This application claims priority to Japanese Patent Application No. 2004-028117 filed Feb. 4, 2004 which is hereby expressly incorporated by reference herein in its entirety.
1. Technical Field
The present invention relates to a method for manufacturing wiring substrates and a method for manufacturing electronic devices.
2. Related Art
A subtractive method and an additive method are known as a method for forming wirings on a flexible substrate. In the subtractive method, a metal layer is formed over the entire surface of a flexible substrate, a photoresist is formed on the metal layer by patterning, and the metal layer is etched by using the photoresist as a barrier. In the additive method, a photoresist is formed on a flexible substrate by patterning, and a metal layer is deposited by a plating process in an opening section in the photoresist.
These methods entail problems concerning consumptions of resources and raw material, in view of the fact that the photoresist is finally removed, and further in view of the fact that a part of the metal layer is removed in the subtractive method. Also, they require the steps of forming and removing a photoresist, which results in a problem of a large number of manufacturing steps. Furthermore, because the measurement accuracy of wirings depends on the resolution of a photoresist, there is a limit in forming wirings at a higher level of accuracy.
It is an object of the present invention to deposit a metal layer only in a required portion, and form wirings with a simple manufacturing process.
A method for manufacturing a wiring substrate in accordance with the present invention includes the steps of
According to the present invention, the surface-active agent is patterned by irradiation of a vacuum ultraviolet radiation, and the catalyst is provided on the surface-active agent. By this, a metal layer can be precipitated only on a required portion along a predetermined pattern configuration. Accordingly, for example, there is no need to form a mask with a resist layer, and a waste of material can be reduced, and highly accurate wirings can be formed at a low cost with a simple and short-time manufacturing process.
A method for manufacturing a wiring substrate in accordance with the present invention includes the steps of:
According to the present invention, the surface-active agent is patterned by irradiation of a vacuum ultraviolet radiation, and the catalyst is provided on the surface-active agent. By this, a metal layer can be precipitated only on a required portion along a predetermined pattern configuration. Accordingly, for example, there is no need to form a mask with a resist layer, and a waste of material can be reduced, and highly accurate wirings can be formed at a low cost with a simple and short-time manufacturing process.
In the method for manufacturing a wiring substrate, the substrate may have at least one of a C—C, C═C, C—F, C—H, C—Cl, C—N, C—O, N—H and O—H bond.
In the method for manufacturing a wiring substrate, the substrate may have at least a C═C bond, and the vacuum ultraviolet radiation may have at least a property that can break down the C═C bond.
In the method for manufacturing a wiring substrate, a light source of the vacuum ultraviolet radiation may be an excimer lamp having Xe gas enclosed therein.
A method for manufacturing a wiring substrate in accordance with the present invention includes the steps of:
According to the present embodiment, the surface-active agent is patterned by using a droplet discharge method, and the catalyst is provided on the surface-active agent. By this, a metal layer can be precipitated only on a required portion along a predetermined pattern configuration. Accordingly, for example, there is no need to form a mask with a resist layer, and a waste of material can be reduced, and highly accurate wirings can be formed at a low cost with a simple and short-time manufacturing process.
A method for manufacturing a wiring substrate in accordance with the present invention includes the steps of
According to the present embodiment, the surface-active agent is patterned by using a droplet discharge method, and the catalyst is provided on the surface-active agent. By this, a metal layer can be precipitated only on a required portion along a predetermined pattern configuration. Accordingly, for example, there is no need to form a mask with a resist layer, and a waste of material can be reduced, and highly accurate wirings can be formed at a low cost with a simple and short-time manufacturing process.
In the method for manufacturing a wiring substrate, the droplet discharge method may be an ink jet method. According to this, by applying the technology that has been put in practice for ink jet printers, ink can be economically provided at a high speed without a waste.
In the method for manufacturing a wiring substrate, a surface potential of the first and second areas of the substrate may be a negative potential.
In the method for manufacturing a wiring substrate, before the step (b), the step of washing the substrate with an alkali may be further included. According to this, potential nonuniformity of the substrate surface can be made uniform by washing the substrate with an alkali, such that the surface potential can be stabilized with a simple manufacturing process.
In the method for manufacturing a wiring substrate, in the step (a), a cationic system surface-active agent may be used as the surface-active agent.
