994721 Espiau et al. Aug 2011 B2
7998875 DeYoung Aug 2011 B2
8003174 Fukazawa Aug 2011 B2
8004198 Bakre et al. Aug 2011 B2
8020315 Nishimura Sep 2011 B2
8030129 Jeong Oct 2011 B2
8038835 Hayashi et al. Oct 2011 B2
8041197 Kasai et al. Oct 2011 B2
8041450 Takizawa et al. Oct 2011 B2
8043972 Liu et al. Oct 2011 B1
8055378 Numakura Nov 2011 B2
8060252 Gage et al. Nov 2011 B2
8071451 Berry Dec 2011 B2
8071452 Raisanen Dec 2011 B2
8072578 Yasuda et al. Dec 2011 B2
8076230 Wei Dec 2011 B2
8076237 Uzoh Dec 2011 B2
8082946 Laverdiere et al. Dec 2011 B2
D652896 Grether Jan 2012 S
8092604 Tomiyasu et al. Jan 2012 B2
D653734 Sisk Feb 2012 S
D654884 Honma Feb 2012 S
D655055 Toll Feb 2012 S
8119466 Avouris Feb 2012 B2
8137462 Fondurulia et al. Mar 2012 B2
8137465 Shrinivasan et al. Mar 2012 B1
8138676 Mills Mar 2012 B2
8142862 Lee et al. Mar 2012 B2
8143174 Xia et al. Mar 2012 B2
8147242 Shibagaki et al. Apr 2012 B2
8173554 Lee et al. May 2012 B2
8187951 Wang May 2012 B1
8192901 Kageyama Jun 2012 B2
8196234 Glunk Jun 2012 B2
8197915 Oka et al. Jun 2012 B2
8216380 White et al. Jul 2012 B2
8231799 Bera et al. Jul 2012 B2
D665055 Yanagisawa et al. Aug 2012 S
8241991 Hsieh et al. Aug 2012 B2
8242031 Mallick et al. Aug 2012 B2
8252114 Vukovic Aug 2012 B2
8252659 Huyghebaert et al. Aug 2012 B2
8252691 Beynet et al. Aug 2012 B2
8272516 Salvador Sep 2012 B2
8278176 Bauer et al. Oct 2012 B2
8282769 Iizuka Oct 2012 B2
8287648 Reed et al. Oct 2012 B2
8293016 Bahng et al. Oct 2012 B2
8298951 Nakano Oct 2012 B1
8307472 Saxon et al. Nov 2012 B1
8309173 Tuominen et al. Nov 2012 B2
8323413 Son Dec 2012 B2
8329599 Fukazawa et al. Dec 2012 B2
8334219 Lee et al. Dec 2012 B2
D676943 Kluss Feb 2013 S
8367528 Bauer et al. Feb 2013 B2
8372204 Nakamura Feb 2013 B2
8393091 Kawamoto Mar 2013 B2
8394466 Hong et al. Mar 2013 B2
8415259 Lee et al. Apr 2013 B2
8440259 Chiang et al. May 2013 B2
8444120 Gregg et al. May 2013 B2
8445075 Xu et al. May 2013 B2
8465811 Ueda Jun 2013 B2
8466411 Arai Jun 2013 B2
8470187 Ha Jun 2013 B2
8484846 Dhindsa Jul 2013 B2
8492170 Xie et al. Jul 2013 B2
8496756 Cruse et al. Jul 2013 B2
8506713 Takagi Aug 2013 B2
8535767 Kimura Sep 2013 B1
D691974 Osada et al. Oct 2013 S
8551892 Nakano Oct 2013 B2
8563443 Fukazawa Oct 2013 B2
8569184 Oka Oct 2013 B2
8591659 Fang et al. Nov 2013 B1
8592005 Ueda Nov 2013 B2
8608885 Goto et al. Dec 2013 B2
8617411 Singh Dec 2013 B2
8633115 Chang et al. Jan 2014 B2
8647722 Kobayashi et al. Feb 2014 B2
8664627 Ishikawa et al. Mar 2014 B1
8667654 Gros-Jean Mar 2014 B2
8668957 Dussarrat et al. Mar 2014 B2
8669185 Onizawa Mar 2014 B2
8683943 Onodera et al. Apr 2014 B2
8711338 Liu et al. Apr 2014 B2
D705745 Kurs et al. May 2014 S
8720965 Hino et al. May 2014 B2
8722546 Fukazawa et al. May 2014 B2
8726837 Patalay et al. May 2014 B2
8728832 Raisanen et al. May 2014 B2
8742668 Nakano et al. Jun 2014 B2
8764085 Urabe Jul 2014 B2
8784950 Fukazawa et al. Jul 2014 B2
8784951 Fukazawa et al. Jul 2014 B2
8785215 Kobayashi et al. Jul 2014 B2
8790749 Omori et al. Jul 2014 B2
8802201 Raisanen et al. Aug 2014 B2
8820809 Ando et al. Sep 2014 B2
8821640 Cleary et al. Sep 2014 B2
8841182 Chen et al. Sep 2014 B1
8845806 Aida et al. Sep 2014 B2
D715410 Lohmann Oct 2014 S
8864202 Schrameyer Oct 2014 B1
D716742 Jang et al. Nov 2014 S
8877655 Shero et al. Nov 2014 B2
8883270 Shero et al. Nov 2014 B2
8901016 Ha et al. Dec 2014 B2
8911826 Adachi et al. Dec 2014 B2
8912101 Tsuji et al. Dec 2014 B2
D720838 Yamagishi et al. Jan 2015 S
8933375 Dunn et al. Jan 2015 B2
8940646 Chandrasekharan Jan 2015 B1
D723153 Borkholder Feb 2015 S
8946830 Jung et al. Feb 2015 B2
8956983 Swaminathan Feb 2015 B2
D724553 Choi Mar 2015 S
D724701 Yamagishi et al. Mar 2015 S
D725168 Yamagishi Mar 2015 S
8967608 Mitsumori et al. Mar 2015 B2
8986456 Fondurulia et al. Mar 2015 B2
8991887 Shin et al. Mar 2015 B2
8993054 Jung et al. Mar 2015 B2
D726365 Weigensberg Apr 2015 S
D726884 Yamagishi et al. Apr 2015 S
9005539 Halpin et al. Apr 2015 B2
9017481 Pettinger et al. Apr 2015 B1
9018093 Tsuji et al. Apr 2015 B2
9018111 Milligan et al. Apr 2015 B2
9021985 Alokozai et al. May 2015 B2
9023737 Beynet et al. May 2015 B2
9029253 Milligan et al. May 2015 B2
9029272 Nakano et al. May 2015 B1
D732145 Yamagishi Jun 2015 S
D732644 Yamagishi et al. Jun 2015 S
D733261 Yamagishi et al. Jun 2015 S
D733843 Yamagishi et al. Jul 2015 S
D734377 Hirakida Jul 2015 S
D735836 Yamagishi Aug 2015 S
9096931 Yednak et al. Aug 2015 B2
9117657 Nakano et al. Aug 2015 B2
9117866 Marquardt et al. Aug 2015 B2
D739222 Chadbourne Sep 2015 S
9123510 Nakano et al. Sep 2015 B2
9136108 Matsushita et al. Sep 2015 B2
9142393 Okabe et al. Sep 2015 B2
9169975 Sarin et al. Oct 2015 B2
9171714 Mori Oct 2015 B2
9171716 Fukuda Oct 2015 B2
D743513 Yamagishi Nov 2015 S
9177784 Raisanen et al. Nov 2015 B2
9190263 Ishikawa et al. Nov 2015 B2
9196483 Lee et al. Nov 2015 B1
9202727 Dunn et al. Dec 2015 B2
9228259 Haukka et al. Jan 2016 B2
9240412 Xie et al. Jan 2016 B2
20010017103 Takeshita et al. Aug 2001 A1
20010018267 Shinriki et al. Aug 2001 A1
20010019777 Tanaka et al. Sep 2001 A1
20010019900 Hasegawa Sep 2001 A1
20010028924 Sherman Oct 2001 A1
20010046765 Cappellani et al. Nov 2001 A1
20010049202 Maeda et al. Dec 2001 A1
20020001974 Chan Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020014204 Pyo Feb 2002 A1
20020064592 Datta et al. May 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020079714 Soucy et al. Jun 2002 A1
20020088542 Nishikawa et al. Jul 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020108670 Baker et al. Aug 2002 A1
20020110991 Li Aug 2002 A1
20020114886 Chou et al. Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020187650 Blalock et al. Dec 2002 A1
20020197849 Mandal Dec 2002 A1
20030003635 Paranjpe et al. Jan 2003 A1
20030010452 Park et al. Jan 2003 A1
20030012632 Saeki Jan 2003 A1
20030019428 Ku et al. Jan 2003 A1
20030019580 Strang Jan 2003 A1
20030025146 Narwankar et al. Feb 2003 A1
20030040158 Saitoh Feb 2003 A1
20030042419 Katsumata et al. Mar 2003 A1
20030049375 Nguyen et al. Mar 2003 A1
20030054670 Wang et al. Mar 2003 A1
20030059535 Luo et al. Mar 2003 A1
20030059980 Chen et al. Mar 2003 A1
20030066826 Lee et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030082307 Chung et al. May 2003 A1
20030091938 Fairbairn et al. May 2003 A1
20030094133 Yoshidome et al. May 2003 A1
20030111963 Tolmachev et al. Jun 2003 A1
20030134038 Paranjpe Jul 2003 A1
20030141820 White et al. Jul 2003 A1
20030157436 Manger et al. Aug 2003 A1
20030168001 Sneh Sep 2003 A1
20030170583 Nakashima Sep 2003 A1
20030180458 Sneh Sep 2003 A1
20030183156 Dando Oct 2003 A1
20030192875 Bieker et al. Oct 2003 A1
20030198587 Kaloyeros Oct 2003 A1
20030209323 Yokogaki Nov 2003 A1
20030228772 Cowans Dec 2003 A1
20030232138 Tuominen et al. Dec 2003 A1
20040009679 Yeo et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040013818 Moon et al. Jan 2004 A1
