This invention relates to semiconductor electronic devices designed to achieve increased reliability.
To date, most transistors used in power electronic applications have typically been fabricated with silicon (Si) semiconductor materials. Common transistor devices for power applications include Si CoolMOS, Si Power MOSFETs, and Si Insulated Gate Bipolar Transistors (IGBTs). While Si power devices are inexpensive, they suffer from a number of disadvantages, including relatively low switching speeds and high levels of electrical noise. More recently, silicon carbide (SiC) power devices have been considered due to their superior properties. III-N semiconductor devices, such as gallium nitride (GaN) devices, are now emerging as attractive candidates to carry large currents, support high voltages and to provide very low on-resistance and fast switching times.
Most conventional III-N high electron mobility transistors (HEMTs) and related transistor devices are normally on, i.e., have a negative threshold voltage, which means that they can conduct current at zero gate voltage. These devices with negative threshold voltages are known as depletion-mode (D-mode) devices. It is preferable in power electronics to have normally off devices, i.e., devices with positive threshold voltages, that do not conduct substantial current at zero gate voltage, in order to avoid damage to the device or to other circuit components by preventing accidental turn on of the device. Normally off devices are commonly referred to as enhancement-mode (E-mode) devices.
Reliable fabrication and manufacturing of high-voltage III-N E-mode transistors has thus far proven to be very difficult. One alternative to a single high-voltage E-mode transistor is to combine a high-voltage D-mode transistor with a low-voltage E-mode transistor in the configuration of
As used herein, two or more contacts or other items such as conductive layers or components are said to be “electrically connected” if they are connected by a material which is sufficiently conducting to ensure that the electric potential at each of the contacts or other items is substantially the same or about the same regardless of bias conditions.
The device of
While there are many applications in which the hybrid device of
In one aspect, an electronic component is described. The electronic component includes: an enhancement-mode transistor having a first breakdown voltage, the enhancement-mode transistor comprising a first source, a first gate, and a first drain; a depletion-mode transistor having a second breakdown voltage which is larger than the first breakdown voltage, the depletion-mode transistor comprising a second source, a second gate, and a second drain; and a resistor comprising a first terminal and a second terminal. The second terminal and the second source are electrically connected to the first drain, and the first terminal is electrically connected to the first source.
The electronic component can optionally include one or more of the following features. The second gate can be electrically connected to the first source. The enhancement-mode transistor can be a low voltage device, and the depletion-mode transistor can be a high-voltage device. The second breakdown voltage can be at least three times the first breakdown voltage. The enhancement-mode transistor or the depletion-mode transistor can be a III-N device. The enhancement-mode transistor can be a silicon-based transistor, and the depletion-mode transistor can be a III-N transistor. The enhancement-mode transistor can have a threshold voltage, and a resistance of the resistor can be sufficiently small to reduce, compared to an electronic component lacking the resistor, a voltage of the first drain relative to the first source when the electronic component is biased such that a voltage of the first gate relative to the first source is less than the threshold voltage of the enhancement-mode transistor and a voltage of the second drain relative to the first source is greater than the first breakdown voltage and less than the second breakdown voltage. The enhancement-mode transistor can have a threshold voltage; wherein, when the electronic component is biased such that a voltage of the first gate relative to the first source is less than the threshold voltage of the enhancement-mode transistor and a voltage of the second drain relative to the first source is greater than the first breakdown voltage and less than the second breakdown voltage, a first off-state leakage current flows through the depletion-mode transistor, and a second off-state leakage current which is smaller than the first off-state leakage current flows through the enhancement-mode transistor; and at a first temperature, a resistance of the resistor is less than the first breakdown voltage divided by a difference between the second off-state leakage current and the first off-state leakage current. The enhancement-mode transistor can have a threshold voltage; wherein, when the electronic component is biased such that a voltage of the first gate relative to the first source is less than the threshold voltage of the enhancement-mode transistor and a voltage of the second drain relative to the first source is greater than the first breakdown voltage and less than the second breakdown voltage, a first off-state leakage current flows through the second source of the depletion-mode transistor, and a second off-state leakage current which is smaller than the first off-state leakage current flows through the first drain of the enhancement-mode transistor; and at a first temperature, a resistance of the resistor is less than the first breakdown voltage divided by a difference between the second off-state leakage current and the first off-state leakage current. The first temperature can be 25° C. The voltage of the first gate relative to the first source can be 0V. The electronic component can be rated to operate at a temperature range between and including a second temperature and a third temperature, the second temperature being less than the first temperature and the third temperature being greater than the first temperature, wherein the resistance of the resistor is less than the first breakdown voltage divided by the difference between the second off-state leakage current and the first off-state leakage current at all temperatures within the temperature range. The second temperature can −55° C. and the third temperature can be 200° C. The enhancement-mode transistor can have a first threshold voltage and the depletion-mode transistor can have a second threshold voltage; wherein, when the electronic component is biased such that a voltage of the first gate relative to the first source is less than the threshold voltage of the enhancement-mode transistor and a voltage of the second drain relative to the first source is greater than the first breakdown voltage and less than the second breakdown voltage, an off-state leakage current flows through the second source of the depletion-mode transistor; and at a first temperature, a resistance of the resistor is sufficiently large to prevent the off-state leakage current from exceeding a critical value. The first temperature can be 25° C. The voltage of the first gate relative to the first source can be 0V. The critical value can be a value of off-state leakage current in the depletion-mode transistor during operation of the electronic component which results in fluctuations of over 10V in the second threshold voltage. The electronic component can be rated to operate at a temperature range between and including a second temperature and a third temperature, the second temperature being less than the first temperature and the third temperature being greater than the first temperature, and the critical value being a function of temperature, wherein the resistance of the resistor is sufficiently large to prevent the off-state leakage current from exceeding the critical value at all temperatures within the temperature range. The second temperature can be −55° C. and the third temperature can be 200° C. The enhancement-mode transistor can have a first threshold voltage and the depletion-mode transistor can have a second threshold voltage; wherein a resistance of the resistor is selected such that when the electronic component is biased such that a voltage of the first gate relative to the first source is less than the first threshold voltage and a voltage of the second drain relative to the first source is greater than the first breakdown voltage and less than the second breakdown voltage, at a temperature of 25° C. a difference between a voltage of the second gate relative to the second source and the second threshold voltage is less than 10V. The electronic component can be rated to operate at a temperature range between and including a first temperature and a second temperature, wherein the difference between the voltage of the second gate relative to the second source and the second threshold voltage is less than 5V at all temperatures within the temperature range. The first temperature can be −55° C. and the second temperature can be 200° C. An absolute value of a threshold voltage of the depletion-mode transistor can be smaller than the first breakdown voltage. The absolute value of the threshold voltage of the depletion-mode transistor can be about 10V or larger. The resistor can have a resistance between 103 ohms and 109 ohms. The electronic component can further include a diode having an anode and a cathode, wherein the anode is electrically connected to the first source or to the second gate, and the cathode is electrically connected to the first drain or to the second source. The diode and the depletion-mode transistor can be integrated into a single device. The single device can be a III-N device.
In another aspect, an electronic component is described. The electronic component includes an enhancement-mode transistor having a first threshold voltage and a first breakdown voltage, the enhancement-mode transistor comprising a first source, a first gate, and a first drain; and a depletion-mode transistor having a second breakdown voltage which is larger than the first breakdown voltage, the depletion-mode transistor having a second threshold voltage, the depletion-mode transistor comprising a second source, a second gate, and a second drain, the second source being electrically connected to the first drain. At a first temperature, an off-state drain current of the enhancement-mode transistor under a first bias condition is greater than an off-state source current of the depletion-mode transistor under a second bias condition; wherein under the first bias condition, a first voltage of the first gate relative to the first source is less than the first threshold voltage, and a second voltage of the second drain relative to the first source is greater than the first breakdown voltage and less than the second breakdown voltage; and under the second bias condition, a third voltage of the second gate relative to the second source is less than the second threshold voltage, and a fourth voltage of the second drain relative to the second gate is equal to the second voltage.
The electronic component can optionally include one or more of the following features. Under the first bias condition, the first voltage can be less than or equal to 0V. Under the second bias condition, an absolute value of the third voltage is less than the first breakdown voltage. The first temperature can be 25° C. The electronic component can be rated to operate at a temperature range between and including a second temperature and a third temperature, wherein the second temperature is less than the first temperature and the third temperature is greater than the second temperature, and the off-state drain current of the enhancement-mode transistor under the first bias condition is greater than the off-state source current of the depletion-mode transistor under the second bias condition at all temperatures within the temperature range. The second temperature can be −55° C. and the third temperature can be 200° C. The off-state source current of the depletion-mode transistor under the second bias condition can be less than 0.75 times the off-state drain current of the enhancement-mode transistor under the first bias condition. At a second temperature, the off-state drain current of the enhancement-mode transistor under a third bias condition is less than the off-state source current of the depletion-mode transistor under the second bias condition, wherein under the third bias condition, the first voltage is less than the first threshold voltage, and a fifth voltage of the first drain relative to the first source is less than the first breakdown voltage. Under the third bias condition, the first voltage is less than or equal to 0V. The second temperature can be less than the first temperature. The electronic component can further include a current-carrying component having a first terminal and a second terminal, wherein the first terminal is electrically connected to the first source or to the second gate, and the second terminal is electrically connected to the first drain or to the second source. The current-carrying component can be a resistor or a diode. The current-carrying component can comprise a resistor and a diode. The second gate can be electrically connected to the first source. The enhancement-mode transistor can be a low voltage device, and the depletion-mode transistor can be a high-voltage device. The second breakdown voltage can be at least three times the first breakdown voltage. The enhancement-mode transistor or the depletion-mode transistor can be a III-N device. The enhancement-mode transistor can be a silicon-based transistor, and the depletion-mode transistor can be a III-N transistor. The depletion-mode transistor can be a III-N transistor comprising a III-N buffer structure, a III-N channel layer, and a III-N barrier layer, wherein the buffer structure can be doped with iron, magnesium, or carbon. A first layer of the III-N buffer structure can be at least 0.8 microns thick and can be doped with Fe and C, the concentration of Fe being at least 8×1017 cm−3 and the concentration of C being at least 8×1019 cm−3.
