The present invention relates to a method for manufacturing a combined substrate, in particular, a method for manufacturing a combined substrate having a plurality of silicon carbide substrates.
In recent years, compound semiconductors have been adopted as semiconductor substrates for use in manufacturing semiconductor devices. For example, silicon carbide has a band gap larger than that of silicon, which has been used more commonly. Hence, a semiconductor device employing a silicon carbide substrate advantageously has a large breakdown voltage, low on-resistance, and properties less likely to decrease in a high temperature environment.
In order to efficiently manufacture such semiconductor devices, the substrates need to be large in size to some extent. According to U.S. Pat. No. 7,314,520 (Patent Literature 1), a silicon carbide substrate of 76 mm (3 inches) or greater can be manufactured.
Industrially, the size of a silicon carbide substrate is still limited to approximately 100 mm (4 inches). Accordingly, semiconductor devices cannot be efficiently manufactured using large substrates, disadvantageously. This disadvantage becomes particularly serious in the case of using a property of a plane other than the (0001) plane in silicon carbide of hexagonal system. Hereinafter, this will be described.
A silicon carbide substrate small in defect is usually manufactured by slicing a silicon carbide ingot obtained by growth in the (0001) plane, which is less likely to cause stacking fault. Hence, a silicon carbide substrate having a plane orientation other than the (0001) plane is obtained by slicing the ingot not in parallel with its grown surface. This makes it difficult to sufficiently secure the size of the substrate, or many portions in the ingot cannot be used effectively. For this reason, it is particularly difficult to efficiently manufacture a semiconductor device that employs a plane other than the (0001) plane of silicon carbide.
Instead of increasing the size of such a silicon carbide substrate, it is considered to use a combined substrate having a plurality of silicon carbide substrates and a supporting portion connected to each of the plurality of silicon carbide substrates. Even if the supporting portion has a high crystal defect density, problems are unlikely to take place. Hence, a large supporting portion can be prepared relatively readily. The size of the combined substrate can be increased by increasing the number of silicon carbide substrates disposed on the supporting portion, as required.
Although each of the silicon carbide substrates and the supporting portion are connected to each other in the combined substrate, adjacent silicon carbide substrates may not be connected to each other or may not be sufficiently connected to each other. Accordingly, a gap may be formed between the adjacent silicon carbide substrates. If the combined substrate having such a gap is used to manufacture a semiconductor device, foreign matters are likely to remain in this gap in the manufacturing process. In particular, a polishing agent for CMP (Chemical Mechanical Polishing) is likely to remain therein. The foreign matters can be a factor that causes process variation in the process of manufacturing a semiconductor device using the combined substrate.
The present invention has been made in view of the foregoing problem, and has its object to provide a method for manufacturing a combined substrate, so as to restrain process variation resulting from a gap between silicon carbide substrates in a process of manufacturing a semiconductor device using the combined substrate having the silicon carbide substrates.
A method for manufacturing a combined substrate in the present invention includes the following steps.
A connected substrate is prepared which has a supporting portion and first and second silicon carbide substrates. The first silicon carbide substrate has a first backside surface connected to the supporting portion, a first front-side surface opposite to the first backside surface, and a first side surface connecting the first backside surface and the first front-side surface to each other. The second silicon carbide substrate has a second backside surface connected to the supporting portion, a second front-side surface opposite to the second backside surface, and a second side surface connecting the second backside surface and the second front-side surface to each other and forming a gap between the first side surface and the second side surface. A filling portion for filling the gap is formed. Then, the first and second front-side surfaces are polished. Then, the filling portion is removed. Then, a closing portion for closing the gap is formed.
According to this manufacturing method, the gap between the first and second silicon carbide substrates is closed by the closing portion. Accordingly, foreign matters are prevented from being accumulated in the gap in the process of manufacturing a semiconductor device using the combined substrate.
Further, when the first and second front-side surfaces are polished, the gap between the first and second silicon carbide substrates is filled with the filling portion. Accordingly, foreign matters such as a polishing agent can be prevented from remaining in the gap after the polishing.
Further, at the time of the formation of the closing portion, the filling portion has been already removed. Accordingly, in the step of forming the closing portion or a subsequent step, an adverse effect otherwise caused by the existence of the filling portion over the step can be prevented.