In the method for manufacturing a wiring substrate, in the step of providing the catalyst, the substrate may be dipped in a solution including tin chloride, and then dipped in a catalyst liquid including palladium chloride, to thereby deposit palladium as the catalyst.
In the method for manufacturing a wiring substrate, in the step of providing the catalyst, the substrate may be dipped in a catalyst liquid including tin-palladium to remove tin from the substrate, to thereby deposit palladium as the catalyst.
A method for manufacturing an electronic device in accordance with the present invention includes: the method for manufacturing a wiring substrate described above, and further includes the steps of mounting a semiconductor chip having an integrated circuit on the wiring substrate, and electrically connecting the wiring substrate to a circuit substrate. According to the present invention, a waste of material can be reduced, and highly accurate wirings can be formed at a low cost with a simple and short-time manufacturing process.
Embodiments of the present invention are described below with reference to the accompanying drawings.
A substrate (sheet) 10 may be a flexible substrate. As the flexible substrate, a FPC (Flexible Printed Circuit), a COF (Chip On Film) substrate, or a TAB (Tape Automated Bonding) substrate may be used. The substrate 10 is formed from an organic material (for example, resin). As the substrate 10, a polyimide substrate or a polyester substrate may be used. The substrate 10 has an organic interatomic bond. The substrate 10 may have at least one of a C—C, C═C, C—F, C—H, C—Cl, C—N, C—O, N—H and O—H bond. The substrate 10 may have at least a C═C bond. In the present embodiment, a wiring is formed on one of surfaces of the substrate 10. Alternatively, wirings may be formed on both of the surfaces of the substrate 10. The substrate 10 has first and second areas 12 and 14 (see
As shown in
As shown in
It is noted that cleaning and surface roughening treatment of the substrate 10 can be conducted at the same time by the above-described alkali washing. By this, the adhesion of a metal layer (wiring) can be improved.
As shown in
In the example shown in
As shown in
In the present example, a vacuum ultraviolet radiation (VUV; vacuum ultraviolet radiation) 22 is irradiated to the second area 14 of the substrate 10. More specifically, a mask 26 is disposed between a source of light 24 and the substrate 10, and the vacuum ultraviolet radiation 22 is irradiated to the substrate 10 through the mask 26. The vacuum ultraviolet radiation 22 is covered by a pattern 28 of the mask 26 and penetrates other areas. When the vacuum ultraviolet radiation 22 is irradiated, the interatomic bond in the second area 14 of the substrate 10 is (chemically) broken down. In the present example, the second area 14 of the substrate 10 is not mechanically cut. According to this method, the vacuum ultraviolet radiation 22 is used mainly for the action of breaking the interatomic bond of the substrate 10, such that its energy consumption can be lowered compared with the case of cutting the substrate 10. As a result, for example, a heat distortion can be prevented from being generated in the substrate 10. Moreover, the method can prevent a part of the substrate 10 from dispersing and adhering to other parts.
It is noted here that, in the present example, the first area 12 is an area where a metal layer (wiring) is formed, and has a predetermined pattern configuration. The second area 14 has a reversed configuration of the first area 12 in the surface of the substrate 10.
The vacuum ultraviolet radiation 22 may have a wavelength of 100 nm-200 nm (for example, 100 nm-180 nm). The vacuum ultraviolet radiation 22 has a property (for example, a wavelength) that can break down the organic interatomic bond. The vacuum ultraviolet radiation 22 may have a property (for example, a wavelength) that can break down at least a C═C bond of the substrate 10. It may have a property (for example, a wavelength) that can break down all of the interatomic bonds (composed of at least one of a C—C, C═C, C—F, C—H, C—Cl or C—N C—O, N—H and O—H bond) of the substrate 10. An excimer lamp enclosing Xe gas therein may be used as the source of light 24 (with a wavelength of 172 nm). Because a condenser lens for laser generation and the scanning time with a laser become unnecessary if the lamp is used, simplification of the manufacturing process can be achieved.