In another aspect, an electronic component is described. The electronic component includes an enhancement-mode transistor having a first breakdown voltage and a first threshold voltage, the enhancement-mode transistor comprising a first source, a first gate, and a first drain; a depletion-mode transistor having a second breakdown voltage which is larger than the first breakdown voltage, the depletion-mode transistor having a second threshold voltage, the depletion-mode transistor comprising a second source, a second gate, and a second drain; and a current-carrying component comprising a first terminal and a second terminal, the second terminal and the second source being electrically connected to the first drain, and the first terminal being electrically connected to the first source. The current-carrying component is configured to reduce, compared to an electronic component lacking the current-carrying component, a voltage of the first drain relative to the first source when the electronic component is biased such that a voltage of the first gate relative to the first source is less than the first threshold voltage and a voltage of the second drain relative to the first source is greater than the first breakdown voltage and less than the second breakdown voltage.
The electronic component can optionally include one or more of the following features. The voltage of the first gate relative to the first source can be 0V or less. The current-carrying component can be a diode. The first terminal can be an anode and the second terminal can be a cathode. The first terminal can be a cathode and the second terminal can be an anode. A turn-on voltage or a Zener breakdown voltage of the diode can be less the first breakdown voltage. At a first temperature, a current flowing through the diode can be greater than an off-state current flowing through the first drain of the enhancement-mode transistor when the electronic component is biased such that the voltage of the first gate relative to the first source is less than the first threshold voltage and the voltage of the second drain relative to the first source is greater than the first breakdown voltage and less than the second breakdown voltage. The first temperature can be between −55° C. and 200° C. The diode can have a turn-on voltage which is greater than 0V, and the depletion-mode transistor can have a threshold voltage which is less than 0V, wherein the turn-on voltage or a Zener breakdown voltage of the diode is greater than an absolute value of the threshold voltage of the depletion-mode transistor. The diode and the depletion-mode transistor can be integrated into a single device. The diode and the depletion-mode transistor can each comprise a conductive channel, wherein the single device comprises a channel region which is shared between the conductive channels of the diode and the depletion-mode transistor. The electronic component can further comprise a resistor having a first resistor terminal and a second resistor terminal, wherein the first resistor terminal is electrically connected to the first source or to the second gate, and the second resistor terminal is electrically connected to the first drain or to the second source. A channel of the diode and a channel of the depletion-mode transistor can be in a first semiconductor material layer. The electronic component can further comprise a resistor having a first resistor terminal and a second resistor terminal, wherein the first resistor terminal is electrically connected to the first source or to the second gate, and the second resistor terminal is electrically connected to the first drain or to the second source. The second gate can be electrically connected to the first source. The enhancement-mode transistor can be a low voltage device, and the depletion-mode transistor can be a high-voltage device. The enhancement-mode transistor or the depletion-mode transistor can be a III-N device. The enhancement-mode transistor can be a silicon-based transistor, and the depletion-mode transistor can be a III-N transistor. The current-carrying component can be a resistor. The resistor can have a resistance between 103 ohms and 109 ohms. At a first temperature, a current flowing through the resistor can be greater than an off-state current flowing through the drain of the enhancement-mode transistor when the electronic component is biased such that the voltage of the first gate relative to the first source is less than the first threshold voltage and the voltage of the second drain relative to the first source is greater than the first breakdown voltage and less than the second breakdown voltage. The first temperature can be between −55° C. and 200° C. The current-carrying component can comprise an additional transistor having a source, a gate, and a drain, wherein the gate of the additional transistor is electrically connected to the source or the drain of the additional transistor. The additional transistor can be an enhancement-mode transistor. The current-carrying component can comprise a first resistor having a first and second terminal and an additional transistor having a source, a gate, and a drain, wherein the first terminal of the first resistor is the first terminal of the current-carrying component, and the drain of the additional transistor is the second terminal of the current-carrying component. The second terminal of the first resistor can be electrically connected to the gate of the additional transistor. The electronic component can further comprise a second resistor having a first and second terminal, wherein the first terminal of the second resistor is electrically connected to the source of the additional transistor, and the second terminal of the second resistor is electrically connected to the gate of the additional transistor. The current-carrying component can comprise a first resistor having a first and second terminal and an additional transistor having a source, a gate, and a drain, wherein the first terminal of the first resistor is the second terminal of the current-carrying component, and the source of the additional transistor is the first terminal of the current-carrying component. The second terminal of the first resistor can be electrically connected to the gate of the additional transistor. The electronic component can further comprise a second resistor having a first and second terminal, wherein the first terminal of the second resistor is electrically connected to the drain of the additional transistor, and the second terminal of the second resistor is electrically connected to the gate of the additional transistor.
In another aspect, a method of producing an electronic component is described. The method comprises: connecting a first terminal of a current-carrying component to a first source of an enhancement-mode transistor, the enhancement mode transistor having a first breakdown voltage and a first threshold voltage, the enhancement-mode transistor comprising the first source, a first gate, and a first drain; and connecting a second terminal of the current-carrying component to the first drain and a second source of a depletion-mode transistor, the depletion-mode transistor having a second breakdown voltage which is larger than the first breakdown voltage, the depletion-mode transistor having a second threshold voltage, the depletion-mode transistor comprising the second source, a second gate, and a second drain. The current-carrying component is configured to reduce, compared to an electronic component lacking the current-carrying component, a voltage of the first drain relative to the first source when the electronic component is biased such that a voltage of the first gate relative to the first source is less than the first threshold voltage and a voltage of the second drain relative to the first source is greater than the first breakdown voltage and less than the second breakdown voltage.
The method can optionally include one or more of the following features. The method can further comprise encasing the electronic component into a package, including connecting the second drain to a package drain terminal, connecting the first source to a package source terminal, and connecting the first gate to a package gate terminal. The method can further comprise connecting the second gate to the first source. The current-carrying component can be a diode. At a first temperature, a current flowing through the diode can be greater than an off-state current flowing through the first drain of the enhancement-mode transistor when the electronic component is biased such that the voltage of the first gate relative to the first source is less than the first threshold voltage and the voltage of the second drain relative to the first source is greater than the first breakdown voltage and less than the second breakdown voltage. The enhancement-mode transistor can be a silicon-based transistor, and the depletion-mode transistor can be a III-N transistor. The current-carrying component can be a resistor.
Devices and methods described herein can increase the reliability of high power semiconductor electronic devices.
Like reference symbols in the various drawings indicate like elements.
Described herein are hybrid enhancement-mode electronic components which include a depletion-mode transistor and an enhancement mode transistor. The depletion-mode transistor, which can be a high-voltage device, has a larger breakdown voltage than the enhancement-mode transistor, which can be a low-voltage device. The maximum voltage that can be blocked by the hybrid electronic components when they are biased in the off state is at least as large as the maximum blocking or breakdown voltage of the depletion-mode transistor. The hybrid electronic components described herein are configured such that reliability and/or performance are improved as compared to conventional hybrid devices. Some implementations include a resistor connected in parallel to the enhancement-mode transistor, while other implementations include a diode connected in parallel to the enhancement-mode transistor. In yet other implementations, the depletion-mode transistor is designed or configured to have a lower off-state leakage current than that of the enhancement-mode transistor, as is further described below.
As used herein, a “hybrid enhancement-mode electronic device or component”, or simply a “hybrid device or component”, is an electronic device or component formed of a depletion-mode transistor and an enhancement-mode transistor, where the depletion-mode transistor is capable of a higher operating and/or breakdown voltage as compared to the enhancement-mode transistor, and the hybrid device or component is configured to operate similarly to a single enhancement-mode transistor with a breakdown and/or operating voltage about as high as that of the depletion-mode transistor. That is, a hybrid enhancement-mode device or component includes at least 3 nodes having the following properties. When the first node (source node) and second node (gate node) are held at the same voltage, the hybrid enhancement-mode device or component can block a positive high voltage (i.e., a voltage larger than the maximum voltage that the enhancement-mode transistor is capable of blocking) applied to the third node (drain node) relative to the source node. When the gate node is held at a sufficiently positive voltage (i.e., greater than the threshold voltage of the enhancement-mode transistor) relative to the source node, current passes from the source node to the drain node or from the drain node to the source node when a sufficiently positive voltage is applied to the drain node relative to the source node. When the enhancement-mode transistor is a low-voltage device and the depletion-mode transistor is a high-voltage device, the hybrid component can operate similarly to a single high-voltage enhancement-mode transistor. The depletion-mode transistor can have a breakdown and/or maximum operating voltage that is at least two times, at least three times, at least five times, at least ten times, or at least twenty times that of the enhancement-mode transistor.