20040016637 Yang Jan 2004 A1
20040018307 Park et al. Jan 2004 A1
20040018750 Sophie et al. Jan 2004 A1
20040023516 Londergan et al. Feb 2004 A1
20040029052 Park et al. Feb 2004 A1
20040036129 Forbes et al. Feb 2004 A1
20040063289 Ohta Apr 2004 A1
20040071897 Verplancken et al. Apr 2004 A1
20040077182 Lim et al. Apr 2004 A1
20040079960 Shakuda Apr 2004 A1
20040080697 Song Apr 2004 A1
20040082171 Shin et al. Apr 2004 A1
20040101622 Park et al. May 2004 A1
20040103914 Cheng et al. Jun 2004 A1
20040106249 Huotari Jun 2004 A1
20040124549 Curran Jul 2004 A1
20040134429 Yamanaka Jul 2004 A1
20040144980 Ahn et al. Jul 2004 A1
20040146644 Xiao et al. Jul 2004 A1
20040168627 Conley et al. Sep 2004 A1
20040169032 Murayama et al. Sep 2004 A1
20040198069 Metzner et al. Oct 2004 A1
20040200499 Harvey et al. Oct 2004 A1
20040209477 Buxbaum et al. Oct 2004 A1
20040212947 Nguyen Oct 2004 A1
20040214445 Shimizu et al. Oct 2004 A1
20040219793 Hishiya et al. Nov 2004 A1
20040221807 Verghese et al. Nov 2004 A1
20040247779 Selvamanickam et al. Dec 2004 A1
20040261712 Hayashi et al. Dec 2004 A1
20040266011 Lee et al. Dec 2004 A1
20050003662 Jursich et al. Jan 2005 A1
20050008799 Tomiyasu et al. Jan 2005 A1
20050019026 Wang et al. Jan 2005 A1
20050020071 Sonobe et al. Jan 2005 A1
20050023624 Ahn et al. Feb 2005 A1
20050034674 Ono Feb 2005 A1
20050037154 Koh et al. Feb 2005 A1
20050051093 Makino et al. Mar 2005 A1
20050054228 March Mar 2005 A1
20050059262 Yin et al. Mar 2005 A1
20050064207 Senzaki et al. Mar 2005 A1
20050064719 Liu Mar 2005 A1
20050066893 Soininen Mar 2005 A1
20050069651 Miyoshi Mar 2005 A1
20050070123 Hirano Mar 2005 A1
20050070729 Kiyomori et al. Mar 2005 A1
20050072357 Shero et al. Apr 2005 A1
20050074983 Shinriki et al. Apr 2005 A1
20050092249 Kilpela et al. May 2005 A1
20050095770 Kumagai et al. May 2005 A1
20050100669 Kools et al. May 2005 A1
20050101154 Huang May 2005 A1
20050106893 Wilk May 2005 A1
20050110069 Kil et al. May 2005 A1
20050120962 Ushioda et al. Jun 2005 A1
20050123690 Derderian et al. Jun 2005 A1
20050133161 Carpenter et al. Jun 2005 A1
20050142361 Nakanishi Jun 2005 A1
20050145338 Park et al. Jul 2005 A1
20050153571 Senzaki Jul 2005 A1
20050173003 Laverdiere et al. Aug 2005 A1
20050181535 Yun et al. Aug 2005 A1
20050187647 Wang et al. Aug 2005 A1
20050191828 Al-Bayati et al. Sep 2005 A1
20050199013 Vandroux et al. Sep 2005 A1
20050208718 Lim et al. Sep 2005 A1
20050212119 Shero Sep 2005 A1
20050214457 Schmitt et al. Sep 2005 A1
20050214458 Meiere Sep 2005 A1
20050218462 Ahn et al. Oct 2005 A1
20050221618 AmRhein et al. Oct 2005 A1
20050223994 Blomiley et al. Oct 2005 A1
20050227502 Schmitt et al. Oct 2005 A1
20050229848 Shinriki Oct 2005 A1
20050229972 Hoshi et al. Oct 2005 A1
20050241176 Shero et al. Nov 2005 A1
20050241763 Huang et al. Nov 2005 A1
20050255257 Choi et al. Nov 2005 A1
20050258280 Goto et al. Nov 2005 A1
20050260347 Narwankar et al. Nov 2005 A1
20050260850 Loke Nov 2005 A1
20050263075 Wang et al. Dec 2005 A1
20050263932 Heugel Dec 2005 A1
20050271813 Kher et al. Dec 2005 A1
20050274323 Seidel et al. Dec 2005 A1
20050282101 Adachi Dec 2005 A1
20050287725 Kitagawa Dec 2005 A1
20050287771 Seamons et al. Dec 2005 A1
20060013946 Park et al. Jan 2006 A1
20060014384 Lee et al. Jan 2006 A1
20060014397 Seamons et al. Jan 2006 A1
20060016783 Wu et al. Jan 2006 A1
20060019033 Muthukrishnan et al. Jan 2006 A1
20060019502 Park et al. Jan 2006 A1
20060021703 Umotoy et al. Feb 2006 A1
20060024439 Tuominen et al. Feb 2006 A2
20060046518 Hill et al. Mar 2006 A1
20060051520 Behle et al. Mar 2006 A1
20060051925 Ahn et al. Mar 2006 A1
20060060930 Metz et al. Mar 2006 A1
20060062910 Meiere Mar 2006 A1
20060063346 Lee et al. Mar 2006 A1
20060068121 Lee et al. Mar 2006 A1
20060068125 Radhakrishnan Mar 2006 A1
20060105566 Waldfried et al. May 2006 A1
20060110934 Fukuchi May 2006 A1
20060113675 Chang et al. Jun 2006 A1
20060113806 Tsuji et al. Jun 2006 A1
20060128168 Ahn et al. Jun 2006 A1
20060130767 Herchen Jun 2006 A1
20060137609 Puchacz et al. Jun 2006 A1
20060147626 Blomberg Jul 2006 A1
20060148180 Ahn et al. Jul 2006 A1
20060163612 Kouvetakis et al. Jul 2006 A1
20060172531 Lin et al. Aug 2006 A1
20060191555 Yoshida et al. Aug 2006 A1
20060193979 Meiere et al. Aug 2006 A1
20060199357 Wan et al. Sep 2006 A1
20060205223 Smayling Sep 2006 A1
20060208215 Metzner et al. Sep 2006 A1
20060213439 Ishizaka Sep 2006 A1
20060223301 Vanhaelemeersch et al. Oct 2006 A1
20060226117 Bertram et al. Oct 2006 A1
20060228888 Lee et al. Oct 2006 A1
20060236934 Choi et al. Oct 2006 A1
20060240574 Yoshie Oct 2006 A1
20060240662 Conley et al. Oct 2006 A1
20060251827 Nowak Nov 2006 A1
20060257563 Doh et al. Nov 2006 A1
20060257584 Derderian et al. Nov 2006 A1
20060258078 Lee et al. Nov 2006 A1
20060258173 Xiao et al. Nov 2006 A1
20060260545 Ramaswamy et al. Nov 2006 A1
20060264060 Ramaswamy et al. Nov 2006 A1
20060264066 Bartholomew Nov 2006 A1
20060266289 Verghese et al. Nov 2006 A1
20060269692 Balseanu Nov 2006 A1
20060278524 Stowell Dec 2006 A1
20070006806 Imai Jan 2007 A1
20070010072 Bailey et al. Jan 2007 A1
20070020953 Tsai et al. Jan 2007 A1
20070022954 Iizuka et al. Feb 2007 A1
20070028842 Inagawa et al. Feb 2007 A1
20070031598 Okuyama et al. Feb 2007 A1
20070031599 Gschwandtner et al. Feb 2007 A1
20070032082 Ramaswamy et al. Feb 2007 A1
20070037412 Dip et al. Feb 2007 A1
20070042117 Kuppurao et al. Feb 2007 A1
20070049053 Mahajani Mar 2007 A1
20070054499 Jang Mar 2007 A1
20070059948 Metzner et al. Mar 2007 A1
20070062453 Ishikawa Mar 2007 A1
20070065578 McDougall Mar 2007 A1
20070066010 Ando Mar 2007 A1
20070066079 Kloster et al. Mar 2007 A1
20070077355 Chacin et al. Apr 2007 A1
20070082132 Hiroshi Shinriki Apr 2007 A1
20070084405 Kim Apr 2007 A1
20070096194 Streck et al. May 2007 A1
20070098527 Hall et al. May 2007 A1
20070107845 Ishizawa et al. May 2007 A1
20070111545 Lee et al. May 2007 A1
20070116873 Li et al. May 2007 A1
20070123037 Lee et al. May 2007 A1
20070125762 Cui et al. Jun 2007 A1
20070128538 Fairbairn et al. Jun 2007 A1
20070134942 Ahn et al. Jun 2007 A1
20070146621 Yeom Jun 2007 A1
20070148990 DeBoer et al. Jun 2007 A1
20070155138 Tomasini et al. Jul 2007 A1
20070158026 Amikura Jul 2007 A1
20070163440 Kim et al. Jul 2007 A1
20070166457 Yamoto et al. Jul 2007 A1
20070166966 Todd et al. Jul 2007 A1
20070166999 Vaartstra Jul 2007 A1
20070173071 Afzali-Ardakani et al. Jul 2007 A1
20070175393 Nishimura et al. Aug 2007 A1
20070175397 Tomiyasu et al. Aug 2007 A1
20070186952 Honda et al. Aug 2007 A1
20070207275 Nowak et al. Sep 2007 A1
20070209590 Li Sep 2007 A1
20070210890 Hsu et al. Sep 2007 A1
20070215048 Suzuki et al. Sep 2007 A1
20070218200 Suzuki et al. Sep 2007 A1
20070218705 Matsuki et al. Sep 2007 A1
20070224777 Hamelin Sep 2007 A1
20070224833 Morisada et al. Sep 2007 A1
20070232031 Singh et al. Oct 2007 A1
