Advantageous exemplary embodiments of the invention are illustrated in the drawings and are described below. In the figures:
a and 3b show a schematic side view of a beam path through a light-sensitive layer exposed e.g. by means of the exposure apparatus in accordance with
a and 4b show views corresponding to
a and 5b show views corresponding to
The multiple exposure method according to the invention is suitable for the structure exposure of a light-sensitive layer using an arbitrary adjustable optical imaging system, as an example of which
For carrying out wavefront measurements of the projection objective 20, a wavefront measurement device of the type of a multichannel shearing interferometer is integrated into the exposure apparatus. Said device comprises, as shown in
In a subsequent method step 102, the measurement components are introduced into the beam path of the projection objective 20, in particular the measurement structure unit 2, the diffraction grating 13 and the detector unit 14. In a next step 103, a wavefront measurement is then carried out and the aberration behavior of the projection objective is determined. For this purpose, as indicated by the beam path shown in
Instead of a lateral shearing interferometry technique, other wavefront measurement methods are also suitable for determining the aberration behavior of the projection objective 20, e.g. point diffraction interferometry, Fizeau interferometry, Twyman-Green interferometry or Shack-Hartmann interferometry.
The determined aberration behavior of the projection objective 20 is then corrected or optimized in a desired manner by corresponding adjustment of the adjustable lenses 4, 7, 11 by means of the lens manipulators 5, 8, 12. As an alternative or in addition, the entrance focal distance of the projection objective 20 may also be set for the same purpose, the focus position in the z direction, that is to say in the direction parallel to the optical axis or to the beam path, simultaneously being set in such a way that the projection objective 20 still remains focused onto the image plane.
The effect of the optimization of the aberration behavior during method step 103 described above on the exposure of a light-sensitive layer is illustrated in
The effect of the aberration correction also becomes clear when the non-aberration-corrected beam profile 40a is compared with the corrected beam profile 40b. In the former beam profile the location of the minimum beam cross section is situated before the light-sensitive layer 30, and in the latter beam profile said location is situated within the light-sensitive layer 30. As a result, the illumination intensity of the corrected beam profile 40b is concentrated onto a smaller partial region of the layer 30 than in the uncorrected case. This enables more uniform exposure through the layer 30 in the depth direction and, as a result, e.g. in the case of a resist layer, makes it possible to obtain steeper sidewalls of the resist material remaining after development.
After the optimization of the aberration behavior, in a next method step 104 of
If this is the case, the method is ended. Otherwise, steps 101 to 105 are repeated until the required number of exposures has been reached. In the repetition of method step 101, a new illumination setting and/or a new numerical aperture are set and, in the repetition of step 102, prior to introducing the measurement components, firstly the reticle and wafer are removed from the beam path. Depending on the application, the repeated exposure steps are carried out with different mask structures or the same mask structure.
A second exposure may be carried out for example with an altered numerical aperture with respect to the first exposure, e.g. with a maximum numerical aperture of 0.8. A corresponding beam profile 40c with a significantly increased aperture angle in comparison with
During the multiple exposure with different numerical apertures, it is possible, as mentioned, to use a plurality of different reticle/mask structures in a manner known per se, e.g. in order to achieve an optical proximity correction. This makes use of the fact that during a first exposure with a small numerical aperture, a patterned pre-exposure of the substrate or resist with an increased depth of field is achieved before a second exposure with a higher numerical aperture and lower depth of field is carried out, with the result that it is possible to achieve a uniform exposure through the resist layer in the depth direction. The number of exposures required for producing a desired structure image and/or the number of different masks can be reduced, if appropriate, by the optimization of the aberration behavior of the projection objective for some or all of the exposures by means of the method described above.
As an alternative to the method example described above, a method variant is also possible in which the measurement steps for the relevant exposures are carried out beforehand prior to the first exposure and the settings determined in a manner dependent thereon at the imaging system used for producing an optimized aberration behavior are stored in order to retrieve these settings when carrying out the relevant exposure, so that a fast, aberration-optimized multiple exposure can be carried out. In simplified embodiments of the invention, the measurement step is not carried out for all of the plurality of exposures, but rather only for a portion thereof, in the extreme case only for one of the exposures.
In the above-described and further exemplary embodiments according to the invention, it is possible, for optimizing the imaging quality, to change in particular one or a plurality of the parameters of field size, polarization and wavelength between at least two exposure processes of the multiple exposure. Thus, by stopping down and/or repositioning the effectively active field region, that is to say by changing the field size and/or the field position, it is possible to mask out field regions for which undesirable, inadequately correctable aberrations have been determined. Moreover, the influence of scattered light on the exposure process can be corrected or influenced in this way. By changing the degree of polarization and/or the polarization direction of the imaging radiation, it is possible to counteract additional image errors and transmission changes in the sense of a loss of uniformity. By altering the wavelength and in particular the bandwidth of the imaging radiation, it is possible in some cases to obtain an increase in the depth of field provided that possibly accompanying contrast reductions are acceptable. It may concomitantly be expedient to restrict the field size in order to minimize chromatic transverse aberrations, that is to say CHV components.
A partial patterning of the exposed substrate may also be performed as required between two exposure processes of the multiple exposure. Thus, e.g. in the case of a double exposure method according to the so-called split pitch technique, an increase in the resolving power is achieved by virtue of the fact that after a first exposure, the resist is developed and a first structure is transferred into the underlying substrate, and afterwards the substrate is coated anew with resist and exposed again in order then to transfer a second structure information item into the same layer of the substrate.
In general, in particular the parameters of uniformity, ellipticity, polarization, focus, overlay and scattered light can also be measured and/or influenced in accordance with the invention. Uniformity is a measure of the uniform illumination of the region used for imaging. Ellipticity specifies the measure of uniform illumination of the illumination pupil. Degree of polarization and polarization direction and the variation thereof over the imaging field used likewise affect the imaging quality, as is known. Focus specifies the position of the best setting plane along the optical axis of the optical system used. The overlay parameter specifies the positioning accuracy, which may vary both between different settings and between different structures to be exposed. Scattered light that does not contribute to the imaging may cause contrast losses, on the one hand, but on the other hand also variations of the structure width over the field used.
Number | Date | Country | Kind |
---|---|---|---|
102004020983.9 | Apr 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/03780 | 4/11/2005 | WO | 00 | 7/30/2007 |
Number | Date | Country | |
---|---|---|---|
60560623 | Apr 2004 | US |