As used herein, a “high-voltage device”, such as a high-voltage transistor, is an electronic device which is optimized for high-voltage switching applications. That is, when the transistor is off, it is capable of blocking high voltages, such as about 300V or higher, about 600V or higher, about 1200V or higher, or about 1700V or higher, and when the transistor is on, it has a sufficiently low on-resistance (RON) for the application in which it is used, i.e., it experiences sufficiently low conduction loss when a substantial current passes through the device. A high-voltage device can at least be capable of blocking a voltage equal to the high-voltage supply or the maximum voltage in the circuit for which it is used. A high-voltage device may be capable of blocking 300V, 600V, 1200V, 1700V, or other suitable blocking voltage required by the application. In other words, a high-voltage device can block any voltage between 0V and at least Vmax, where Vmax is the maximum voltage that could be supplied by the circuit or power supply. In some implementations, a high-voltage device can block any voltage between 0V and at least 2*Vmax. As used herein, a “low-voltage device”, such as a low-voltage transistor, is an electronic device which is capable of blocking low voltages, such as between 0V and Vlow (where Vlow is less than Vmax), but is not capable of blocking voltages higher than Vlow. In some implementations, Vlow is equal to about |Vth|, greater than |Vth|, about 2*|Vth|, about 3*|Vth|, or between about |Vth| and 3*|Vth|, where |Vth| is the absolute value of the threshold voltage of a high-voltage transistor, such as a high-voltage-depletion mode transistor, contained within the hybrid component in which a low-voltage transistor is used. In other implementations, Vlow is about 10V, about 20V, about 30V, about 40V, or between about 5V and 50V, such as between about 10V and 40V. In yet other implementations, Vlow is less than about 0.5*Vmax, less than about 0.3*Vmax, less than about 0.1*Vmax, less than about 0.05*Vmax, or less than about 0.02*Vmax.
In typical power switching applications in which high-voltage switching transistors are used, the transistor is during the majority of time in one of two states. In the first state, which is commonly referred to as the “on state”, the voltage at the gate electrode relative to the source electrode is higher than the transistor threshold voltage, and substantial current flows through the transistor. In this state, the voltage difference between the source and drain is typically low, usually no more than a few volts, such as about 0.1-5 volts. In the second state, which is commonly referred to as the “off state”, the voltage at the gate electrode relative to the source electrode is lower than the transistor threshold voltage, and no substantial current, apart from off-state leakage current, flows through the transistor. In this second state, the voltage between the source and drain can range anywhere from about 0V to the value of the circuit high voltage supply, which in some cases can be as high as 100V, 300V, 600V, 1200V, 1700V, or higher, but can be less than the breakdown voltage of the transistor. In some applications, inductive elements in the circuit cause the voltage between the source and drain to be even higher than the circuit high voltage supply. Additionally, there are short times immediately after the gate has been switched on or off during which the transistor is in a transition mode between the two states described above. When the transistor is in the off state, it is said to be “blocking a voltage” between the source and drain. As used herein, “blocking a voltage” refers to the ability of a transistor, device, or component to prevent significant current, such as current that is greater than 0.001 times the average operating current during regular on-state conduction, from flowing through the transistor, device, or component when a voltage is applied across the transistor, device, or component. In other words, while a transistor, device, or component is blocking a voltage that is applied across it, the total current passing through the transistor, device, or component will not be greater than 0.001 times the average operating current during regular on-state conduction.
When the hybrid enhancement-mode device of
The voltage across the E-mode transistor when the hybrid device is in the off state depends partially on the levels of off-state leakage current in the E-mode and D-mode transistors. While ideal transistors conduct no current when biased in the off-state, real transistors can conduct small off-state leakage currents, typically much smaller than the currents passing through the transistors when they are biased in the on-state. The off-state leakage current of a transistor is the current flowing through the drain or through the source of the transistor when it is blocking a certain voltage. In the absence of gate leakage and/or other charge trapping effects, the off-state source leakage and off-state drain leakage are substantially the same, and substantially all off-state leakage current flows between the drain and the source of the transistor. In the presence of gate leakage and/or other trapping effects, while most off-state leakage current typically flows between the drain and the source, some off-state leakage current may flow between the gate and drain or between the gate and source, and so the leakage currents through the source and drain may differ. However, in many cases the source and drain leakage currents do not vary too much from one another. For example, the off-state drain leakage current of the E-mode transistor 22 is the current flowing through its drain 33 when it is blocking a voltage, and the off-state source leakage current of the E-mode transistor 22 is the current flowing through its source 31 when it is blocking a voltage. The off-state drain leakage current of the D-mode transistor 23 is the current flowing through its drain 36 when it is blocking a voltage, and the off-state source leakage current of the D-mode transistor 23 is the current flowing through its source 64 when it is blocking a voltage. The off-state leakage currents of a device can depend on the gate voltage, the source voltage, and the drain voltage applied to the device.
In the hybrid device of
In conventional hybrid devices, such as that shown in
For example, suppose that the D-mode transistor, isolated from the E-mode transistor, conducts a first off-state source leakage current when blocking a voltage smaller than Vbr,D, and the E-mode transistor, isolated from the D-mode transistor, conducts a second off-state drain leakage current when blocking a voltage smaller than Vbr,E. In conventional hybrid devices, the transistors are configured so that the first source leakage current (the leakage current through the source of the D-mode transistor) is greater than the second drain leakage current (the leakage current through the drain of the E-mode transistor.) Consequently, when the E-mode transistor 22 and the D-mode transistor 23 are combined in the hybrid device, the D-mode transistor 23 drives the off-state leakage current of the hybrid device. That is, the off-state drain leakage current of the hybrid device is approximately equal to the first off-state drain leakage current.
In the case where the D-mode transistor 23 drives the off-state drain leakage current of the hybrid device, the voltage at the drain 33 of the E-mode transistor 22 during off-state operation of the hybrid device typically adjusts so that the drain-source voltage of the E-mode transistor is approximately equal to Vbr,E. In this case, the E-mode transistor 22 is biased at breakdown, and the drain current that flows through the E-mode transistor 22 during off-state operation of the hybrid device is approximately equal to the off-state source current of the D-mode transistor.
In cases where the off-state source leakage current in the D-mode transistor at threshold Vth,D of the D-mode transistor is somewhat greater (i.e., only slightly greater) than the off-state drain leakage current of the E-mode transistor, further reducing the gate-source voltage of the D-mode transistor below Vth,D but maintaining it above −Vbr,E can result in the off-state drain leakage current of the E-mode transistor being the same as the off-state source leakage current of the D-mode transistor. In those cases, the voltage at the drain 33 of the E-mode transistor 22 adjusts so that the drain-source voltage of the E-mode transistor is between Vbr,E and |Vth,D| but is typically closer to Vbr,E. The drain-source voltage of the E-mode transistor is the same or about the same as the source-gate voltage of the D-mode transistor because the source 32 of the E-mode transistor is electrically connected to the gate 35 of the D-mode transistor.
The threshold voltage of a transistor can be determined using the relationship between the gate voltage of a transistor, VGS, and the current through the transistor, IDS.
As seen in
Reliability and/or performance of hybrid devices can degrade during device operation if the gate-source voltage VGS,D of the D-mode transistor drops too far below the threshold voltage Vth,D of the D-mode transistor, or when the E-mode transistor is biased at its breakdown voltage Vbr,E, during off-state operation of the hybrid device. Specifically, if a high-voltage III-N HEMT transistor is used for the D-mode device, the threshold voltage of the III-N HEMT can fluctuate during operation of the hybrid device for hybrid designs in which the gate-source voltage of the D-mode transistor drops too far below the threshold voltage of the D-mode transistor. Significant fluctuations in the threshold voltage of the D-mode transistor, such as greater than 3V, greater than 5V, greater than 8V, or greater than 10V, can result in an unacceptably high degradation in device reliability and/or performance. Off-state operation of the D-mode transistor at gate-source voltages further below (i.e., more negative than) Vth,D can result in higher threshold voltage fluctuations. Furthermore, operation of the E-mode transistor at its breakdown voltage Vbr,E can decrease the useful lifetime of the E-mode transistor.
As used herein, the terms III-Nitride or III-N materials, layers, devices, structures, etc., refer to a material, layer, device, or structure comprised of a compound semiconductor material according to the stoichiometric formula AlxInyGazN, where x+y+z is about 1. In a III-Nitride or III-N device, such as a transistor or HEMT, the conductive channel can be partially or entirely contained within a III-N material layer.