20070232071 Balseanu et al. Oct 2007 A1
20070232501 Tonomura Oct 2007 A1
20070234955 Suzuki et al. Oct 2007 A1
20070237697 Clark Oct 2007 A1
20070241688 DeVincentis et al. Oct 2007 A1
20070248767 Okura Oct 2007 A1
20070249131 Allen et al. Oct 2007 A1
20070251444 Gros-Jean et al. Nov 2007 A1
20070252244 Srividya et al. Nov 2007 A1
20070252532 DeVincentis et al. Nov 2007 A1
20070264807 Leone et al. Nov 2007 A1
20070275166 Thridandam et al. Nov 2007 A1
20070277735 Mokhlesi et al. Dec 2007 A1
20070281496 Ingle et al. Dec 2007 A1
20070298362 Rocha-Alvarez et al. Dec 2007 A1
20080003824 Padhi et al. Jan 2008 A1
20080003838 Haukka et al. Jan 2008 A1
20080006208 Ueno et al. Jan 2008 A1
20080023436 Gros-Jean et al. Jan 2008 A1
20080026574 Brcka Jan 2008 A1
20080026597 Munro et al. Jan 2008 A1
20080029790 Ahn et al. Feb 2008 A1
20080036354 Letz et al. Feb 2008 A1
20080038485 Lukas Feb 2008 A1
20080054332 Kim et al. Mar 2008 A1
20080054813 Espiau et al. Mar 2008 A1
20080057659 Forbes et al. Mar 2008 A1
20080061667 Gaertner et al. Mar 2008 A1
20080066778 Matsushita et al. Mar 2008 A1
20080069955 Hong et al. Mar 2008 A1
20080075881 Won et al. Mar 2008 A1
20080076266 Fukazawa et al. Mar 2008 A1
20080081104 Hasebe et al. Apr 2008 A1
20080081113 Clark Apr 2008 A1
20080081121 Morita et al. Apr 2008 A1
20080085226 Fondurulia et al. Apr 2008 A1
20080092815 Chen et al. Apr 2008 A1
20080113094 Casper May 2008 A1
20080113096 Mahajani May 2008 A1
20080113097 Mahajani et al. May 2008 A1
20080124197 van der Meulen et al. May 2008 A1
20080124908 Forbes et al. May 2008 A1
20080124946 Xiao et al. May 2008 A1
20080133154 Krauss et al. Jun 2008 A1
20080149031 Chu et al. Jun 2008 A1
20080152463 Chidambaram et al. Jun 2008 A1
20080153311 Padhi et al. Jun 2008 A1
20080173240 Furukawahara Jul 2008 A1
20080173326 Gu et al. Jul 2008 A1
20080176375 Erben et al. Jul 2008 A1
20080178805 Paterson et al. Jul 2008 A1
20080179715 Coppa Jul 2008 A1
20080182075 Chopra Jul 2008 A1
20080182390 Lemmi et al. Jul 2008 A1
20080191193 Li et al. Aug 2008 A1
20080199977 Weigel et al. Aug 2008 A1
20080203487 Hohage et al. Aug 2008 A1
20080211423 Shinmen et al. Sep 2008 A1
20080211526 Shinma Sep 2008 A1
20080216077 Emani et al. Sep 2008 A1
20080220619 Matsushita et al. Sep 2008 A1
20080224240 Ahn et al. Sep 2008 A1
20080233288 Clark Sep 2008 A1
20080237572 Chui et al. Oct 2008 A1
20080241384 Jeong Oct 2008 A1
20080242116 Clark Oct 2008 A1
20080248310 Kim et al. Oct 2008 A1
20080257494 Hayashi et al. Oct 2008 A1
20080261413 Mahajani Oct 2008 A1
20080264337 Sano et al. Oct 2008 A1
20080267598 Nakamura Oct 2008 A1
20080277715 Ohmi et al. Nov 2008 A1
20080282970 Heys et al. Nov 2008 A1
20080295872 Riker et al. Dec 2008 A1
20080299326 Fukazawa Dec 2008 A1
20080302303 Choi et al. Dec 2008 A1
20080305246 Choi et al. Dec 2008 A1
20080305443 Nakamura Dec 2008 A1
20080315292 Ji et al. Dec 2008 A1
20080317972 Hendriks Dec 2008 A1
20090000550 Tran et al. Jan 2009 A1
20090000551 Choi et al. Jan 2009 A1
20090011608 Nabatame Jan 2009 A1
20090020072 Mizunaga et al. Jan 2009 A1
20090023229 Matsushita Jan 2009 A1
20090029528 Sanchez et al. Jan 2009 A1
20090029564 Yamashita et al. Jan 2009 A1
20090033907 Watson Feb 2009 A1
20090035947 Horii Feb 2009 A1
20090041952 Yoon et al. Feb 2009 A1
20090041984 Mayers et al. Feb 2009 A1
20090045829 Awazu Feb 2009 A1
20090050621 Awazu Feb 2009 A1
20090061644 Chiang et al. Mar 2009 A1
20090061647 Mallick et al. Mar 2009 A1
20090085156 Dewey et al. Apr 2009 A1
20090090382 Morisada Apr 2009 A1
20090093094 Ye et al. Apr 2009 A1
20090095221 Tam et al. Apr 2009 A1
20090104789 Mallick et al. Apr 2009 A1
20090107404 Ogliari et al. Apr 2009 A1
20090120580 Kagoshima et al. May 2009 A1
20090122293 Shibazaki May 2009 A1
20090136668 Gregg et al. May 2009 A1
20090136683 Fukasawa et al. May 2009 A1
20090139657 Lee et al. Jun 2009 A1
20090142935 Fukuzawa et al. Jun 2009 A1
20090146322 Weling et al. Jun 2009 A1
20090156015 Park et al. Jun 2009 A1
20090209081 Matero Aug 2009 A1
20090211523 Kuppurao et al. Aug 2009 A1
20090211525 Sarigiannis et al. Aug 2009 A1
20090239386 Suzaki et al. Sep 2009 A1
20090242957 Ma et al. Oct 2009 A1
20090246374 Vukovic Oct 2009 A1
20090246399 Goundar Oct 2009 A1
20090246971 Reid et al. Oct 2009 A1
20090250955 Aoki Oct 2009 A1
20090261331 Yang et al. Oct 2009 A1
20090269506 Okura et al. Oct 2009 A1
20090275205 Kiehlbauch et al. Nov 2009 A1
20090277510 Shikata Nov 2009 A1
20090283041 Tomiyasu et al. Nov 2009 A1
20090283217 Lubomirsky et al. Nov 2009 A1
20090286400 Heo et al. Nov 2009 A1
20090286402 Xia et al. Nov 2009 A1
20090289300 Sasaki et al. Nov 2009 A1
20090304558 Patton Dec 2009 A1
20090311857 Todd et al. Dec 2009 A1
20100001409 Humbert et al. Jan 2010 A1
20100006031 Choi et al. Jan 2010 A1
20100014479 Kim Jan 2010 A1
20100015813 McGinnis et al. Jan 2010 A1
20100024727 Kim et al. Feb 2010 A1
20100025796 Dabiran Feb 2010 A1
20100040441 Obikane Feb 2010 A1
20100041179 Lee Feb 2010 A1
20100041243 Cheng et al. Feb 2010 A1
20100055312 Kato et al. Mar 2010 A1
20100055442 Kellock Mar 2010 A1
20100075507 Chang et al. Mar 2010 A1
20100089320 Kim Apr 2010 A1
20100093187 Lee et al. Apr 2010 A1
20100102417 Ganguli et al. Apr 2010 A1
20100116209 Kato May 2010 A1
20100124610 Aikawa et al. May 2010 A1
20100124618 Kobayashi et al. May 2010 A1
20100124621 Kobayashi et al. May 2010 A1
20100126605 Stones May 2010 A1
20100130017 Luo et al. May 2010 A1
20100134023 Mills Jun 2010 A1
20100136216 Tsuei et al. Jun 2010 A1
20100140221 Kikuchi Jun 2010 A1
20100144162 Lee et al. Jun 2010 A1
20100151206 Wu et al. Jun 2010 A1
20100159638 Jeong et al. Jun 2010 A1
20100162752 Tabata et al. Jul 2010 A1
20100170441 Won et al. Jul 2010 A1
20100178137 Chintalapati et al. Jul 2010 A1
20100178423 Shimizu et al. Jul 2010 A1
20100184302 Lee et al. Jul 2010 A1
20100193501 Zucker et al. Aug 2010 A1
20100195392 Freeman Aug 2010 A1
20100221452 Kang Sep 2010 A1
20100230051 Iizuka Sep 2010 A1
20100233886 Yang et al. Sep 2010 A1
20100243166 Hayashi et al. Sep 2010 A1
20100244688 Braun et al. Sep 2010 A1
20100255198 Cleary et al. Oct 2010 A1
20100255625 De Vries Oct 2010 A1
20100259152 Yasuda et al. Oct 2010 A1
20100270675 Harada Oct 2010 A1
20100275846 Kitagawa Nov 2010 A1
20100285319 Kwak et al. Nov 2010 A1
20100294199 Tran et al. Nov 2010 A1
20100301752 Bakre et al. Dec 2010 A1
20100304047 Yang et al. Dec 2010 A1
20100307415 Shero et al. Dec 2010 A1
20100317198 Antonelli Dec 2010 A1
20100322604 Fondurulia et al. Dec 2010 A1
20110000619 Suh Jan 2011 A1
20110006402 Zhou Jan 2011 A1
20110006406 Urbanowicz et al. Jan 2011 A1
20110014795 Lee Jan 2011 A1
20110027999 Sparks et al. Feb 2011 A1
20110034039 Liang et al. Feb 2011 A1
20110048642 Mihara et al. Mar 2011 A1
20110052833 Hanawa et al. Mar 2011 A1
20110056513 Hombach et al. Mar 2011 A1
20110056626 Brown et al. Mar 2011 A1
20110061810 Ganguly et al. Mar 2011 A1