Preferably, the step of forming the closing portion is performed by epitaxially growing the closing portion on the first and second silicon carbide substrates. In this way, the crystal structure of the closing portion can be optimized to be suitable for the semiconductor device.
Preferably, the step of removing the filling portion is performed by means of a dry process. In this way, as compared with a case where the step of removing the filling portion is performed by means of a wet process, foreign matters can be prevented from remaining in the gap from which the filling portion has been removed.
Preferably, the step of forming the filling portion is performed using at least one of a metal, a resin, and silicon. Accordingly, the step of removing the filling portion can be performed readily.
Preferably, the step of removing the filling portion and the step of forming the closing portion are performed in a continuous manner in a chamber (90). Accordingly, the first and second silicon carbide substrates can be prevented from being contaminated between the steps.
As apparent from the description above, according to the present invention, process variation resulting from a gap between silicon carbide substrates can be restrained in a process of manufacturing a semiconductor device using a combined substrate having silicon carbide substrates.
The following describes embodiments of the present invention with reference to figures.
As shown in
Each one in silicon carbide substrate group 10 has a front-side surface and a backside surface opposite to each other, and has a side surface connecting the front-side surface and the backside surface to each other. For example, silicon carbide substrate 11 has a backside surface B1 (first backside surface) connected to supporting portion 30, a front-side surface T1 (first front-side surface) opposite to backside surface B1, and a side surface S1 (first side surface) connecting backside surface B1 and front-side surface T1 to each other. Silicon carbide substrate 12 has a backside surface B2 (second backside surface) connected to supporting portion 30, a front-side surface T2 (second front-side surface) opposite to backside surface B2, and a side surface S2 (second side surface) connecting backside surface B2 and front-side surface T2 to each other.
The backside surface of each one in silicon carbide substrate group 10 is connected to supporting portion 30, thereby fixing the silicon carbide substrates of silicon carbide substrate group 10 to one another. The front-side surfaces of the silicon carbide substrates of silicon carbide substrate group 10 (front-side surfaces T1 and T2, and the like) are disposed to be flush with one another. Combined substrate 81 has a surface larger than that of each one in silicon carbide substrate group 10. Hence, in the case of using combined substrate 81, semiconductor devices can be manufactured more efficiently than in the case of using each one in silicon carbide substrate group 10 solely. Further, in the present embodiment, each one in silicon carbide substrate group 10 is a single-crystal substrate. This makes it possible to efficiently manufacture semiconductor devices each having single-crystal silicon carbide. However, depending on the purpose of use of the combined substrate, each one in silicon carbide substrate group 10 may not be a single-crystal substrate.
Further, a gap GP is formed between the side surfaces of adjacent silicon carbide substrates of silicon carbide substrate group 10. For example, gap GP is formed between side surface S1 of silicon carbide substrate 11 and side surface S2 of silicon carbide substrate 12. Preferably, gap GP includes a portion having a width LG of 100 μm or smaller. More preferably, gap GP has a width having an average of 100 μm or smaller. Further preferably, the entire gap GP has a width of 100 μM or smaller.
Closing portion 21 is provided on silicon carbide substrates 11 and 12. Specifically, as shown in
Supporting portion 30 is preferably made of silicon carbide. More preferably, supporting portion 30 has a micro pipe density higher than that of each one of silicon carbide substrate group 10. Further, preferably, supporting portion 30 has portions located on the backside surfaces of those of silicon carbide substrate group 10 and epitaxially grown onto these backside surfaces. More preferably, supporting portion 30 is entirely epitaxially grown onto silicon carbide substrate group 10.
Each one of silicon carbide substrate group 10 and supporting portion 30 have the following exemplary dimensions. That is, each one in silicon carbide substrate group 10 has a planar shape of square of 20×20 mm and has a thickness of 400 μM. Supporting portion 30 has a thickness of 400 μm.
The following describes a method for manufacturing combined substrate 81.
As shown in
As shown in
Next, silicon carbide substrate group 10 and supporting portion 30M are disposed face to face with each other such that the backside surface of each one in silicon carbide substrate group 10 faces the front-side surface of supporting portion 30M. Specifically, silicon carbide substrate group 10 may be placed on supporting portion 30M, or supporting portion 30M may be placed on silicon carbide substrate group 10.