The D-mode transistor 53 and an E-mode transistor 52 can optionally be encased in a package 10, the package including a source lead 11, a gate lead 12, and a drain lead 13. The D-mode transistor 53 has a larger breakdown and/or operating voltage, for example at least three times, at least six times, at least ten times, or at least twenty times the breakdown and/or operating voltage, as compared to the E-mode transistor 52. The D-mode transistor 53 can be a high-voltage transistor, and the E-mode transistor 52 can be a low-voltage transistor. The threshold voltage Vth,E of the E-mode transistor 52 is greater than 0V, for example greater than 1V, greater than 1.5V, or greater than 2V, and the threshold voltage Vth,D of the D-mode transistor 53 is less than 0V, for example less than −2V, less than −8V, less than −15V, less than −20V, or less than −24V. In some cases, D-mode transistors with lower (i.e., more negative) threshold voltages are easier to fabricate reliably. The breakdown voltage of the E-mode transistor 52 is greater than |Vth,D|. The source electrode 61 of the E-mode transistor 52 and the gate electrode 65 of the D-mode transistor 53 are both electrically connected together and can be electrically connected to the source lead 11. The gate electrode 62 of the E-mode transistor 52 can be electrically connected to the gate lead 12. The drain electrode 66 of the D-mode transistor 53 can be electrically connected to the drain lead 13. The source electrode 64 of the D-mode transistor 53 is electrically connected to the drain electrode 63 of the E-mode transistor 52.
The hybrid device 15 of
This relationship between the leakage currents of the E-mode and D-mode transistors can be expressed by considering two bias conditions of the hybrid device 15. The E-mode and D-mode transistors can be configured so that at least at one temperature, for example at room temperature (25° C.), the off-state leakage current that flows through the E-mode transistor 52, i.e., through the drain 63 of the E-mode transistor 52, when the hybrid device is biased under a first bias condition is greater than the off-state leakage current that flows through the D-mode transistor 53, i.e., through the source 64 of the D-mode transistor, when the hybrid device is biased under a second bias condition.
Under the first bias condition, the voltage of the gate 62 relative to the source 61, VGS,E, of the E-mode transistor 52 is less than the threshold voltage Vth,E of the E-mode transistor 52, such as at least 1V or at least 2V below Vth,E, or at or below 0V, and the voltage of the drain 66 of the D-mode transistor 53 relative to the source 61 of the E-mode transistor 52 is greater than Vbr,E and less than the breakdown voltage Vbr,D of the D-mode transistor 53. Under the second bias condition, the voltage of the gate 65 relative to the source 64 of the D-mode transistor 53, VGS,D, is less than or equal to Vth,D, such as at least 2V below Vth,D or between Vth,D and −Vbr,E, and the voltage of the drain 66 relative to the gate 65 of the D-mode transistor 53 is equal to the voltage of the drain 66 of the D-mode transistor 53 relative to the source 61 of the E-mode transistor 52 applied under the first bias condition. In other words, at least at one temperature, the off-state current that flows through both the drain of the E-mode transistor 52 and the source of the D-mode transistor 53 during conventional off-state operation of the hybrid device 15 is greater than the off-state current that flows through the source of the D-mode transistor 53 when the D-mode transistor 53 is operated independently in the off state.
When the relationships for the off-state currents of the E-mode transistor 52 and D-mode transistor 53 described above are satisfied, the hybrid device 15 functions in the off-state as follows. When the voltage applied to the gate 62 relative to the source 61 of the E-mode transistor 52 is less than the threshold voltage Vth,E of the E-mode transistor 52, for example the applied voltage is about 0V or less, and the voltage applied to the drain 66 of the D-mode transistor 53 relative to the source 61 of the E-mode transistor 52 is less than the breakdown voltage of the D-mode transistor 53, the hybrid device blocks a voltage, with only a small off-state leakage current passing through both the D-mode and E-mode transistors. Because the D-mode transistor 53 and E-mode transistor 52 are connected in series, the voltage at the drain 63 of the E-mode transistor 52 (or equivalently at the source 64 of the D-mode transistor 53) adjusts such that the off-state current passing through the E-mode transistor 52, i.e., through the drain 63 of the E-mode transistor, and through the D-mode transistor 53, i.e., through the source 64 of the D-mode transistor, is the same or about the same.
Since the off-state current of the E-mode transistor 52 typically does not vary substantially with variations in drain-source voltage, at least within the range of variations typical of the hybrid device 15 of
In some implementations, either the E-mode transistor 52 or the D-mode transistor 53, or both, is a III-N transistor, such as a III-N HEMT, HFET, MESFET, JFET, MISFET, POLFET, or CAVET. In other implementations, either the E-mode transistor 52 or the D-mode transistor 53, or both, is a silicon-based transistor, such as a silicon power MOSFET (i.e., the semiconductor materials in the device are primarily formed of Silicon).
In yet other implementations, the E-mode transistor is a silicon-based transistor, and the D-mode transistor is a III-N transistor. III-N transistors typically include a III-N channel layer, such as GaN, and a III-N barrier layer with a wider bandgap than the III-N channel layer, for example AlxGa1-xN with 0<x≦1. A two-dimensional electron gas (2DEG) channel is induced in the channel layer near the interface between the channel layer and the barrier layer. Source and drain electrodes contact the 2DEG channel, and a gate electrode modulates the charge in the channel in a portion of the transistor between the source electrode and the drain electrode. In a III-Nitride or III-N device, the conductive channel can be partially or entirely contained within a III-N material layer.
For example, the D-mode transistor 53 of
The leakage currents in the D-mode transistor of
In some implementations, the E-mode transistor 52 and/or the D-mode transistor 53 is a nitrogen-face or N-face or N-polar III-N device. A nitrogen-face or N-face or N-polar III-N device can include III-N materials grown with an N-face or [0 0 0 1 bar] face furthest from the growth substrate, or can include source, gate, or drain electrodes on an N-face or [0 0 0 1 bar] face of the III-N materials. Alternatively, the E-mode transistor 52 and/or the D-mode transistor 53 could be a Ga-face or III-face or III-polar III-N device. A Ga-face or III-face or III-polar III-N device can include III-N materials grown with a group III-face or [0 0 0 1] face furthest from the growth substrate, or can include source, gate, or drain electrodes on a group III-face or [0 0 0 1] face of the III-N materials.
For various applications, the hybrid device 15 of
In other implementations, the relationships hold at least at a first temperature but do not hold at a second temperature. For example, at the second temperature, the off-state drain current of the E-mode transistor 52 under a third bias condition may be less than the off-state source current of the D-mode transistor 53 under the first or second bias condition, where under the third bias condition, VGS,E is less than Vth,E (for example, VGS,E is less than or equal to 0V), and the voltage of the drain relative to the source VDS,E of the E-mode transistor is less than Vbr,E. In other words, at the second temperature, the off-state current flowing through the source of the D-mode transistor 53 during normal off-state operation of the hybrid device 15 is greater than the off-state current that flows through the drain of the E-mode transistor 52 when the E-mode transistor is independently operated in the off-state with VDS,E<Vbr,E. When the hybrid device 15 is operated in the off-state at the second temperature, the voltage VDS,E across the E-mode transistor 52 is about equal to Vbr,E, so that the off-state current passing through the drain of the E-mode transistor 52 is equal to or about equal to the off-state current passing through the source of the D-mode transistor 53. The first and second temperature may both be within the range of temperatures that the device is configured or rated to operate within. In some cases, the first temperature is greater than the second temperature, whereas in other cases the second temperature is greater than the first temperature.
For example, off-state leakage current in a silicon-based transistor typically increases as a function of temperature at a higher rate than in a III-N based transistor. Hence, when a silicon-based transistor is used for E-mode transistor 52 and a III-N transistor is used for D-mode transistor 53, the first temperature can be greater than the second temperature. Alternatively, when a III-N transistor is used for E-mode transistor 52 and a silicon-based transistor is used for D-mode transistor 53, the first temperature can be less than the second temperature. Or, if both transistors are III-N transistors, then whether the first temperature is greater than or less than the second temperature depends on the specific structure of each of the two transistors.
While in some applications normal operation of hybrid device 15 at a temperature where VDS,E is about equal to Vbr,E (or is much greater than |Vth,D|) in the off state can be sustained for short amounts of time, prolonged operation at such a temperature can result in poor reliability and/or performance, or possibly in device failure. Additional modifications to the hybrid device which prevent the drain-source voltage VDS,E of the E-mode transistor from exceeding |Vth,D| by too much can further improve reliability and/or performance of the hybrid device. Examples of such modifications are shown in
The hybrid electronic components 75, 85, 95, and 99 of
The hybrid components 75, 85, 95, and 99 each also include a current-carrying device or component (herein a “current-carrying component”) which includes two terminals, one of which is directly connected to the source 61 (that is, connected to the source without any intermediary layers, devices, or components between the terminal and the source) of the E-mode transistor 72, and the other of which is directly connected to the drain 63 of the E-mode transistor. The current-carrying component can, for example, be a resistor 74, as in
Referring to
At some temperatures, the off-state drain current of the E-mode transistor 72 under a first bias condition may be greater than the off-state source current of the D-mode transistor 73 under a second bias condition, while at other temperatures the off-state drain current of the E-mode transistor 72 under a third bias condition may be less than the off-state source current of the D-mode transistor 73 under the second bias condition. Under the first bias condition, the gate-source voltage VGS,E of the E-mode transistor 72 is less than Vth,E, for example VGS,E can be 0V or less, and the voltage of the drain 66 of the D-mode transistor 73 relative to the source 61 of the E-mode transistor 72 is greater than Vbr,E and less than Vbr,D. In other words, under the first bias condition, the hybrid component 75 is biased in the off-state and blocks a voltage between Vbr,E and Vbr,D. Under the second bias condition, the voltage of the gate 65 relative to the source 64 of the D-mode transistor 73, VGS,D, is less than or equal to Vth,D, such as at least 2V below Vth,D or between Vth,D and −Vbr,E, and the voltage of the drain 66 relative to the gate 65 of the D-mode transistor 73 is equal to the voltage of the drain 66 of the D-mode transistor 73 relative to the source 61 of the E-mode transistor 72 applied under the first bias condition. Under the third bias condition, VGS,E is less than Vth,E, for example VGS,E can be 0V or less, and VDS,E is less than Vbr,E.