20110070380 Shero et al. Mar 2011 A1
20110081519 Dillingh Apr 2011 A1
20110086516 Lee et al. Apr 2011 A1
20110089469 Merckling Apr 2011 A1
20110097901 Banna et al. Apr 2011 A1
20110107512 Gilbert May 2011 A1
20110108194 Yoshioka et al. May 2011 A1
20110108741 Ingram May 2011 A1
20110108929 Meng May 2011 A1
20110117490 Bae et al. May 2011 A1
20110117737 Agarwala et al. May 2011 A1
20110124196 Lee May 2011 A1
20110139748 Donnelly et al. Jun 2011 A1
20110143032 Vrtis et al. Jun 2011 A1
20110143461 Fish et al. Jun 2011 A1
20110159202 Matsushita et al. Jun 2011 A1
20110159673 Hanawa et al. Jun 2011 A1
20110175011 Ehrne et al. Jul 2011 A1
20110183079 Jackson et al. Jul 2011 A1
20110183269 Zhu Jul 2011 A1
20110192820 Yeom et al. Aug 2011 A1
20110198736 Shero et al. Aug 2011 A1
20110210468 Shannon et al. Sep 2011 A1
20110220874 Hanrath Sep 2011 A1
20110236600 Fox et al. Sep 2011 A1
20110239936 Suzaki et al. Oct 2011 A1
20110254052 Kouvetakis et al. Oct 2011 A1
20110256675 Avouris Oct 2011 A1
20110256726 Lavoie et al. Oct 2011 A1
20110256727 Beynet et al. Oct 2011 A1
20110256734 Hausmann et al. Oct 2011 A1
20110265549 Cruse et al. Nov 2011 A1
20110265951 Xu et al. Nov 2011 A1
20110275166 Shero et al. Nov 2011 A1
20110281417 Gordon et al. Nov 2011 A1
20110283933 Makarov et al. Nov 2011 A1
20110294075 Chen et al. Dec 2011 A1
20110308460 Hong et al. Dec 2011 A1
20120003500 Yoshida et al. Jan 2012 A1
20120006489 Okita Jan 2012 A1
20120024479 Palagashvili et al. Feb 2012 A1
20120032311 Gates et al. Feb 2012 A1
20120043556 Dube et al. Feb 2012 A1
20120052681 Marsh Mar 2012 A1
20120070136 Koelmel et al. Mar 2012 A1
20120070997 Larson Mar 2012 A1
20120090704 Laverdiere et al. Apr 2012 A1
20120098107 Raisanen et al. Apr 2012 A1
20120100464 Kageyama Apr 2012 A1
20120103264 Choi et al. May 2012 A1
20120103939 Wu et al. May 2012 A1
20120107607 Takaki et al. May 2012 A1
20120114877 Lee May 2012 A1
20120121823 Chhabra May 2012 A1
20120122302 Weidman et al. May 2012 A1
20120128897 Xiao et al. May 2012 A1
20120135145 Je et al. May 2012 A1
20120156108 Fondurulia et al. Jun 2012 A1
20120160172 Wamura et al. Jun 2012 A1
20120164327 Sato Jun 2012 A1
20120164837 Tan et al. Jun 2012 A1
20120164842 Watanabe Jun 2012 A1
20120171391 Won Jul 2012 A1
20120171874 Thridandam et al. Jul 2012 A1
20120207456 Kim et al. Aug 2012 A1
20120212121 Lin Aug 2012 A1
20120214318 Fukazawa et al. Aug 2012 A1
20120220139 Lee et al. Aug 2012 A1
20120225561 Watanabe Sep 2012 A1
20120240858 Taniyama et al. Sep 2012 A1
20120263876 Haukka et al. Oct 2012 A1
20120270339 Xie et al. Oct 2012 A1
20120270393 Pore et al. Oct 2012 A1
20120289053 Holland et al. Nov 2012 A1
20120295427 Bauer Nov 2012 A1
20120304935 Oosterlaken et al. Dec 2012 A1
20120305196 Mori et al. Dec 2012 A1
20120315113 Hiroki Dec 2012 A1
20120318334 Bedell et al. Dec 2012 A1
20120321786 Satitpunwaycha et al. Dec 2012 A1
20120322252 Son et al. Dec 2012 A1
20120325148 Yamagishi et al. Dec 2012 A1
20120328780 Yamagishi et al. Dec 2012 A1
20130005122 Schwarzenbach et al. Jan 2013 A1
20130011983 Tsai Jan 2013 A1
20130014697 Kanayama Jan 2013 A1
20130014896 Shoji et al. Jan 2013 A1
20130019944 Hekmatshoar-Tabari et al. Jan 2013 A1
20130019945 Hekmatshoar-Tabari et al. Jan 2013 A1
20130023129 Reed Jan 2013 A1
20130048606 Mao et al. Feb 2013 A1
20130064973 Chen et al. Mar 2013 A1
20130068970 Matsushita Mar 2013 A1
20130078392 Xiao et al. Mar 2013 A1
20130081702 Mohammed et al. Apr 2013 A1
20130084156 Shimamoto Apr 2013 A1
20130084714 Oka et al. Apr 2013 A1
20130104988 Yednak et al. May 2013 A1
20130104992 Yednak et al. May 2013 A1
20130115383 Lu et al. May 2013 A1
20130115763 Takamure May 2013 A1
20130122712 Kim et al. May 2013 A1
20130126515 Shero et al. May 2013 A1
20130129577 Halpin et al. May 2013 A1
20130134148 Tachikawa May 2013 A1
20130168354 Kanarik Jul 2013 A1
20130180448 Sakaue et al. Jul 2013 A1
20130183814 Huang et al. Jul 2013 A1
20130210241 Lavoie et al. Aug 2013 A1
20130217239 Mallick et al. Aug 2013 A1
20130217240 Mallick et al. Aug 2013 A1
20130217241 Underwood et al. Aug 2013 A1
20130217243 Underwood et al. Aug 2013 A1
20130224964 Fukazawa Aug 2013 A1
20130230814 Dunn et al. Sep 2013 A1
20130256838 Sanchez et al. Oct 2013 A1
20130264659 Jung Oct 2013 A1
20130288480 Sanchez et al. Oct 2013 A1
20130292047 Tian et al. Nov 2013 A1
20130292676 Milligan et al. Nov 2013 A1
20130292807 Raisanen et al. Nov 2013 A1
20130295779 Chandra et al. Nov 2013 A1
20130319290 Xiao et al. Dec 2013 A1
20130323435 Xiao et al. Dec 2013 A1
20130330165 Wimplinger et al. Dec 2013 A1
20130330911 Huang et al. Dec 2013 A1
20130330933 Fukazawa et al. Dec 2013 A1
20130337583 Kobayashi et al. Dec 2013 A1
20140000843 Dunn et al. Jan 2014 A1
20140014642 Elliot et al. Jan 2014 A1
20140014644 Akiba et al. Jan 2014 A1
20140020619 Vincent et al. Jan 2014 A1
20140027884 Tang et al. Jan 2014 A1
20140033978 Adachi et al. Feb 2014 A1
20140036274 Marquardt et al. Feb 2014 A1
20140048765 Ma et al. Feb 2014 A1
20140056679 Yamabe et al. Feb 2014 A1
20140060147 Sarin et al. Mar 2014 A1
20140062304 Nakano et al. Mar 2014 A1
20140067110 Lawson et al. Mar 2014 A1
20140073143 Alokozai et al. Mar 2014 A1
20140077240 Roucka et al. Mar 2014 A1
20140084341 Weeks Mar 2014 A1
20140087544 Tolle Mar 2014 A1
20140094027 Azumo et al. Apr 2014 A1
20140096716 Chung et al. Apr 2014 A1
20140099798 Tsuji Apr 2014 A1
20140103145 White et al. Apr 2014 A1
20140116335 Tsuji et al. May 2014 A1
20140120487 Kaneko May 2014 A1
20140127907 Yang May 2014 A1
20140141625 Fukazawa et al. May 2014 A1
20140159170 Raisanen et al. Jun 2014 A1
20140174354 Arai Jun 2014 A1
20140175054 Carlson et al. Jun 2014 A1
20140182053 Huang Jul 2014 A1
20140217065 Winkler et al. Aug 2014 A1
20140220247 Haukka et al. Aug 2014 A1
20140225065 Rachmady et al. Aug 2014 A1
20140227072 Lee et al. Aug 2014 A1
20140251953 Winkler et al. Sep 2014 A1
20140251954 Winkler et al. Sep 2014 A1
20140283747 Kasai et al. Sep 2014 A1
20140346650 Raisanen et al. Nov 2014 A1
20140349033 Nonaka et al. Nov 2014 A1
20140363980 Kawamata et al. Dec 2014 A1
20140363985 Jang et al. Dec 2014 A1
20140367043 Bishara et al. Dec 2014 A1
20150004316 Thompson et al. Jan 2015 A1
20150004317 Dussarrat et al. Jan 2015 A1
20150007770 Chandrasekharan et al. Jan 2015 A1
20150014632 Kim et al. Jan 2015 A1
20150021599 Ridgeway Jan 2015 A1
20150024609 Milligan et al. Jan 2015 A1
20150048485 Tolle Feb 2015 A1
20150078874 Sansoni Mar 2015 A1
20150086316 Greenberg Mar 2015 A1
20150091057 Xie Apr 2015 A1
20150096973 Dunn et al. Apr 2015 A1
20150099072 Takamure et al. Apr 2015 A1
20150132212 Winkler May 2015 A1
20150140210 Jung et al. May 2015 A1
20150147483 Fukazawa May 2015 A1
20150147877 Jung May 2015 A1
20150167159 Halpin et al. Jun 2015 A1
20150170954 Agarwal Jun 2015 A1
20150174768 Rodnick Jun 2015 A1
20150184291 Alokozai et al. Jul 2015 A1
