T. Brunner et al., “170 nm gates fabricated by phase-shift mask and top anti-reflector process,” 182/SPIE vol. 1927, Optical/Laser Microlithography VI, 1993, pps. 1-8. |
Kurt Ronse et al., “Comparison of various phase shift strategies and application to 0.35 μm ASIC Designs,” 2/SPIE vol, 1927, Optical/Laser Microlithography VI, 1993, pps. 1-15. |
J. M. Calvert et al., “Projection X-Ray Lithography With Ultrathin Imaging Layers and Selective Electroless Metallization,” Optical Engineering vol. 32 No. 10, Oct. 1993., pp. 2437-2445. |
H. Kyuragi et al., “Synchrotron Radiation-Excited Chemical Vapor Deposition of Silicon Nitride Films from a SiH4 + NH3 Gas Mixture,” Journal of the Electrochemical Society, vol. 138 Nov. 11 1991, pp. 3412-3416. |
Y. Matsui et al., “Low-Temperature Growth of SiO2 Thin Film by Photo-Induced Chemical Vapor Deposition Using Synchrotron Radiation,” Japanese Journal of Applied Physics, Part I, vol. 31 n.6B, Jun. 1992, pp. 1972-1978. |
J. F. Moore et al., “Deposition of Dielectric Thin Films by Irradiation of Condensed Reactant Mixtures,” Materials Research Society Symposium Proceedings, vol. 335, 1994, pp. 81-86. |
I. Nishiyama et al., “Photon Energy Dependence of Synchrofron Radiation Induced Growth Suppression and Initiation in AI Chemical Vapor Deposition II. Surface Analysis by Auger Electron Spectroscopy,” Applied Surface Science, vol. 103, 1996, pp. 299-306. |
O. R. Wood II et al., “Use of Attenuated Phase Masks in Extreme Ultraviolet Lithography,” Journal of Vacuum Science and Technology B, vol. 15, No. 6, Nov./Dec. 1997, pp. 2448-2451. |
R. Zanoni et al., “Synchrotron-Radiation-Stimulated Tungsten Deposition on Silicon from W(CO)6,” Journal of Vacuum Science and Technology A, vol. 9, No. 3, May/Jun. 1991, pp. 931-934. |
Chen HL et al., “Simulation on a New Reflection Type Attenuated Phase Shifting Mask for Extreme Ultraviolet Lithography”, Emerging Lithographic Technologies III, Santa Clara, CA, USA, Mar. 15-17, 1999, vol. 3676, pp. 578-586, XP002230586, Proceedings of the SPIE—The International Society for Optical Engineering, 1999, SPIE—Int. Soc. Opt. Eng., USA. |
Levenson et al., “Improving Resolution in Photolithography with a Phase-Shifting Mask,” IEEE Transactions on Electron Devices, vol. ED-29, No. 12, Dec. 1982, pp. 1828-1836. |
Lin, B. J., “Phase-Shifting Masks Gain an Edge,” Circuits & Devices, Mar. 1993, pp. 28-35. |
PCT International Search Report, International Application No. PCT/US 02/41466, International Filing Date Sep. 12, 2002 (6 pages). |
U.S. application Ser. No. 09/772,577, now U.S. patent 6,534,224 entitled “Phase Shift Mask and System and Method for Making the Same” by Lukanc. |