During off-state operation of hybrid component 75 at temperatures where off-state source current of the E-mode transistor 72 under the first bias condition is greater than off-state drain current of D-mode transistor 73 under the second bias condition, VDS,E is close to (in some cases less than) |Vth,D|, and the current passing through the source of D-mode transistor 73 equals the sum of the off-state drain current of the E-mode transistor 72 and IR. Hence, at such temperatures, the off-state current passing through the source of D-mode transistor 73 can be greater than the off-state current that would typically pass through the source of D-mode transistor 73 when D-mode transistor 73 is independently biased in the off-state with VGS,D<Vth,D and VDS,D<Vbr,D. As such, decreasing the value of R at such temperatures increases the off-state current through the source of the D-mode transistor 73 with little or no substantial decrease in VDS,E. Since VDS,E remains close to |Vth,D|, threshold voltage fluctuations in the D-mode transistor 73 resulting from large values of VDS,E during operation are mitigated.
However, in some cases, large currents passing through the source of the D-mode transistor 73 when the gate-source voltage VGS,D of the D-mode transistor 73 is close to Vth,D can also result in large threshold voltage fluctuations (for example, threshold voltage fluctuations of at least 2V, at least 3V, at least 5V, at least 8V, or at least 10V) in D-mode transistor 73 during operation of the hybrid component. The exact value of threshold voltage fluctuation that can be sustained without causing too much degradation in performance and/or reliability of the hybrid component may depend on the particular application in which the hybrid component is used. Hence, a resistor 74 with sufficiently large resistance can be chosen in order to prevent off-state leakage currents through the source of the D-mode transistor 73 from exceeding the value that results in excessively large threshold voltage fluctuations through the D-mode transistor 73.
During off-state operation at temperatures where the off-state drain current of the E-mode transistor 72 under the third bias condition is less than the off-state source current of the D-mode transistor 73 under the second bias condition, the exact value of VDS,E is determined at least in part by the resistance R of the resistor 74, as follows. The off-state current ID,off passing through the source of the D-mode transistor 73 equals the sum of the off-state current IE,off passing through the drain of the E-mode transistor 72 and IR, where IR=VDS,E/R. The maximum off-state drain current IE,max that the E-mode transistor 72 can have when VDS,E is less than Vbr,E is equal to the off-state drain current of the E-mode transistor 72 under the third bias condition. If IE,off>IE,max, which occurs when R≧Vbr,E/(ID,off−IE,max), then the E-mode transistor 72 will be biased at breakdown, such that VDS,E=Vbr,E, in order for the E-mode transistor 72 to carry the current IE,off. If R<Vbr,E/(ID,off−IE,max), or R<Vbr,E/(ID,off−IE,off), then VDS,E is less than Vbr,E, which can improve the reliability of the hybrid component 75. Reliability can, in some cases, be further improved by further reducing the resistance, thereby further reducing VDS,E and |VGS,D|.
For example, the resistance can be selected such that at 25° C. or at all operating temperatures, the difference between VGS,D and Vth,D is less than 10V, such as less than 5V or 3V. However, reducing VDS,E also increases (i.e., makes less negative) the gate-source voltage of the D-mode transistor 73, which results in an increase in ID,off. As in the case of operation at temperatures where off-state drain current of the E-mode transistor 72 under the first bias condition is greater than the off-state source current of D-mode transistor 73 under the second bias condition, large off-state currents passing through the source of the D-mode transistor 73 can also result in large threshold voltage fluctuations (for example, threshold voltage fluctuations of at least 2V, at least 3V, at least 5V, at least 8V, or at least 10V) in D-mode transistor 73 during operation of the hybrid component, thereby degrading reliability. Hence, a resistor 74 with sufficiently large resistance can be chosen in order to prevent off-state source leakage currents through the D-mode transistor 73 from exceeding the value that results in excessively large threshold voltage fluctuations through the D-mode transistor 73. The resistor 74 can, for example, have a resistance between 102 ohms and 1010 ohms, such as between 103 ohms and 109 ohms or between 104 ohms and 108 ohms. In some implementations, the resistance of the resistor 74 varies with temperature, for example increasing as temperature is increased.
All off-state current in excess of the maximum amount that can be carried through the drain of E-mode transistor 72 with VDS,E<Vbr,E flows through the resistor 74. In some cases, at least at one temperature, the total off-state current that flows through the source of the D-mode transistor 73 is much greater than the maximum off-state current that can be carried through the drain of the E-mode transistor 72 with VDS,E<Vbr,E, for example at least 2 times, at least 5 times, at least 10 times, at least 50 times, or at least 100 times greater. At such temperatures, the current that flows through the resistor 74 is greater than the off-state current flowing through the drain of the E-mode transistor 72.
In some implementations, either the E-mode transistor 72 or the D-mode transistor 73, or both, is a III-N transistor, such as a III-N HEMT, HFET, MESFET, JFET, MISFET, POLFET, or CAVET. In other implementations, either the E-mode transistor 72 or the D-mode transistor 73, or both, is a silicon-based transistor, such as a silicon power MOSFET (i.e., the semiconductor materials in the device are primarily formed of Silicon).
In yet other implementations, the E-mode transistor 72 is a silicon-based transistor, and the D-mode transistor 73 is a III-N transistor. The E-mode transistor 72 and/or the D-mode transistor 73 can be a nitrogen-face or N-face or N-polar III-N device. A nitrogen-face or N-face or N-polar III-N device can include III-N materials grown with an N-face or [0 0 0 1 bar] face furthest from the growth substrate, or can include source, gate, or drain electrodes on an N-face or [0 0 0 1 bar] face of the III-N materials. Alternatively, the E-mode transistor 52 and/or the D-mode transistor 53 can be a Ga-face or III-face or III-polar III-N device. A Ga-face or III-face or III-polar III-N device can include III-N materials grown with a group III-face or [0 0 0 1] face furthest from the growth substrate, or can include source, gate, or drain electrodes on a group III-face or [0 0 0 1] face of the III-N materials. The D-mode transistor 73 has a threshold voltage of less than 0V, such as less than −3V, less than −5V, less than −10V, less than −15V, or less than −20V. The E-mode transistor 72 has a threshold voltage greater than 0V, such as greater than 1V, greater than 1.5V, or greater than 2V.
In some implementations, the temperature at which off-state drain leakage current of the E-mode transistor 72 under the first bias condition is greater than off-state source leakage current of D-mode transistor 73 under the second bias condition is greater than the temperature at which off-state drain current of the E-mode transistor 72 under the third bias condition is less than the off-state source current of the D-mode transistor 73 under the second bias condition. For example, when the E-mode transistor 72 is a silicon-based transistor and the D-mode transistor 73 is a III-N transistor, the III-N transistor can be configured to exhibit lower off-state source currents at room temperature (25° C.) than the silicon-based transistor, for example by adjusting the compositions or material parameters of the semiconductor materials that make up the III-N transistor, as was illustrated in
The hybrid electronic component 85 of
In cases where a Zener diode, or alternatively a series of Zener diodes, is used for diode 84, the turn-on voltage VON of the Zener diode (or the combined turn-on voltage of all the series Zener diodes) can be less than Vbr,E. Inclusion of a Zener diode 84 ensures that VDS,E (and therefore |VGS,D|) does not exceed the turn-on voltage VON (i.e., the Zener voltage in the case of Zener diodes) of the diode. Therefore, if a diode with a turn-on voltage which is less than Vbr,E is used, the source-drain voltage of the E-mode transistor is 72 is kept below Vbr,E during operation, which can improve device reliability. However, if the turn-on voltage of the Zener diode is too small, for example less than or much less than |Vth,D|, off-state currents through the D-mode transistor 73 may be too high, thereby degrading device reliability.