20150187568 Pettinger et al. Jul 2015 A1
20150217456 Tsuji et al. Aug 2015 A1
20150240359 Jdira et al. Aug 2015 A1
20150267295 Hill et al. Sep 2015 A1
20150267297 Shiba Sep 2015 A1
20150267299 Hawkins Sep 2015 A1
20150267301 Hill et al. Sep 2015 A1
20150284848 Nakano et al. Oct 2015 A1
20150287626 Arai Oct 2015 A1
20150308586 Shugrue et al. Oct 2015 A1
20150315704 Nakano et al. Nov 2015 A1
20160013024 Milligan et al. Jan 2016 A1
20160024656 White et al. Jan 2016 A1
20160051964 Tolle et al. Feb 2016 A1
Foreign Referenced Citations (59)
Number Date Country
1563483 Jan 2005 CN
101330015 Dec 2008 CN
101522943 Sep 2009 CN
101423937 Sep 2011 CN
102008052750 Jun 2009 DE
2036600 Mar 2009 EP
2426233 Jul 2012 EP
03-044472 Feb 1991 JP
H04115531 Apr 1992 JP
06-53210 Feb 1994 JP
07-130731 May 1995 JP
07-034936 Aug 1995 JP
7-272694 Oct 1995 JP
H07283149 Oct 1995 JP
08-181135 Jul 1996 JP
H08335558 Dec 1996 JP
10-064696 Mar 1998 JP
10-0261620 Sep 1998 JP
2845163 Jan 1999 JP
2001-15698 Jan 2001 JP
2001342570 Dec 2001 JP
2004014952 Jan 2004 JP
2004091848 Mar 2004 JP
2004128019 Apr 2004 JP
2004134553 Apr 2004 JP
2004294638 Oct 2004 JP
2004310019 Nov 2004 JP
2004538374 Dec 2004 JP
2005507030 Mar 2005 JP
2006186271 Jul 2006 JP
3140111 Mar 2008 JP
2008060304 Mar 2008 JP
2008527748 Jul 2008 JP
2008202107 Sep 2008 JP
2009016815 Jan 2009 JP
2009099938 May 2009 JP
2010067940 Mar 2010 JP
2010097834 Apr 2010 JP
2010205967 Sep 2010 JP
2010251444 Oct 2010 JP
2012089837 May 2012 JP
2012146939 Aug 2012 JP
20100020834 Feb 2010 KR
I226380 Jan 2005 TW
200701301 Jan 2007 TW
9832893 Jul 1998 WO
2004008827 Jan 2004 WO
2004010467 Jan 2004 WO
2006054854 May 2006 WO
2006056091 Jun 2006 WO
2006078666 Jul 2006 WO
2006080782 Aug 2006 WO
2006101857 Sep 2006 WO
2007140376 Dec 2007 WO
2010039363 Apr 2010 WO
2010118051 Jan 2011 WO
2011019950 Feb 2011 WO
2013078065 May 2013 WO
2013078066 May 2013 WO
Non-Patent Literature Citations (383)
Entry
USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596.
USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Non-Final Office Action dated Apr. 1, 2010 in U.S. Appl. No. 12/357,174.
USPTO; Final Office Action dated Sep. 1, 2010 in U.S. Appl. No. 12/357,174.
USPTO; Notice of Allowance dated Dec. 13, 2010 in U.S. Appl. No. 12/357,174.
USPTO; Non-Final Office Action dated Dec. 29, 2010 in U.S. Appl. No. 12/362,023.
USPTO; Non-Final Office Action dated Jul. 26, 2011 in U.S. Appl. No. 12/416,809.
USPTO; Final Office Action dated Dec. 6, 2011 in U.S. Appl. No. 12/416,809.
USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Notice of Allowance dated Oct. 1, 2010 in U.S. Appl. No. 12/467,017.
USPTO; Non-Final Office Action dated Mar. 18, 2010 in U.S. Appl. No. 12/489,252.
USPTO; Notice of Allowance dated Sep. 2, 2010 in U.S. Appl. No. 12/489,252.
USPTO; Non-Final Office Action dated Dec. 15, 2010 in U.S. Appl. No. 12/553,759.
USPTO; Final Office Action dated May 4, 2011 in U.S. Appl. No. 12/553,759.
USPTO; Non-Final Office Action dated Sep. 6, 2011 in U.S. Appl. No. 12/553,759.
USPTO; Notice of Allowance dated Jan. 24, 2012 in U.S. Appl. No. 12/553,759.
USPTO; Non-Final Office Action dated Oct. 19, 2012 in U.S. Appl. No. 12/618,355.
USPTO; Final Office Action dated May 8, 2013 in U.S. Appl. No. 12/618,355.
USPTO; Non-Final Office Action dated Apr. 8, 2015 in U.S. Appl. No. 12/618,355.
USPTO; Final Office Action dated Oct. 22, 2015 in U.S. Appl. No. 12/618,355.
USPTO; Non-Final Office Action dated Feb. 16, 2012 in U.S. Appl. No. 12/618,419.
USPTO; Final Office Action dated Jun. 22, 2012 in U.S. Appl. No. 12/618,419.
USPTO; Non-Final Office Action dated Nov. 27, 2012 in U.S. Appl. No. 12/618,419.
USPTO; Notice of Allowance dated Apr. 12, 2013 in U.S. Appl. No. 12/618,419.
USPTO; Non-Final Office Action dated Dec. 6, 2011 in U.S. Appl. No. 12/718,731.
USPTO; Notice of Allowance dated Mar. 16, 2012 in U.S. Appl. No. 12/718,731.
USPTO; Restriction Requirement dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Non-Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 12/754,223.
USPTO; Final Office Action dated Aug. 12, 2015 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Final Office Action dated Oct. 21, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037.
USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037.
USPTO; Non-Final Office Action dated Jan. 24, 2011 in U.S. Appl. No. 12/778,808.
USPTO; Notice of Allowance dated May 9, 2011 in U.S. Appl. No. 12/778,808.
USPTO; Notice of Allowance dated Oct. 12, 2012 in U.S. Appl. No. 12/832,739.
USPTO; Non-Final Office Action dated Oct. 16, 2012 in U.S. Appl. No. 12/847,848.
USPTO; Final Office Action dated Apr. 22, 2013 in U.S. Appl. No. 12/847,848.
USPTO; Notice of Allowance dated Jan. 16, 2014 in U.S. Appl. No. 12/847,848.
USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Non-Final Office Action dated Jul. 11, 2012 in U.S. Appl. No. 12/875,889.
USPTO; Notice of Allowance dated Jan. 4, 2013 in U.S. Appl. No. 12/875,889.
USPTO; Notice of Allowance dated Jan. 9, 2012 in U.S. Appl. No. 12/901,323.
USPTO; Non-Final Office Action dated Nov. 20, 2013 in U.S. Appl. No. 12/910,607.
USPTO; Final Office Action dated Apr. 28, 2014 in U.S. Appl. No. 12/910,607.
USPTO; Notice of Allowance dated Aug. 15, 2014 in U.S. Appl. No. 12/910,607.
USPTO; Non-Final Office Action dated Oct. 24, 2012 in U.S. Appl. No. 12/940,906.
USPTO; Final Office Action dated Feb. 13, 2013 in U.S. Appl. No. 12/940,906.
USPTO; Notice of Allowance dated Apr. 23, 2013 in U.S. Appl. No. 12/940,906.
USPTO; Non-Final Office Action dated Dec. 7, 2012 in U.S. Appl. No. 12/953,870.
USPTO; Final Office Action dated Apr. 22, 2013 in U.S. Appl. No. 12/953,870.
USPTO; Non-Final Office Action dated Sep. 19, 2012 in U.S. Appl. No. 13/016,735.
USPTO; Final Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/016,735.
USPTO; Notice of Allowance dated Apr. 24, 2013 in U.S. Appl. No. 13/016,735.
USPTO; Non-Final Office Action dated Apr. 4, 2012 in U.S. Appl. No. 13/030,438.
USPTO; Final Office Action dated Aug. 22, 2012 in U.S. Appl. No. 13/030,438.
USPTO; Notice of Allowance dated Oct. 24, 2012 in U.S. Appl. No. 13/030,438.
USPTO; Non-Final Office Action dated Dec. 3, 2012 in U.S. Appl. No. 13/040,013.
USPTO; Notice of Allowance dated May 3, 2013 in U.S. Appl. No. 13/040,013.
USPTO; Notice of Allowance dated Sep. 13, 2012 in U.S. Appl. No. 13/085,698.
USPTO; Non-Final Office Action dated Mar. 29, 2013 in U.S. Appl. No. 13/094,402.
USPTO; Final Office Action dated Jul. 17, 2013 in U.S. Appl. No. 13/094,402.
USPTO; Notice of Allowance dated Sep. 30, 2013 in U.S. Appl. No. 13/094,402.
USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Non-Final Office Action dated Jul. 17, 2014 in U.S. Appl. No. 13/154,271.
USPTO; Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/154,271.
USPTO; Non-Final Office Action dated May 27, 2015 in U.S. Appl. No. 13/154,271.
