1. Field of the Invention
The present invention relates to minimizing defects in the components produced by an extreme ultraviolet lithography (EUVL) system, and more specifically, it relates to a method for repairing defects in a EUVL mask-blank
2. Description of Related Art
Extreme ultraviolet (EUV) lithography is the top contender for next generation lithography in high-volume semiconductor manufacturing for the 32 nm node and beyond. It utilizes 13.4 nm radiation as the exposure light source and employs Mo—Si multilayer stacks as the reflector for both optic mirrors and mask blanks.
EUV mask blanks are fabricated by depositing a reflective Mo/Si multilayer film onto super-polished substrates. The coated substrate is commonly referred to as a mask blank. Subsequently, a patterned absorber layer is disposed on the surface of the reflective multilayer coating.
Localized defects in the Mo/Si multilayer can significantly alter the reflected field and introduce errors in the lithographically printed image. A defect is roughly categorized herein as being either an amplitude defect or a phase defect
Techniques for repairing localized defects have been suggested in (i) U.S. Pat. No. 6,821,682, titled “Repair Of Localized Defects In Multilayer-Coated Reticle Blanks For Extreme Ultraviolet Lithography,” incorporated herein by reference and (ii) U.S. patent application Ser. No. 09/896,722, titled “A Method To Repair Localized Amplitude Defects In A EUV Lithography Mask Blank,” incorporated herein by reference. The applicability of these techniques depends on the position of the defect in the multilayer stack. Phase defects, as shown in
Whereas both amplitude and phase defect repair techniques significantly reduce the defect-induced CD variation and allow the fabrication of functioning integrated circuits, a residual variation of the properties of the reflected light over the repair zone remains. This is acceptable for low-speed applications, but for high-speed integrated circuits such as microprocessors, CD variations limit the operating frequency. Critical signal paths determine the operating speed. Any CD variation potentially reduces the speed of signal propagation along critical paths and therefore needs to be avoided.
Therefore, a need exists for amplitude and phase defect repair techniques that significantly reduce the defect-induced CD variation and allow the fabrication of functioning integrated circuits, while compensating for any remaining unacceptable residual variation of the properties of the reflected light over the repair zone.
It is an object of the present invention to provide a method for compensating for defect-repair-induced residual variation of optical properties across a mask blank repair zone.
It is another object to provide a method that alters a portion of an absorber pattern on a surface of a mask blank in proximity to the repair zone to compensate for a local disturbance of an electro-magnetic field induced by the repair zone.
Another object is to compensate for residual variation in an amplitude repair zone.
Still another object is to compensate for residual variation in a phase-defect-repair zone.
These and other objects will be apparent to those skilled in the art based on the disclosure herein.
As discussed above, both amplitude and phase defect repair techniques result in a residual variation of the properties of the reflected light over the repair zone. The present invention compensates for the defect-repair-induced residual variation of the optical properties across the repair zone through modification or alteration of a portion of the absorber pattern on the surface of the mask blank in proximity to the repair zone to compensate for the local disturbance of the electro-magnetic field induced by the repair zone.
The repair-zone compensation has to be handled differently for amplitude and phase defect repair techniques. Two alternative processes are herein provided for the amplitude-repair-zone compensation. The first process compensates for the overall drop of the reflectance over the repair zone. The second process accounts for the overall drop and the oscillations to produce a full compensation for the effect of the repair zone. Performing the repair on a grid simplifies the amplitude repair zone compensation. To compensate for the phase-defect-repair zone, the repair zone needs to be analyzed in detail and then one of several methods may be used to modify the absorber layer. One method corrects the absorber after the patterning has been completed. Another method corrects the absorber pattern layout prior to absorber patterning.
The accompanying drawings, which are incorporated into and form part of this disclosure, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention.
It has been observed that the reflectance varies across the amplitude-defect repair zone (see “Defect Repair For Extreme Ultraviolet Lithography (EUVL) Mask Blanks,” S. P. Hau-Riege et al., Proc. SPIE 5037, (2003), incorporated herein by reference). A typical lineout of the reflectance for a circular repair zone is shown in
Phase defect repair successfully reduces the phase variation over the repair zone. However, aerial image calculations have shown that the amplitude of the reflected light is somewhat degraded, leading to a minor but noticeable CD variation.
The present invention compensates for the defect-repair-induced residual variation of the optical properties across the repair zone through modification or alteration of a portion of the absorber pattern on the surface of the mask blank in proximity to the repair zone to compensate for the local disturbance of the electro-magnetic field induced by the repair zone.
Due to the different nature of amplitude and phase defect repair, the repair-zone compensation has to be handled differently for both techniques. The repair zone induced by amplitude-defect repair is typically reproducible, and different repair zones only vary by the depth of the crater. Further, the diameter of the repair zone is commonly a few micrometers, and its depth is only a few tens of nanometers. Two alternative processes are herein provided for the amplitude-repair-zone compensation. The first process compensates for the overall drop of the reflectance over the repair zone by narrowing the absorber pattern on the mask. The resulting reduction in CD variation is shown in
The repair zone induced by phase-defect repair typically varies from defect to defect since the defect-induced multilayer distortion depends on defect size and shape, and the repair parameters have to be chosen accordingly. To compensate for the phase-defect-repair zone, the repair zone needs to be analyzed in detail either through simulations or measurements, and with techniques as described in U.S. Pat. No. 6,235,434, titled “Method for mask repair using defect compensation,” incorporated herein by reference, can be used to compensate for the repair zone.
There are several methods to modify the absorber layer to compensate for the repair zones. One method is to correct the absorber post-patterning using a focused ion beam that allows the removal and deposition of absorber material. Another method is to correct the absorber pattern layout prior to absorber patterning.
The foregoing description of the invention has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The embodiments disclosed were meant only to explain the principles of the invention and its practical application to thereby enable others skilled in the art to best use the invention in various embodiments and with various modifications suited to the particular use contemplated. The scope of the invention is to be defined by the following claims.
The United States Government has rights in this invention pursuant to Contract No. W-7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.