In some implementations, for example applications in which the total off-state current that flows through the source of the D-mode transistor 73 is much greater than the maximum off-state current that can be carried through the drain of the E-mode transistor 72 with VDS,E<Vbr,E, a diode configured to be forward biased when the hybrid component 85 is off can be used. In this case, the anode of the diode is connected to the drain 63 of the E-mode transistor 72, and the cathode of the diode is connected to the source 61 of the E-mode transistor 72. Here, the forward turn-on voltage of the diode is less than Vbr,E. However, if the turn-on voltage of the diode is too small, for example less than or much less than |Vth,D|, off-state currents through the D-mode transistor 73 may be too high, thereby degrading device reliability.
In the case of a forward-biased diode, as described above, all off-state current in excess of the maximum amount that can be carried through the drain of the E-mode transistor 72 with VDS,E<Vbr,E flows through the diode. In some cases, at least at one temperature, the total off-state current that flows through the D-mode transistor 73, i.e., through the source 64 of the D-mode transistor, is much greater than the maximum off-state current that can be carried by the E-mode transistor 72, i.e., through the drain 63 of the E-mode transistor, with VDS,E<Vbr,E, for example at least 2 times, at least 5 times, or at least 10 times greater. At such temperatures, the current that flows through the diode 84 is greater than the off-state drain current flowing through the E-mode transistor 72.
When a Schottky diode is used for diode 84, as was described above, the Schottky diode 84 can be a discreet device, or it can alternatively be integrated into the D-mode transistor 73, as illustrated by way of example in
Referring to
As seen in
Referring to
In some implementations, the diode 84 of
Hybrid electronic components 95 and 99, which employ current-carrying components that include a combination of transistors and resistors, are shown in
In cases where resistor 93 is not included (not shown), the gate of enhancement-mode transistor 91 and the first terminal of resistor 92 are connected to form the terminal of the current-carrying component which is connected to the drain 63 of the E-mode transistor 72. In cases where resistor 92 is not included (not shown), the gate and drain of enhancement-mode transistor 91 are connected together. In cases where both resistors 92 and 93 are not included (not shown), the gate and drain of enhancement-mode transistor 91 are connected together to form the terminal of the current-carrying component which is connected to the drain 63 of the E-mode transistor 72.
Referring to
In cases where resistor 97 is not included (not shown), the gate of depletion-mode transistor 96 and the first terminal of resistor 98 are connected to form the terminal of the current-carrying component which is connected to the source 61 of the E-mode transistor 72. In cases where resistor 98 is not included (not shown), the gate and source of depletion-mode transistor 96 are connected together. In cases where both resistors 97 and 98 are not included (not shown), the gate and source of enhancement-mode transistor 91 are connected together to form the terminal of the current-carrying component which is connected to the source 61 of the E-mode transistor 72.
A first terminal of a current-carrying device is electrically connected to a first source of an enhancement-mode transistor (step 1202). The current-carrying device can be, for example, a resistor or a diode (e.g., as shown in
A second terminal of the current-carrying component is connected to the first drain and a second source of a depletion-mode transistor (step 1204). The depletion-mode transistor has a second breakdown voltage which is larger than the first breakdown voltage. The depletion-mode transistor has a second threshold voltage. The depletion-mode transistor includes the second source, a second gate, and a second drain. The enhancement-mode transistor can be a silicon-based transistor, and the depletion-mode transistor can be a III-N transistor.
The current-carrying component is configured to reduce, compared to an electronic component lacking the current-carrying component, a voltage of the first drain relative to the first source when the electronic component is biased such that a voltage of the first gate relative to the first source is less than the first threshold voltage and a voltage of the second drain relative to the first source is greater than the first breakdown voltage and less than the second breakdown voltage. For example, this reduction in voltage can be achieved when the current-carrying component is a resistor or a diode or a combination of resistors and diodes (e.g., as shown in
Typically, the second gate of the depletion-mode transistor is connected to the first source of the enhancement-mode transistor (step 1206). The second gate can alternatively be connected to one or more other current carrying devices that are coupled to the first source of the enhancement-mode transistor.
The electronic component including the enhancement-mode transistor and the depletion-mode transistor can optionally be encased into a package. Encasing the component into a package can include connecting the second drain to a package drain terminal, connecting the first source to a package source terminal, and connecting the first gate to a package gate terminal.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the techniques and devices described herein. For example, various 2-terminal current-carrying components may be connected in parallel to form a single 2-terminal current-carrying component for which the temperature dependence of the current passing through the single 2-terminal current-carrying component is optimal over the entire range of operating temperatures. Or, off-state current at the drain of the D-mode transistor may be greater than off-state current at the source, for example in cases where there is a measurable amount of DC and/or AC gate current. In such cases, the total off-state current through the D-mode transistor may be regarded as the off-state drain current. Accordingly, other implementations are within the scope of the following claims.
This application is a continuation application of U.S. patent application Ser. No. 13/269,367, filed Oct. 7, 2011, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4300091 | Schade, Jr. | Nov 1981 | A |
4532439 | Koike | Jul 1985 | A |
4645562 | Liao et al. | Feb 1987 | A |
4728826 | Einzinger et al. | Mar 1988 | A |
4821093 | Lafrate et al. | Apr 1989 | A |
4914489 | Awano | Apr 1990 | A |
5051618 | Lou | Sep 1991 | A |
5329147 | Vo et al. | Jul 1994 | A |
5646069 | Jelloian et al. | Jul 1997 | A |
5705847 | Kashiwa et al. | Jan 1998 | A |
5714393 | Wild et al. | Feb 1998 | A |
5909103 | Williams | Jun 1999 | A |
5998810 | Hatano et al. | Dec 1999 | A |
6008684 | Ker et al. | Dec 1999 | A |
6097046 | Plumton | Aug 2000 | A |
6316793 | Sheppard et al. | Nov 2001 | B1 |
6475889 | Ring | Nov 2002 | B1 |
6486502 | Sheppard et al. | Nov 2002 | B1 |
6515303 | Ring | Feb 2003 | B2 |
6548333 | Smith | Apr 2003 | B2 |
6583454 | Sheppard et al. | Jun 2003 | B2 |
6586781 | Wu et al. | Jul 2003 | B2 |
6649497 | Ring | Nov 2003 | B2 |
6727531 | Redwing et al. | Apr 2004 | B1 |
6777278 | Smith | Aug 2004 | B2 |
6849882 | Chavarkar et al. | Feb 2005 | B2 |
6867078 | Green et al. | Mar 2005 | B1 |
6946739 | Ring | Sep 2005 | B2 |
6979863 | Ryu | Dec 2005 | B2 |
6982204 | Saxler et al. | Jan 2006 | B2 |
7030428 | Saxler | Apr 2006 | B2 |
7045404 | Sheppard et al. | May 2006 | B2 |
7071498 | Johnson et al. | Jul 2006 | B2 |
7084475 | Shelton et al. | Aug 2006 | B2 |
7125786 | Ring et al. | Oct 2006 | B2 |
7161194 | Parikh et al. | Jan 2007 | B2 |
7170111 | Saxler | Jan 2007 | B2 |
7230284 | Parikh et al. | Jun 2007 | B2 |
7238560 | Sheppard et al. | Jul 2007 | B2 |
7253454 | Saxler | Aug 2007 | B2 |
7265399 | Sriram et al. | Sep 2007 | B2 |