USPTO; Final Office Action dated Nov. 23, 2015 in U.S. Appl. No. 13/154,271.
USPTO; Notice of Allowance dated Feb. 10, 2016 in U.S. Appl. No. 13/154,271.
USPTO; Non-Final Office Action dated Oct. 27, 2014 in U.S. Appl. No. 13/169,951.
USPTO; Final Office Action dated May 26, 2015 in U.S. Appl. No. 13/169,591.
USPTO; Non-Final Office Action dated Sep. 1, 2015 in U.S. Appl. No. 13/169,951.
USPTO; Non-Final Office Action dated Jun. 24, 2014 in U.S. Appl. No. 13/181,407.
USPTO; Final Office Action dated Sep. 24, 2014 in U.S. Appl. No. 13/181,407.
USPTO; Non-Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/181,407.
USPTO; Final Office Action dated Apr. 8, 2015 in U.S. Appl. No. 13/181,407.
USPTO; Non-Final Office Action dated Jan. 23, 2013 in U.S. Appl. No. 13/184,351.
USPTO; Final Office Action dated Jul. 29, 2013 in U.S. Appl. No. 13/184,351.
USPTO; Non-Final Office Action dated Jul. 16, 2014 in U.S. Appl. No. 13/184,351.
USPTO; Final Office Action dated Feb. 17, 2015 in U.S. Appl. No. 13/184,351.
USPTO; Non-Final Office Action dated Aug. 10, 2015 in U.S. Appl. No. 13/184,351.
USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300.
USPTO; Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/187,300.
USPTO; Non-Final Office Action dated Apr. 7, 2016 in U.S. Appl. No. 13/187,300.
USPTO; Non-Final Office Action dated Oct. 1, 2012 in U.S. Appl. No. 13/191,762.
USPTO; Final Office Action dated Apr. 10, 2013 in U.S. Appl. No. 13/191,762.
USPTO; Notice of Allowance dated Aug. 15, 2013 in U.S. Appl. No. 13/191,762.
USPTO; Non-Final Office Action dated Oct. 22, 2012 in U.S. Appl. No. 13/238,960.
USPTO; Final Office Action dated May 3, 2013 in U.S. Appl. No. 13/238,960.
USPTO; Non-Final Office Action dated Apr. 26, 2013 in U.S. Appl. No. 13/250,721.
USPTO; Notice of Allowance dated Sep. 11, 2013 in U.S. Appl. No. 13/250,721.
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408.
USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Non-Final Office Action dated Jun. 17, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Final Office Action dated Dec. 18, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Notice of Allowance dated Mar. 28, 2016 in U.S. Appl. No. 13/283,408.
USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642.
USPTO; Restriction Requirement dated Apr. 21, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jan. 28, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Final Office Action dated May 14, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Final Office Action dated Mar. 20, 2015 in U.S. Appl. No. 13/312,591.
USPTO; Notice of Allowance dated May 14, 2015 in U.S. Appl. No. 13/312,591.
USPTO; Non-Final Office Action dated Apr. 9, 2014 in U.S. Appl. No. 13/333,420.
USPTO; Notice of Allowance dated Sep. 15, 2014 in U.S. Appl. No. 13/333,420.
USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609.
USPTO; Non-Final Office Action dated Oct. 10, 2012 in U.S. Appl. No. 13/406,791.
USPTO; Final Office Action dated Jan. 31, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Non-Final Office Action dated Apr. 25, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Final Office Action dated Aug. 23, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Non-Final Office Action dated Dec. 4, 2013 in U.S. Appl. No. 13/406,791.
USPTO; Final Office Action dated Apr. 21, 2014 in U.S. Appl. No. 13/406,791.
USPTO; Non-Final Office Action dated Jan. 14, 2013 in U.S. Appl. No. 13/410,970.
USPTO; Notice of Allowance dated Feb. 14, 2013 in U.S. Appl. No. 13/410,970.
USPTO; Non-Final Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271.
USPTO; Non-Final Office Action dated Jul. 31, 2014 in U.S. Appl. No. 13/411,271.
USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271.
USPTO; Notice of Allowance dated Oct. 6, 2015 in U.S. Appl. No. 13/411,271.
USPTO; Restriction Requirement dated Oct. 29, 2013 in U.S. Appl. No. 13/439,528.
USPTO; Office Action dated Feb. 4, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528.
UPPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Non-Final Office Action dated Apr. 11, 2013 in U.S. Appl. No. 13/450,368.
USPTO; Notice of Allowance dated Jul. 17, 2013 in U.S. Appl. No. 13/450,368.
USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340.
USPTO; Non-Final Office Action dated Oct. 17, 2013 in U.S. Appl. No. 13/493,897.
USPTO; Notice of Allowance dated Mar. 20, 2014 in U.S. Appl. No. 13/493,897.
USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214.
USPTO; Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Non-Final Office Action dated Sep. 11, 2013 in U.S. Appl. No. 13/550,419.
USPTO; Final Office Action dated Jan. 27, 2014 in U.S. Appl. No. 13/550,419.
USPTO; Notice of Allowance dated May 29, 2014 in U.S. Appl. No. 13/550,419.
USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066.
USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Notice of Allowance dated Jun. 12, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Notice of Allowance dated Jul. 16, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Non-Final Office Action dated Nov. 7, 2013 in U.S. Appl. No. 13/565,564.
USPTO; Final Office Action dated Feb. 28, 2014 in U.S. Appl. No. 13/565,564.
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/565,564.
USPTO; Notice of Allowance dated Nov. 3, 2014 in U.S. Appl. No. 13/565,564.
USPTO; Non-Final Office Action dated Aug. 30, 2013 in U.S. Appl. No. 13/570,067.
USPTO; Notice of Allowance dated Jan. 6, 2014 in U.S. Appl. No. 13/570,067.
USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043.
USPTO; Final Office Action dated Mar. 13, 2015 in U.S. Appl. No. 13/597,043.
USPTO; USPTO; Notice of Allowance dated Aug. 28, 2015 U.S. Appl. No. 13/597,043.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Final Office Action dated Jun. 1, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Non-Final Office Action dated Dec. 8, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Notice of Allowance dated Mar. 27, 2014 in U.S. Appl. No. 13/604,498.
USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538.
USPTO; Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538.
USPTO; Non-Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/646,403.
USPTO; Final Office Action dated Oct. 15, 2015 in U.S. Appl. No. 13/646,403.
USPTO; Notice of Allowance dated Feb. 2, 2016 in U.S. Appl. No. 13/646,403.
USPTO; Non-Final Office Action dated May 15, 2014 in U.S. Appl. No. 13/646,471.
USPTO; Final Office Action dated Aug. 18, 2014 in U.S. Appl. No. 13/646,471.
USPTO; Non-Final Office Action dated Dec. 16, 2014 in U.S. Appl. No. 13/646/,471.
USPTO; Final Office Action dated Apr. 21, 2015 in U.S. Appl. No. 13/646,471.
USPTO; Non-Final Office Action dated Aug. 19, 2015 in U.S. Appl. No. 13/646,471.
USPTO; Final Office Action dated Jan. 22, 2016 in U.S. Appl. No. 13/646,471.
USPTO; Non-Final Office Action dated May 28, 2015 in U.S. Appl. No. 13/651,144.
USPTO; Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 13/651,144.
USPTO; Non-Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 14/659,437.
USPTO; Non-Final Office Action dated Jun. 18, 2015 in U.S. Appl. No. 13/665,366.
USPTO; Non-Final Office Action dated Apr. 3, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Notice of Allowance dated Aug. 4, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151.
USPTO; Non-Final Office Action dated Aug. 20, 2013 in U.S. Appl. No. 13/679,502.
USPTO; Final Office Action dated Feb. 25, 2014 in U.S. Appl. No. 13/679,502.
USPTO; Notice of Allowance dated May 2, 2014 in U.S. Appl. No. 13/679,502.
USPTO; Non-Final Office Action dated Jul. 21, 2015 in U.S. Appl. No. 13/727,324.
USPTO; Final Office Action dated Jan. 22, 2016 in U.S. Appl. No. 13/727,324.
USPTO; Non-Final Office Action dated Oct. 24, 2013 in U.S. Appl. No. 13/749,878.
USPTO; Non-Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/749,878.
USPTO; Final Office Action dated Dec. 10, 2014 in U.S. Appl. No. 13/749,878.
USPTO; Notice of Allowance Mar. 13, 2015 dated in U.S. Appl. No. 13/749,878.
USPTO; Office Action dated Apr. 23, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Non-Final Office Action dated Dec. 19, 2013 in U.S. Appl. No. 13/784,388.
USPTO; Notice of Allowance dated Jun. 4, 2014 in U.S. Appl. No. 13/784,388.
USPTO; Restriction Requirement dated May 8, 2014 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246.
USPTO; Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Oct. 26, 2015 in U.S. Appl. No. 13/791,246.
USPTO; Final Office Action dated Apr. 20, 2016 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Nov. 6, 2015 in U.S. Appl. No. 13/791,339.
USPTO; Final Office Action dated Apr. 12, 2016 in U.S. Appl. No. 13/791,339.
USPTO; Non-Final Office Action dated Mar. 21, 2014 in U.S. Appl. No. 13/799,708.
USPTO; Notice of Allowance dated Oct. 31, 2014 in U.S. Appl. No. 13/799,708.
USPTO; Restriction Requirement dated Jun. 26, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Notice of Allowance dated Mar. 10, 2015 in U.S. Appl. No. 13/874,708.
USPTO; Notice of Allowance dated Apr. 10, 2014 in U.S. Appl. No. 13/901,341.
USPTO; Notice of Allowance dated Jun. 6, 2014 in U.S. Appl. No. 13/901,341.
USPTO; Non-Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/901,372.