Next, the atmosphere is adapted by reducing pressure of the atmospheric air. The pressure of the atmosphere is preferably higher than 10−1 Pa and is lower than 104 Pa.
The atmosphere described above may be an inert gas atmosphere. An exemplary inert gas usable is a noble gas such as He or Ar; a nitrogen gas; or a mixed gas of the noble gas and nitrogen gas. Further, the pressure in the atmosphere is preferably 50 kPa or smaller, and is more preferably 10 kPa or smaller.
As shown in
Next, silicon carbide substrate group 10 including silicon carbide substrates 11 and 12 and supporting portion 30M are heated. This heating is performed to cause the temperature of supporting portion 30M to reach a temperature at which silicon carbide can sublime, for example, a temperature of not less than 1800° C. and not more than 2500° C., more preferably, not less than 2000° C. and not more than 2300° C. The heating time is set at, for example, 1 to 24 hours. Further, the heating is performed to cause each one in silicon carbide substrate group 10 to have a temperature smaller than that of supporting portion 30M. Namely, a temperature gradient is formed such that temperature is decreased from below to above in
As a result of the mass transfer indicated by arrows AM, each of clearances GQ is divided into a multiplicity of voids VD. Voids VD are then transferred as indicated by arrows AV indicating a direction opposite to the direction of arrows AM. Further, as a result of this mass transfer, supporting portion 30M regrows on silicon carbide substrates 11 and 12. Namely, supporting portion 30M is reformed due to the sublimation and the recrystallization. This reformation gradually proceeds from a region close to backside surfaces B1 and B2. Namely, the portion of supporting portion 30 on the backside surface of silicon carbide substrate group 10 is gradually epitaxially grown onto this backside surface. Preferably, supporting portion 30M is entirely reformed.
Referring to
As shown in
Filling portion 40 may be made of a material such as silicon (Si). In this case, filling portion 40 can be formed by means of, for example, a sputtering method, a deposition method, a CVD method, or pouring of a solution.
Alternatively, the filling portion may be made of a metal. For example, there can be used a metal including at lease one of aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh), palladium (Pd), tin (Sn), tungsten (W), rhenium (Re), platinum (Pt), and gold (Au). It should be noted that it is preferable not to use aluminum, titanium, and vanadium of the metals listed above, in view of reliability of the semiconductor device to be manufactured using combined substrate 81. In this case, filling portion 40 can be formed by, for example, the sputtering method, the deposition method, or the pouring of a solution.
Alternatively, filling portion 40 may be made of a resin. Examples of the resin usable include at least one of acrylic resin, urethane resin, polypropylene, polystyrene, and polyvinyl chloride. In this case, filling portion 40 can be formed by means of, for example, pouring.
As shown in
Further, referring to
Referring to
As shown in
In this way, combined substrate 81 (
It should be noted that in the above-described manufacturing method, the dry process in chamber 90 is employed as the method of removing filling portion 40 (
According to the method for manufacturing combined substrate 81 in the present embodiment, gap GP between silicon carbide substrates 11 and 12 is closed by closing portion 21 (
Further, during the polishing of front-side surfaces F1 and F2 (
Further, at the time of the formation of closing portion 21 (
Preferably, the step (
Preferably, the step of removing filling portion 40 (
Preferably, the step of forming filling portion 40 is performed using at least one of a metal, a resin, and silicon. In this way, the step of removing filling portion 40 can be performed readily.
Preferably, the step of removing filling portion 40 and the step of forming closing portion 21 are performed in a continuous manner in chamber 90. Accordingly, silicon carbide substrates 11 and 12 can be prevented from being contaminated between the steps.
According to combined substrate 81 (
Further, according to combined substrate 81, gap GP between silicon carbide substrates 11 and 12 is closed by closing portion 21. Accordingly, foreign matters are not accumulated in gap GP in the process of manufacturing semiconductor devices using combined substrate 81.
Preferably, each of silicon carbide substrates 11 and 12 has a single-crystal structure. By combining silicon carbide substrates 11 and 12, the area provided by the silicon carbide substrates, each of which has a difficulty in having a large area, can be substantially larger. In this way, a semiconductor device having single-crystal silicon carbide can be manufactured efficiently.
Preferably, closing portion 21 is made of silicon carbide. Accordingly, closing portion 21 can be used as a portion made of silicon carbide in the semiconductor device.