More specifically, a mask 26 is arranged over a wiring forming surface of the substrate 10, as shown in
When neither the substrate 10 nor the mask 26 comes in contact uniformly due to an elasticity and/or a warp of the substrate 10, an outer circumference portion of the mask 26 may be retained with a holder, and the back of the substrate 10 may be pressed toward the mask 26 side in an area of the same size as the mask 26. The source of light 24 is placed close to the substrate 10 as much as possible (for example, 10 mm or less). For example, as the source of light 24, an excimer VUV/03 Cleaning Unit (Manufacturer name; Ushio Electric Co., Model; UER20-172A/B, and Lamp specification; Dielectric barrier discharge excimer lamp enclosing Xe gas therein) may be used. When the raw material of the substrate 10 consists of polyimide, the output is adjusted to about 10 mW and irradiation is conducted for about ten minutes. The vacuum ultraviolet radiation 22 is irradiated to one of the surfaces of the substrate 10 in the present example. However, when wirings are to be formed on both sides of the substrate 10, the vacuum ultraviolet radiation 22 may be irradiated to each of the faces of the substrate 10 one by one or to both of them at the same time.
After irradiation of the vacuum ultraviolet radiation 22, the substrate 10 is washed (for example, by wet washing). By so doing, portions in the substrate 10 where the interatomic bond is dissolved are removed. In other words, by washing, the surface-active agent 18 on the second area 14 is removed. As the washing method, the substrate 10 may be dipped in a washing solution, or a shower thereof may be jetted to the substrate 10. An alkaline solution (a strong alkaline solution or a weak alkaline solution) or pure water may be used as the washing solution. Shower washing with pure water or high-pressure jet washing with pure water may be applied as the shower method. Supersonic vibration may be added at the time of washing. By washing, the surface-active agent 18 remains in the first area 12, and the surface-active agent 18 in the second area 14 is removed such that the surface of the substrate 10 is exposed.
As shown in
In the example shown in
As shown in
In the example shown in
In accordance with the present example, the surface-active agent 18 is patterned by irradiating the vacuum ultraviolet radiation 22, and the catalyst 30 is provided on the surface-active agent 18. As a result, the metal layer 34 can be deposited only on a required portion along a predetermined pattern configuration. Therefore, for example, there is no need to form a mask with a resist layer or the like, and a waste of material can be reduced, and wirings can be formed at a low cost with high accuracy, with a simple and short-time manufacturing process.
For example, the substrate 10 is dipped in a solution including tin chloride having a positive charge, and then dipped in a catalyst liquid including palladium chloride, such that palladium can be precipitated to the second area 14 (portion having a negative potential) of the substrate. It is noted that the substrate 10 may be dipped in the catalyst liquid for one minute-five minutes, and then washed with pure water.
Then, as shown in
It is noted that the details described above in the aforementioned example can be applied to other details of the present example.
As shown in
As shown in
In the present example, the surface-active agent 64 has a property to form positive ion. As the surface-active agent 64, a cationic system surface-active agent may be used. In the present example, the surface potential of the first and second areas 12 and 14 of the substrate 10 is a negative potential, such that the use of a cationic system surface-active agent makes the surface potential of the substrate 10 to be in a neutral state or a positive potential in the first area 12, and a negative potential in the second area 14.
As shown in
Then, as shown in
In accordance with the present example, the surface-active agent 64 is patterned by using a droplet discharge method, and the catalyst 68 is provided while avoiding the surface-active agent 64. By this, the metal layer 72 can be deposited only to a required portion along a predetermined pattern configuration. For this reason, for example, there is no need to form a mask with a resist layer or the like, and a waste of material can be reduced, and wirings can be formed at a low cost with high accuracy, with a simple and short-time manufacturing process.
It is noted that the details described above in the aforementioned embodiment can be applied to other details of the present example.
Then, as shown in
It is noted that the details described above in the aforementioned example can be applied to other details of the present example.
A metal layer (omitted in
When the circuit board 82 is an electrooptic panel, the electronic device is an electrooptic device. The electrooptic device may be a liquid crystal device, a plasma display device, an electroluminescence display device, or the like. In accordance with the present embodiment, a waste of material can be reduced, and wirings can be formed at a low cost with high accuracy, with a simple and short-time manufacturing process.
The present invention is not limited to the embodiments described above, and many modifications can be made. For example, the present invention may include compositions that are substantially the same as the compositions described in the embodiments (for example, a composition with the same function, method and result, or a composition with the same objects and result). Also, the present invention includes compositions in which portions not essential in the compositions described in the embodiments are replaced with others. Also, the present invention includes compositions that achieve the same functions and effects or achieve the same objects of those of the compositions described in the embodiments. Furthermore, the present invention includes compositions that include publicly known technology added to the compositions described in the embodiments.
Number | Date | Country | Kind |
---|---|---|---|
2004-028117 | Feb 2004 | JP | national |