USPTO; Final Office Action dated Apr. 16, 2015 in U.S. Appl. No. 13/901,372.
USPTO; Non-Final Office Action dated Jul. 8, 2015 in U.S. Appl. No. 13/901,400.
USPTO; Final Office Action dated Jan. 14, 2016 in U.S. Appl. No. 13/901,400.
USPTO; Notice of Allowance dated Aug. 5, 2015 in U.S. Appl. No. 13/901,372.
USPTO; Non-Final Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/912,666.
USPTO; Final Office Action dated Sep. 25, 2014 in U.S. Appl. No. 13/912,666.
USPTO; Non-Final Office Action dated Jan. 26, 2015 in U.S. Appl. No. 13/912,666.
USPTO; Notice of Allowance dated Jun. 25, 2015 in U.S. Appl. No. 13/912,666.
USPTO; Non-Final Office Action dated Dec. 16, 2014 in U.S. Appl. No. 13/915,732.
USPTO; Final Office Action dated Apr. 10, 2015 in U.S. Appl. No. 13/915,732.
USPTO; Notice of Allowance dated Jun. 19, 2015 in U.S. Appl. No. 13/915,732.
USPTO; Notice of Allowance dated Mar. 17, 2015 in U.S. Appl. No. 13/923,197.
USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134.
USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134.
USPTO; Restriction Requirement dated Apr. 30, 2015 in U.S. Appl. No. 13/941,216.
USPTO; Non-Final Office Action dated Jul. 30, 2015 in U.S. Appl. No. 13/941,216.
USPTO; Restriction Requirement dated Sep. 16, 2014 in U.S. Appl. No. 13/948,055.
USPTO; Non-Final Office Action dated Oct. 30, 2014 in U.S. Appl. No. 13/948,055.
USPTO; Non-Final Office Action dated Jun. 29, 2015 in U.S. Appl. No. 13/966,782.
USPTO; Final Office Action dated Jan. 4, 2016 in U.S. Appl. No. 13/966,782.
USPTO; Notice of Allowance dated Oct. 7, 2015 in U.S. Appl. No. 13/973,777.
USPTO; Non-Final Office Action dated Feb. 20, 2015 in U.S. Appl. No. 14/018,231.
USPTO; Notice of Allowance dated Jul. 20, 2015 in U.S. Appl. No. 14/018,231.
USPTO; Restriction Requirement Action dated Jan. 28, 2015 in U.S. Appl. No. 14/018,345.
USPTO; Non-Final Office Action dated Apr. 7, 2015 in U.S. Appl. No. 14/018,345.
USPTO; Final Office Action dated Sep. 14, 2015 in U.S. Appl. No. 14/018,345.
USPTO; Notice of Allowance dated Jan. 14, 2016 in U.S. Appl. No. 14/018,345.
USPTO; Notice of Allowance dated Mar. 17, 2016 in U.S. Appl. No. 14/018,345.
USPTO; Non-Final Office Action dated Mar. 26, 2015 in U.S. Appl. No. 14/031,982.
USPTO; Final Office Action dated Aug. 28, 2015 in U.S. Appl. No. 14/031,982.
USPTO; Notice of Allowance dated Nov. 17, 2015 in U.S. Appl. No. 14/031,982.
USPTO; Non-Final Office Action dated Apr. 28, 2015 in U.S. Appl. No. 14/040,196.
USPTO; Notice of Allowance dated Sep. 11, 2015 in U.S. Appl. No. 14/040,196.
USPTO; Non-Final Action dated Dec. 3, 2015 in U.S. Appl. No. 14/050,150.
USPTO; Non-Final Office Action dated Dec. 15, 2014 in U.S. Appl. No. 14/065,114.
USPTO; Final Office Action dated Jun. 19, 2015 in U.S. Appl. No. 14/065,114.
USPTO; Non-Final Office Action dated Oct. 7, 2015 in U.S. Appl. No. 14/065,114.
USPTO; Notice of Allowance dated Feb. 22, 2016 in U.S. Appl. No. 14/065,114.
USPTO; Non-Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 14/069,244.
USPTO; Notice of Allowance dated Mar. 25, 2015 in U.S. Appl. No. 14/069,244.
USPTO; Non-Final Office Action dated Sep. 9, 2015 in U.S. Appl. No. 14/090,750.
USPTO; Final Office Action dated Feb. 11, 2016 U.S. Appl. No. 14/090,750.
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/079,302.
USPTO; Final Office Action dated Sep. 1, 2015 in U.S. Appl. No. 14/079,302.
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/166,462.
USPTO; Notice of Allowance dated Sep. 3, 2015 in U.S. Appl. No. 14/166,462.
USPTO; Non-Final Office Action dated Nov. 17, 2015 in U.S. Appl. No. 14/172,220.
USPTO; Office Action dated May 29, 2014 in U.S. Appl. No. 14/183,187.
USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. No. 14/183,187.
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 14/183,187.
USPTO; Final Office Action dated Jul. 10, 2015 in U.S. Appl. No. 14/183,187.
USPTO; Non-Final Office Action dated Jan. 11, 2016 in U.S. Appl. No. No. 14/188,760.
USPTO; Non-Final Office Action dated Oct. 8, 2015 in U.S. Appl. No. 14/218,374.
USPTO; Final Office Action dated Feb. 23, 2016 in U.S. Appl. No. 14/218,374.
USPTO; Non-Final Office Action dated Sep. 22, 2015 in U.S. Appl. No. 14/219,839.
USPTO; Non-Final Office Action dated Nov. 25, 2015 in U.S. Appl. No. 14/219,879.
USPTO; Final Office Action dated Mar. 25, 2016 in U.S. Appl. No. 14/219,839.
USPTO; Non-Final Office Action dated Sep. 18, 2015 in U.S. Appl. No. 14/244,689.
USPTO; Notice of Allowance dated Feb. 11, 2016 in U.S. Appl. No. 14/244,689.
USPTO; Non-Final Office Action dated Oct. 7, 2015 in U.S. Appl. No. 14/246,969.
USPTO; Non-Final Office Action dated Nov. 20, 2015 in U.S. Appl. No. 14/260,701.
USPTO; Non-Final Office Action dated Aug. 19, 2015 in U.S. Appl. No. 14/268,348.
USPTO; Non-Final Office Action dated Jan. 6, 2016 in U.S. Appl. No. 14/268,348.
USPTO; Non-Final Office Action dated Oct. 20, 2015 in U.S. Appl. No. 14/281,477.
USPTO1; Notice of Allowance dated Feb. 23, 2016 in U.S. Appl. No. 14/327,134.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Final Office Action dated Jul. 14, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Non-Final Office Action dated Nov. 6, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Non-Final Office Action dated Nov. 24, 2015 in U.S. Appl. No. 14/498,036.
USPTO; Final Office Action dated Apr. 5, 2016 in U.S. Appl. No. 14/498,036.
USPTO; Non-Final Office Action dated Apr. 10, 2015 in U.S. Appl. No. 14/505,290.
USPTO; Notice of Allowance dated Aug. 21, 2015 in U.S. Appl. No. 14/505,290.
USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044.
USPTO; Final Office Action dated Jul. 16, 2015 in U.S. Appl. No. 14/563,044.
USPTO; Notice of Allowance dated Oct. 15, 2015 in U.S. Appl. No. 14/563,044.
USPTO; Notice of Allowance dated Dec. 2, 2015 in U.S. Appl. No. 14/563,044.
USPTO; Non-Final Office Action dated Oct. 1, 2015 in U.S. Appl. No. 14/571,126.
USPTO; Final Office Action dated Feb. 22, 2016 in U.S. Appl. No. 14/571,126.
USPTO; Non-Final Office Action dated Nov. 25, 2015 in U.S. Appl. No. 14/598,532.
USPTO; Non-Final Office Action dated Jan. 15, 2016 in U.S. Appl. No. 14/606,364.
USPTO; Non-Final Office Action dated Mar. 3, 2016 in U.S. Appl. No. 14/622,603.
USPTO; Non-Final Office Action dated Mar. 21, 2016 in U.S. Appl. No. 14/659,152.
USPTO; Final Office Action dated Mar. 17, 2016 in U.S. Appl. No. 14/659,437.
USPTO;Notice of Allowance dated Mar. 25, 2016 in U.S. Appl. No. 14/693,138.
USPTO; Non-Final Office Action dated Mar. 30, 2016 in U.S. Appl. No. 14/808,979.
USPTO; Non-Final Office Action dated Mar. 22, 2016 in U.S. Appl. No. 14/987,420.
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 29/447,298.
USPTO; Notice of Allowance dated Jul. 6, 2015 in U.S. Appl. No. 29/447,298.
USPTO; Notice of Allowance dated Nov. 26, 2014 in U.S. Appl. No. 29/481,301.
USPTO; Notice of Allowance dated Feb. 17, 2015 in U.S. Appl. No. 29/481,308.
USPTO; Notice of Allowance dated Jan. 12, 2015 in U.S. Appl. No. 29/481,312.
USPTO; Notice of Allowance dated Apr. 30, 2015 in U.S. Appl. No. 29/481,315.
USPTO; Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 29/511,011.
USPTO; Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 29/514,153.
USPTO; Notice of Allowance dated Dec. 14, 2015 in U.S. Appl. No. 29/514,264.
PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126.
PCT; International Preliminary Report on Patentability dated Oct. 11, 2011 Application No. PCT/US2010/030126.
PCT; International Search report and Written Opinion dated Jan. 20, 2011 in Application No. PCT/US2010/045368.
PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343.
PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347.
Chinese Patent Office; Office Action dated Jan. 10, 2013 in Application No. 201080015699.9.
Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9.
Chinese Patent Office; Office Action dated May 24, 2013 in Application No. 201080036764.6.
Chinese Patent Office; Office Action dated Jan. 2, 2014 in Application No. 201080036764.6.