Preferably, closing portion 21 has at least a portion epitaxially grown on silicon carbide substrates 11 and 12. In this way, the crystal structure of closing portion 21 can be optimized to be suitable for the semiconductor device.
Preferably, supporting portion 30 is made of silicon carbide. Accordingly, various physical properties of each of silicon carbide substrates 11 and 12 and supporting portion 30 can be close to each other. Further, supporting portion 30 can be used as a portion made of silicon carbide in the semiconductor device.
Preferably, supporting portion 30 has a micro pipe density higher than that of each of silicon carbide substrates 11 and 12. Accordingly, supporting portion 30 having more micropipe defects can be used, thereby further facilitating the manufacturing of combined substrate 81.
Preferably, gap GP has width LG (
Preferably, closing portion 21 has thickness LB (
Preferably, supporting portion 30 has an impurity concentration higher than that of each one in silicon carbide substrate group 10. In other words, the impurity concentration of supporting portion 30 is relatively high and the impurity concentration of silicon carbide substrate group 10 is relatively low. Since the impurity concentration of supporting portion 30 is thus high, the resistivity of supporting portion 30 can be small, whereby supporting portion 30 can be used as a portion having a low resistivity in the semiconductor device. Meanwhile, since the impurity concentration of silicon carbide substrate group 10 is thus low, the crystal defects thereof can be reduced more readily. As the impurity, for example, nitrogen, phosphorus, boron, or aluminum can be used.
The following describes a particularly preferable embodiment of silicon carbide substrate group 10 including silicon carbide substrates 11 and 12.
The crystal structure of silicon carbide of each silicon carbide substrate of silicon carbide substrate group 10 is preferably of hexagonal system, and is more preferably of 4H type or 6H type. More preferably, the front-side surface (such as front-side surface F1) of the silicon carbide substrate has an off angle of not less than 50° and not more than 65° relative to the (000-1) plane of the silicon carbide substrate. More preferably, the off orientation of the front-side surface forms an angle of 5° or smaller with the <1-100> direction of the silicon carbide substrate. More preferably, the front-side surface of the silicon carbide substrate has an off angle of not less than −3° and not more than 5° relative to the (0-33-8) plane in the <1-100> direction of the silicon carbide substrate. Utilization of such a crystal structure achieves high channel mobility in a semiconductor device that employs combined substrate 81. It should be noted that the “off angle of the front-side surface relative to the (0-33-8) plane in the <1-100> direction” refers to an angle formed by an orthogonal projection of a normal line of the front-side surface to a projection plane defined by the <1-100> direction and the <0001> direction, and a normal line of the (0-33-8) plane. The sign of positive value corresponds to a case where the orthogonal projection approaches in parallel with the <1-100> direction whereas the sign of negative value corresponds to a case where the orthogonal projection approaches in parallel with the <0001> direction. Further, as a preferable off orientation of the front-side surface, the following off orientation can be employed apart from those described above: an off orientation forming an angle of 5° or smaller relative to the <11-20> direction of silicon carbide substrate 11.
Specifically, for example, each one in silicon carbide substrate group 10 is prepared by cutting, along the (0-33-8) plane, a SiC ingot grown in the (0001) plane in the hexagonal system. The (0-33-8) plane side is employed for the front-side surface thereof, and the (03-38) plane side is employed for the backside surface thereof. This allows for particularly higher channel mobility in each of the front-side surfaces. Preferably, the normal line direction of each of the side surfaces (
For fast closing of closing portion 21, the front-side surface of each one in silicon carbide substrate group 10 has a normal line direction corresponding to <0001>. Preferably, the normal line direction of each of the side surfaces (
As shown in
Apart from the configuration described above, the configuration of the present embodiment is substantially the same as the configuration of the first embodiment. Hence, the same or corresponding elements are given the same reference characters and are not described repeatedly.
In the present embodiment, the following describes manufacturing of a semiconductor device employing combined substrate 81 (
Referring to
Drain electrode 112 is provided on supporting portion 30 and buffer layer 21 is provided on silicon carbide substrate 11. With this arrangement, a region in which flow of carriers is controlled by gate electrode 110 is disposed not on supporting portion 30 but on silicon carbide substrate 11.