7268375 | Shur et al. | Sep 2007 | B2 |
7304331 | Saito et al. | Dec 2007 | B2 |
7321132 | Robinson et al. | Jan 2008 | B2 |
7326971 | Harris et al. | Feb 2008 | B2 |
7332795 | Smith et al. | Feb 2008 | B2 |
7364988 | Harris et al. | Apr 2008 | B2 |
7388236 | Wu et al. | Jun 2008 | B2 |
7419892 | Sheppard et al. | Sep 2008 | B2 |
7432142 | Saxler et al. | Oct 2008 | B2 |
7456443 | Saxler et al. | Nov 2008 | B2 |
7465967 | Smith et al. | Dec 2008 | B2 |
7501669 | Parikh et al. | Mar 2009 | B2 |
7544963 | Saxler | Jun 2009 | B2 |
7548112 | Sheppard | Jun 2009 | B2 |
7550783 | Wu et al. | Jun 2009 | B2 |
7550784 | Saxler et al. | Jun 2009 | B2 |
7566580 | Keller et al. | Jul 2009 | B2 |
7566918 | Wu et al. | Jul 2009 | B2 |
7573078 | Wu et al. | Aug 2009 | B2 |
7592211 | Sheppard et al. | Sep 2009 | B2 |
7612390 | Saxler et al. | Nov 2009 | B2 |
7615774 | Saxler | Nov 2009 | B2 |
7638818 | Wu et al. | Dec 2009 | B2 |
7678628 | Sheppard et al. | Mar 2010 | B2 |
7692263 | Wu et al. | Apr 2010 | B2 |
7709269 | Smith et al. | May 2010 | B2 |
7709859 | Smith et al. | May 2010 | B2 |
7745851 | Harris | Jun 2010 | B2 |
7755108 | Kuraguchi | Jul 2010 | B2 |
7777252 | Sugimoto et al. | Aug 2010 | B2 |
7795642 | Suh et al. | Sep 2010 | B2 |
7812369 | Chini et al. | Oct 2010 | B2 |
7855401 | Sheppard et al. | Dec 2010 | B2 |
7875537 | Suvorov et al. | Jan 2011 | B2 |
7875914 | Sheppard | Jan 2011 | B2 |
7884395 | Saito | Feb 2011 | B2 |
7892974 | Ring et al. | Feb 2011 | B2 |
7893500 | Wu et al. | Feb 2011 | B2 |
7898004 | Wu et al. | Mar 2011 | B2 |
7901994 | Saxler et al. | Mar 2011 | B2 |
7906799 | Sheppard et al. | Mar 2011 | B2 |
7915643 | Suh et al. | Mar 2011 | B2 |
7915644 | Wu et al. | Mar 2011 | B2 |
7919791 | Flynn et al. | Apr 2011 | B2 |
7928475 | Parikh et al. | Apr 2011 | B2 |
7935985 | Mishra et al. | May 2011 | B2 |
7939391 | Suh et al. | May 2011 | B2 |
7948011 | Rajan et al. | May 2011 | B2 |
7955918 | Wu et al. | Jun 2011 | B2 |
7960756 | Sheppard et al. | Jun 2011 | B2 |
7965126 | Honea et al. | Jun 2011 | B2 |
7985986 | Heikman et al. | Jul 2011 | B2 |
8039352 | Mishra et al. | Oct 2011 | B2 |
8049252 | Smith et al. | Nov 2011 | B2 |
8114717 | Palacios et al. | Feb 2012 | B2 |
8598937 | Lal et al. | Dec 2013 | B2 |
20010032999 | Yoshida | Oct 2001 | A1 |
20010040247 | Ando et al. | Nov 2001 | A1 |
20020036287 | Yu et al. | Mar 2002 | A1 |
20020121648 | Hsu et al. | Sep 2002 | A1 |
20020167023 | Chavarkar et al. | Nov 2002 | A1 |
20030006437 | Mizuta et al. | Jan 2003 | A1 |
20030020092 | Parikh et al. | Jan 2003 | A1 |
20030030484 | Kang et al. | Feb 2003 | A1 |
20040041169 | Ren et al. | Mar 2004 | A1 |
20040061129 | Saxler et al. | Apr 2004 | A1 |
20040164347 | Zhao et al. | Aug 2004 | A1 |
20050077541 | Shen et al. | Apr 2005 | A1 |
20050133816 | Fan et al. | Jun 2005 | A1 |
20050189561 | Kinzer et al. | Sep 2005 | A1 |
20050189562 | Kinzer et al. | Sep 2005 | A1 |
20050194612 | Beach | Sep 2005 | A1 |
20050253168 | Wu et al. | Nov 2005 | A1 |
20060011915 | Saito et al. | Jan 2006 | A1 |
20060043499 | De Cremoux et al. | Mar 2006 | A1 |
20060060871 | Beach | Mar 2006 | A1 |
20060102929 | Okamoto et al. | May 2006 | A1 |
20060108602 | Tanimoto | May 2006 | A1 |
20060108605 | Yanagihara | May 2006 | A1 |
20060121682 | Saxler | Jun 2006 | A1 |
20060124962 | Ueda et al. | Jun 2006 | A1 |
20060157729 | Ueno et al. | Jul 2006 | A1 |
20060186422 | Gaska et al. | Aug 2006 | A1 |
20060189109 | Fitzgerald | Aug 2006 | A1 |
20060202272 | Wu et al. | Sep 2006 | A1 |
20060220063 | Kurachi et al. | Oct 2006 | A1 |
20060255364 | Saxler et al. | Nov 2006 | A1 |
20060289901 | Sheppard et al. | Dec 2006 | A1 |
20070007547 | Beach | Jan 2007 | A1 |
20070018187 | Lee et al. | Jan 2007 | A1 |
20070018199 | Sheppard et al. | Jan 2007 | A1 |
20070018210 | Sheppard | Jan 2007 | A1 |
20070045670 | Kuraguchi | Mar 2007 | A1 |
20070080672 | Yang | Apr 2007 | A1 |
20070128743 | Huang et al. | Jun 2007 | A1 |
20070132037 | Hoshi et al. | Jun 2007 | A1 |
20070134834 | Lee et al. | Jun 2007 | A1 |
20070145390 | Kuraguchi | Jun 2007 | A1 |
20070158692 | Nakayama et al. | Jul 2007 | A1 |
20070164315 | Smith et al. | Jul 2007 | A1 |
20070164322 | Smith et al. | Jul 2007 | A1 |
20070194354 | Wu et al. | Aug 2007 | A1 |
20070205433 | Parikh et al. | Sep 2007 | A1 |
20070210329 | Goto | Sep 2007 | A1 |
20070215899 | Herman | Sep 2007 | A1 |
20070218598 | Niimi et al. | Sep 2007 | A1 |
20070224710 | Palacios et al. | Sep 2007 | A1 |
20070228477 | Suzuki et al. | Oct 2007 | A1 |
20070241368 | Mil'shtein et al. | Oct 2007 | A1 |
20070278518 | Chen et al. | Dec 2007 | A1 |
20080073670 | Yang et al. | Mar 2008 | A1 |
20080093626 | Kuraguchi | Apr 2008 | A1 |
20080111144 | Fichtenbaum et al. | May 2008 | A1 |
20080121876 | Otsuka et al. | May 2008 | A1 |
20080157121 | Ohki | Jul 2008 | A1 |
20080203430 | Simin et al. | Aug 2008 | A1 |
20080230784 | Murphy | Sep 2008 | A1 |
20080237606 | Kikkawa et al. | Oct 2008 | A1 |
20080237640 | Mishra et al. | Oct 2008 | A1 |
20080274574 | Yun | Nov 2008 | A1 |
20080283844 | Hoshi et al. | Nov 2008 | A1 |
20080308813 | Suh et al. | Dec 2008 | A1 |
20090032820 | Chen | Feb 2009 | A1 |
20090032879 | Kuraguchi | Feb 2009 | A1 |
20090045438 | Inoue et al. | Feb 2009 | A1 |
20090050936 | Oka | Feb 2009 | A1 |
20090065810 | Honea et al. | Mar 2009 | A1 |
20090072240 | Suh et al. | Mar 2009 | A1 |
20090072269 | Suh et al. | Mar 2009 | A1 |
20090072272 | Suh et al. | Mar 2009 | A1 |
20090075455 | Mishra et al. | Mar 2009 | A1 |
20090085065 | Mishra et al. | Apr 2009 | A1 |
20090146185 | Suh et al. | Jun 2009 | A1 |
20090201072 | Honea et al. | Aug 2009 | A1 |
20100067275 | Wang et al. | Mar 2010 | A1 |
20100264461 | Rajan et al. | Oct 2010 | A1 |
20110006346 | Ando et al. | Jan 2011 | A1 |
20110012110 | Sazawa et al. | Jan 2011 | A1 |
20130088280 | Lal et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
1748320 | Mar 2006 | CN |
101897029 | Nov 2010 | CN |
102017160 | Apr 2011 | CN |
1 998 376 | Dec 2008 | EP |
2000-058871 | Feb 2000 | JP |
2003-229566 | Aug 2003 | JP |
2003-244943 | Aug 2003 | JP |
2004-260114 | Sep 2004 | JP |
2006-32749 | Feb 2006 | JP |
2007-036218 | Feb 2007 | JP |
2007-215331 | Aug 2007 | JP |
2008-199771 | Aug 2008 | JP |
2010-525023 | Jul 2010 | JP |
10-2011-0033584 | Mar 2011 | KR |
200924068 | Jun 2009 | TW |
200924201 | Jun 2009 | TW |
200947703 | Nov 2009 | TW |
201010076 | Mar 2010 | TW |
201027759 | Jul 2010 | TW |
201036155 | Oct 2010 | TW |
WO 2005036749 | Apr 2005 | WO |
WO 2007077666 | Jul 2007 | WO |
WO 2007108404 | Sep 2007 | WO |
WO 2008120094 | Oct 2008 | WO |
WO 2009036181 | Mar 2009 | WO |
WO 2009036266 | Mar 2009 | WO |
WO 2009039028 | Mar 2009 | WO |
WO 2009039041 | Mar 2009 | WO |
WO 2009056554 | May 2009 | WO |
WO 2009076076 | Jun 2009 | WO |
WO 2009132039 | Oct 2009 | WO |
WO 2010068554 | Jun 2010 | WO |
WO 2010132587 | Nov 2010 | WO |
WO 2011031431 | Mar 2011 | WO |
WO 2011072027 | Jun 2011 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2008/076079, 11 pages, Mar. 20, 2009. |
International Application No. PCT/US2008/076079, International Preliminary Report on Patentability, 6 pages, Mar. 24, 2010. |
International Application No. PCT/US2008/076160, International Search Report and Written Opinion, 11 pages, Mar. 18, 2009. |
International Application No. PCT/US2009/057554, International Search Report and Written Opinion, 11 pages, May 10, 2010. |
International Application No. PCT/US2009/057554, International Preliminary Report on Patentability, 7 pages, Mar. 29, 2011. |
International Application No. PCT/US2009/066647, International Search Report and Written Opinion, 16 pages, Jul. 1, 2010. |
International Application No. PCT/US2009/066647, International Preliminary Report on Patentability, 12 pages, Jun. 14, 2011. |
International Application No. PCT/US2009/041304, International Search Report and Written Opinion, 13 pages, Dec. 18, 2009. |
International Application No. PCT/US2009/041304, International Preliminary Report on Patentability, 8 pages, Oct. 26, 2010. |
International Application No. PCT/US2010/021824, International Search Report and Written Opinion, 9 pages, Aug. 23, 2010. |