Chinese Patent Office; Office Action dated Jul. 1, 2014 in Application No. 201080036764.6.
Chinese Patent Office; Office Action dated Feb. 8, 2014 in Application No. 201110155056.
Chinese Patent Office; Office Action dated Sep. 16, 2014 in Application No. 201110155056.
Chinese Patent Office; Office Action dated Feb. 9, 2015 in Application No. 201110155056.
Japanese Patent Office; Office Action dated Jan. 25, 2014 in Application No. 2012-504786.
Japanese Patent Office; Office Action dated Dec. 1, 2014 in Application No. 2012-504786.
Korean Patent Office; Office Action dated Dec. 10, 2015 in Application No. 10-2010-0028336.
Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 099110511.
Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Taiwan Application No. 099127063.
Bearzotti, et al., “Fast Humidity Response of a Metal Halide-Doped Novel Polymer,” Sensors and Actuators B, 7, pp. 451-454, (1992).
Bhatnagar et al., “Copper Interconnect Advances to Meet Moore's Law Milestones,” Solid State Technology, 52, 10 (2009).
Buriak, “Organometallic Chemistry on Silicon and Germanium Surfaces,” Chemical Reviews, 102, 5 (2002).
Cant et al., “Chemisorption Sites on Porous Silica Glass and on Mixed-Oxide Catalysis,” Can. J. Chem. 46, 1373 (1968).
Chang et al. “Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric,” IEEE Electron Device Letters, 30, 2, IEEE Electron Device Society 133-135 (2009).
Chen et al., “A Self-Aligned Airgap Interconnect Scheme,” IEEE International Interconnect Technology Conference, 1-3, 146-148 (2009).
Choi et al., “Improvement of Silicon Direct Bonding using Surfaces Activated by Hydrogen Plasma Treatment,” Journal of the Korean Physical Society, 37, 6, 878-881 (2000).
Choi et al., “Low Temperature Formation of Silicon Oxide Thin Films by Atomic Layer Deposition Using NH3/O2 Plasma,” ECS Solid State Letters, 2(12) 114-116 (2013).
Crowell, “Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies,” Journal of Vacuum Science & Technology A 21.5, S88-S95 (2003).
Cui et al., “Impact of Reductive N2/H2 Plasma on Porous Low-Dielectric Constant SiCOH Thin Films,” Journal of Applied Physics 97, 113302, 1-8 (2005).
Dingemans et al., “Comparison Between Aluminum Oxide Surface Passivation Films Deposited with Thermal Aid,” Plasma Aid and Pecvd, 35th IEEE PVCS, Jun. 2010.
Drummond et al., “Hydrophobic Radiofrequency Plasma-Deposited Polymer Films. Dielectric Properties and Surface Forces,” Colloids and Surfaces A, 129-130, 117-129 (2006).
Easley et al., “Thermal Isolation of Microchip Reaction Chambers for Rapid Non-Contact DNA Amplification,” J. Micromech. Microeng. 17, 1758-1766 (2007).
Ge et al., “Carbon Nanotube-Based Synthetic Gecko Tapes,” Department of Polymer Science, PNAS, 10792-10795 (2007).
George et al., “Atomic Layer Deposition: An Overview,” Chem. Rev. 110, 111-131 (2010).
Grill et al., “The Effect of Plasma Chemistry on the Damage Induced Porous SiCOH Dielectrics,” IBM Research Division, RC23683 (W0508-008), Materials Science, 1-19 (2005).
Gupta et al., “Conversion of Metal Carbides to Carbide Derived Carbon by Reactive Ion Etching in Halogen Gas,” Proceedings of SPIE—The International Society for Optical Engineering and Nanotechnologies for Space Applications, ISSN: 0277-786X (2006).
Heo et al., “Structural Characterization of Nanoporous Low-Dielectric Constant SiCOH Films Using Organosilane Precursors,” NSTI—Nanotech, vol. 4, 122-123 (2007).
H.J. Yun et al., “Comparison of Atomic Scale Etching of Poly-Si in Inductively Coupled Ar and He Plasmas,” Korean Journal of Chemical Engineering, 24, 670-673 (2007).
Jung et al., “Double Patterning of Contact Array with Carbon Polymer,” Proc. Of SPIE, 6924, 69240C, 1-10 (2008).
Katamreddy et al., “Ald and Characterization of Aluminum Oxide Deposited on Si(100) using Tris(diethylamino) Aluminum and Water Vapor,” Journal of the Electrochemical Society, 153 (10) C701-C706 (2006).
Kim et al., “Passivation Effect on Low-k S/Oc Dielectrics by H2 Plasma Treatment,” Journal of the Korean Physical Society, ″40, 1, 94-98 (2002).
Kim et al., “Characteristics of Low Tempemure High Quality Silicon Oxide by Plasma Enhanced Atomic Layer Deposition with In-Situ Plasma Densification Process,” The Electrochemical Society, ECS Transactions, College of Information and Communication Engineerign, Sungkyunkwan University, 53(1), 321-329 (2013).
King, Plasma Enhanced Atomic Layer Deposition of SiNx: H and SiO2, J. Vac. Sci. Technol., A29(4) (2011).
Kobayshi et al. “Temperature Dependence of SiO2 Film Growth with Plasma-Enhanced Atomic Layer Deposition,” International Journal on the Science and Technology of Condensed Matter, 520, 3994-3998, (2012).
Koo et al., “Characteristics of Al2O3 Thin Films Deposited Using Dimethylaluminum Isopropoxide and Trimethylaluminum Precursors by the Plasma-Enhanced Atomic-Layer Deposition Method,” Journal of Physical Society, 48, 1, 131-136 (2006).
Koutsokeras et al. Texture and Microstructure Evolution in Single-Phase TixTa1-xN Alloys of Rocksalt Structure. Journal of Applied Physics, 110, 043535-1-043535-6, (2011).
Krenek et al. “IR Laser CVD of Nanodisperse Ge—Si—Sn Alloys Obtained by Dielectric Breakdown of GeH4/SiH4/SnH4 Mixtures”, NanoCon, Brno, Czech Republic, Eu (2014).
Kurosawa et al., “Synthesis and Characterization of Plasma-Polymerized Hexamethyldisiloxane Films,” Thin Solid Films, 506-507, 176-179 (2006).
Lieberman, et al., “Principles of Plasma Discharges and Materials Processing,” Second Edition, 368-381.
Lim et al., “Low-Temperature Growth of SiO2 Films by Plasma-Enhanced Atomic Layer Deposition,” ETRI Journal, 27 (1), 118-121 (2005).
Liu et al., “Research, Design, and Experimen of End Effector for Wafer Transfer Robot,” Industrial Robot: an International Journal, 79-91 (2012).
Mackus et al., “Optical Emission Spectroscopy as a Tool for Studying Optimizing, and Monitoring Plasma-Assisted Atomic Layer Deposition Processes,” Journal of Vacuum Science and Technology, 7787 (2010).
Maeno, “Gecko Tape Using Carbon Nanotubes,” Nitto Denko Gihou, 47, 48-51.
Maeng et al., “Electrical properties of atomic layer disposition Hf02 and HfOxNy on Si Substrates with Various Crystal Orientations,” Journal of the Electrochemical Society, 155, Department of Materials Science and Engineering, Pohang University of Science and Technology, H267-H271 (2008).
Marsik et al., “Effect of Ultraviolet Curing Wavelength on Low-k Dielectric Material Properties and Plasma Damage Resistance,” Sciencedirect.com, 519, 11, 3619-3626 (2011).
Moeen, “Design, Modelling and Characterization of Si/SiGe Structures for IR Bolometer Applications,” KTH Royal Institute of Technology. Information and Communication Technology, Department of Integrated Devices and Circuits, Stockholm Sweden (2015).
Morishige et al., “Thermal Desorption and Infrared Studies of Ammonia Amines and Pyridines Chemisorbed on Chromic Oxide,” J.Chem. Soc., Faraday Trans. 1, 78, 2947-2957 (1982).
Mukai et al., “A Study of CD Budget in Spacer Patterning Technology,” Proc. Of SPIE, 6924, 1-8 (2008).
Nogueira et al., “Production of Highly Hydrophobic Films Using Low Frequency and High Density Plasma,” Revista Brasileira de Aplicacoes de Vacuo, 25(1), 45-53 (2006).
Novaro et al., “Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis,” J. Chem. Phys. 68(5), 2337-2351 (1978).
Radamson et al.,“Growth of Sn-alloyed Group IV Materials for Photonic and Electronic Applications”, Manufacturing Nano Structures, 5, 129-144.
Schmatz et al., “Unusual Isomerization Reactions in 1.3-Diaza-2-Silcyclopentanes,” Organometallics, 23, 1180-1182 (2004).
Scientific and Technical Information Center EIC 2800 Search Report dated Feb. 16, 2012.
S.D. Athavale et al., “Realization of Atomic Layer Etching of Silicon”, Journal of Vacuum Science and Technology B, 14, 3702-3705 (1996).
Sham Ma et al., “PDL Oxide Enabled Doubling,” Proc. Of SPIE, 6924, 69240D, 1-10 (2008).
Varma, et al., “Effect of Metal Halides on Thermal, Mechanical, and Electrical Properties of Polypyromelitimide Films,” Journal of Applied Polymer Science, 32, 3987-4000, (1986).
Wirths, et al, “SiGeSn Growth tudies Using Reduced Pressure Chemical Vapor Deposition Towards Optoeleconic Applications,” This Soid Films, 557, 183-187 (2014).
Yun et al., “Behavior of Various Organosilicon Molecules in Pecvd Processes for Hydrocarbon-Doped Silicon Oxide Films,” Solid State Phenomena, 124-126, 347-350 (2007).
Related Publications (1)
Number Date Country
20160240367 A1 Aug 2016 US