Each of supporting portion 30, silicon carbide substrate 11, and buffer layer 21 has n type conductivity. Further, impurity with n type conductivity in buffer layer 21 has a concentration of, for example, 5×1017 cm−3. Further, buffer layer 21 has a thickness of, for example, 0.5 μm.
Breakdown voltage holding layer 22 is formed on buffer layer 21, and is made of SiC with n type conductivity. For example, breakdown voltage holding layer 22 has a thickness of 10 μm, and includes a conductive impurity of n type at a concentration of 5×1015 cm−3.
Breakdown voltage holding layer 22 has a surface in which the plurality of p regions 123 of p type conductivity are formed with a space therebetween. In each of p regions 123, an n+ region 124 is formed at the surface layer of p region 123. Further, at a location adjacent to n+ region 124, a p+ region 125 is formed. Oxide film 126 is formed on an exposed portion of breakdown voltage holding layer 22 between the plurality of p regions 123. Specifically, oxide film 126 is formed to extend on n+ region 124 in one p region 123, p region 123, the exposed portion of breakdown voltage holding layer 22 between the two p regions 123, the other p region 123, and n+ region 124 in the other p region 123. On oxide film 126, gate electrode 110 is formed. Further, source electrodes 111 are formed on n+ regions 124 and p+ regions 125. On source electrodes 111, upper source electrodes 127 are formed.
The maximum value of nitrogen atom concentration is equal to or greater than 1×1021 cm−3 in a region within not more than 10 nm from an interface between oxide film 126 and each of n+ regions 124, p+ regions 125, p regions 123, and breakdown voltage holding layer 22, each of which serves as a semiconductor layer. This achieves improved mobility particularly in a channel region below oxide film 126 (a contact portion of each p region 123 with oxide film 126 between each of n+ regions 124 and breakdown voltage holding layer 22).
The following describes a method for manufacturing a semiconductor device 100.
As shown in
Next, breakdown voltage holding layer 22 is formed on buffer layer 21 (
As shown in
First, an impurity of p type conductivity is selectively implanted into portions of breakdown voltage holding layer 22, thereby forming p regions 123. Then, a conductive impurity of n type is selectively implanted into predetermined regions to form n+ regions 124, and a conductive impurity of p type is selectively implanted into predetermined regions to form p+ regions 125. It should be noted that such selective implantation of the impurities is performed using a mask formed of, for example, an oxide film.
After such an implantation step, an activation annealing process is performed. For example, the annealing is performed in argon atmosphere at a heating temperature of 1700° C. for 30 minutes.
As shown in
Thereafter, a nitriding step (
It should be noted that after the annealing step using nitrogen monoxide, additional annealing process may be performed using argon (Ar) gas, which is an inert gas. Conditions for this process are, for example, as follows: the heating temperature is 1100° C. and the heating time is 60 minutes.
Next, an electrode forming step (
As shown in
It should be noted that on this occasion, heat treatment for alloying is preferably performed. For example, the heat treatment is performed in atmosphere of argon (Ar) gas, which is an inert gas, at a heating temperature of 950° C. for two minutes.
Referring to
Next, in a dicing step (
It should be noted that as a variation of the present embodiment, combined substrate 81V (
Further, a configuration may be employed in which conductivity types are opposite to those in the present embodiment. Namely, a configuration may be employed in which p type and n type are replaced with each other. Further, the DiMOSFET of vertical type has been exemplified, but another semiconductor device may be manufactured using the combined substrate of the present invention. For example, a RESURF-JFET (Reduced Surface Field-Junction Field Effect Transistor) or a Schottky diode may be manufactured.
The embodiments disclosed herein are illustrative and non-restrictive in any respect. The scope of the present invention is defined by the terms of the claims, rather than the embodiments described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
10: silicon carbide substrate group; 11: silicon carbide substrate (first silicon carbide substrate); 12: silicon carbide substrate (second silicon carbide substrate); 21, 21V: closing portion (buffer layer); 21a: first portion; 21b: second portion; 22: breakdown voltage holding layer; 30: supporting portion; 40: filling portion; 41: polishing agent; 42: polishing cloth; 80: connected substrate; 81, 81V: combined substrate; 90: chamber; 100: semiconductor device.
Number | Date | Country | Kind |
---|---|---|---|
2010-233721 | Oct 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/063953 | 6/17/2011 | WO | 00 | 3/13/2012 |