International Application No. PCT/US2010/034579, International Search Report and Written Opinion, 9 pages, Dec. 24, 2010. |
International Application No. PCT/US2010/034579, International Preliminary Report on Patentability, 6 pages, Nov. 15, 2011. |
International Application No. PCT/US2010/046193, International Search Report and Written Opinion, 13 pages, Apr. 26, 2011. |
International Application No. PCT/US2010/046193, International Preliminary Report on Patentability, 10 pages, Mar. 8, 2012. |
International Application No. PCT/US2010/059486, International Search Report and Written Opinion, 9 pages, Jul. 27, 2011. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2008/076199, 11 pages, Mar. 24, 2009. |
International Application No. PCT/US2008/076199, International Preliminary Report on Patentability, 6 pages, Mar. 24, 2010. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2008/076030, 10 pages, Mar. 23, 2009. |
International Application No. PCT/US2008/076030, International Preliminary Report on Patentability, 5 pages, Mar. 16, 2010. |
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2008/085031, 11 pages, Jun. 24, 2009. |
International Application No. PCT/US2008/085031, International Preliminary Report on Patentability, 6 pages, Jun. 15, 2010. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2012/059007, mailed Mar. 26, 2013, 10 pages. |
SIPO First Office action for Application No. 200880120050.6, 8 pages, Aug. 2, 2011. |
Rajan et al., “Method for heteroepitaxial growth of high-quality N-Face GaN, InN, and AIN and their alloys by metal organic chemical vapor deposition,” U.S. Appl. No. 60/866,035, filed Nov. 15, 2006, 31 pp. |
‘SITIS Topic Details’ [online] “Planar, low switching loss, gallium nitride devices for power conversion applications,” SNIR N121-090 (Navy), 2012, [retrieved on Jan. 6, 2012], Retrieved from the Internet: URL: http://www.dodsbir.net/sitis/display—topic.asp?Bookmark=42087, 3 pages. |
Ando et al., “10-W/mm AlGaN-GaN HFET with a field modulating plate,” IEEE Electron Device Letters, 2003, 24(5):289-291. |
Arulkumaran et al., “Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with Si02, Si3N4, and silicon oxynitride,” Applied Physics Letters, 2004, 84(4):613.0-615. |
Chu, “1200-V normally off GaN-on-Si field-effect transistors with low dynamic on-resistance,” IEEE Electron Device Letters, 2011, 32(5):632-34. |
Coffie et al., “Unpassivated p-GaN/AlGaN/GaN HEMTs with 7.1 W/mm at 10 GhZ,” Electronic Letters, 2003, 39(19):1419-1420. |
Coffie, “Characterizing and suppressing DC-to-RF dispersion in AlGaN/GaN high electron mobility transistors,” 2003, PhD Thesis, University of California, Santa Barbara, 169 pp. |
Dora et al., “High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates,” IEEE Electron Device Letters, 2006, 27(9):713-715. |
Dora et al., “ZrO2 gate dielectrics produced by ultraviolet ozone oxidation for GaN and AlGaN/GaN transistors,” J. Vac. Sci. Technol. B, 2006, 24(2):575-581. |
Dora, “Understanding material and process limits for high breakdown voltage AlGaN/GaN HEMs,” Diss. University of California, Santa Barbara, 2006, 157 pp. |
Fanciulli et al., “Structural and electrical properties of HfO2 films grown by atomic layer deposition on Si, Ge, GaAs and GaN,” Mat. Res. Soc. Symp. Proc., 2004, 786:E6.14.1-E6.14.6. |
Green et al., “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs,” IEEE Electron Device Letters, 2000, 21(6):268-270. |
Gu et al., “AlGaN/GaN MOS transistors using crystalline ZrO2 as gate dielectric,” Proceedings of SPIE, 2007, vol. 6473, 64730S, 8 pp. |
Higashiwaki et al., “AlGaN/GaN heterostructure field-effect transistors on 4H-SiC substrates with current-gain cutoff frequency of 190 GHz,” Applied Physics Express, 2008, 1:1-3. |
Hwang, “Effects of a molecular beam epitaxy grown AIN passivation layer on AlGaN/GaN heterojunction field effect transistors,” Solid-State Electronics, 2004, 48(2):363-66. |
Im et al. “Normally off GaN MOSFET based on AlGaN/GaN heterostructure with extremely high 2DEG density grown on silicon substrate,” IEEE Electron Device Letters, 2010, 31(3):192-194. |
Karmalkar et al., “Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate,” IEEE Transactions on Electron Devices, 2001, 48(8):1515-1521. |
Karmalkar et al., “Very high voltage AlGaN/GaN high electron mobility transistors using a field plate deposited on a stepped insulator,” Solid State Electronics, 2001, 45:1645-1652. |
Keller et al., “GaN—GaN junctions with ultrathin AIN interlayers: expanding heterojunction design,” Applied Physics Letters, 2002, 80(23):4387-4389. |
Khan et al., “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,” IEEE Electron Device Letters, 2000, 21(2):63-65. |
Kim, “Process development and device characteristics of AlGaN/GaN HEMTs for high frequency applications,” Dissertation University of Illinois at Urbana-Champaign, 2008, 120 pp. |
Kumar et al., “High transconductance enhancement-mode AlGaN/GaN HEMTs on SiC substrate,” Electronics Letters, 2003, 39(24):1758-1760. |
Kuraguchi et al., “Normally-off GaN-MISFET with well-controlled threshold voltage,” Phys. Stats. Sol., 2007, 204(6):2010-2013. |
Lanford et al., “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” Electronics Letters, 2005, 41(7), 2 pp. |
Lee et al., “Self-aligned process for emitter- and base-regrowth GaN HBTs and BJTs,” Solid-State Electronics, 2001, 45:243-247. |
Mishra et al., “AlGaN/GaN HEMTs—an overview of device operation and applications,” Proceedings of the IEEE, 2002, 90(6):1022-1031. |
Nanjo et al., “Remarkable breakdown voltage enhancement in AlGaN channel high electron mobility transistors,” Applied Physics Letters, 2008, 92(26):1-3. |
Ohmaki et al., “Enhancement-mode AlGaN/AlN/GaN high electron mobility transistor with low on-state resistance and high breakdown voltage,” Japanese Journal of Applied Physics, vol. 45, No. 44, 2006, pp. L1168-L1170. |
Ota et al., “AlGaN/GaN recessed MIS-gate HFET with high threshold—voltage normally-off operation for power electronics applications,” IEEE Electron Device Letters, 2008, 29(7):668-670. |
Palacios et al., “AlGaN/GaN HEMTs with an InGaN-based back-barrier,” Device Research Conference Digest, 2005, pp. 181-182. |
Palacios et al., “AlGaN/GaN high electron mobility transistors with InGaN back-barriers,” IEEE Electron Device Letters, 2060, 27(1):13-15. |
Palacios et al., “Nitride-based high electron mobility transistors with a GaN spacer,” Applied Physics Letters, 2006, 89:073508-1-3. |
Pei et al., “Effect of dielectric thickness on power performance of AlGaN/GaN HEMTs,” IEEE Electron Device Letters, 2009, 30(4):313-315. |
Rajan et al., “Advanced transistor structures based on N-face GaN,” 32M International Symposium on Compound Semiconductors (ISCS), 2005, Europa-Park Rust, Germany, 2 pp. |
Saito et al., “Recess-gate structure approach toward normally off high—voltage AlGaN/GaN HEMT for power electronics applications,” IEEE Transactions on Electrong Device, 2006, 53(2):356-362. |
Shelton et al., “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Transactions on Electron Devices, 2001, 48(3):490-494. |
Shen, “Advanced polarization-based design of AlGaN/GaN HEMTs,” 2004, PhD Thesis, University of California, Santa Barbara, 191 pp. |
Sugiura et al., “Enhancement-mode n-channel GaN MOSFETs fabricated on p-GaN using HfO2 as gate oxide,” Electronics Letters, 2007, 43(17), 2 pp. |
Suh, “High-breakdown enhancement-mode AlGaN/GaN HEMTs with integrated slant field-plate,” Electron Devices Meeting, 2006, 3 pp. |
Tipirneni et al., “Silicon dioxide-encapsulated high-voltage AlGaN/GaN HFETs for power-switching applications,” IEEE Electron Device Letters, 2007, 28(9):784-786. |
Vetury et al. “Direct measurement of gate depletion in high breakdown (405V) Al/GaN/GaN heterostructure field effect transistors,” IEDM, 1998, 98:55-58. |
Wang et al., “Comparison of the effect of gate dielectric layer on 2DEG carrier concentration in strained AlGaN/GaN heterostructure,” Mater. Res. Soc. Symp. Proc., 2005, vol. 831, 6 pp. |
Wang et al., “Enhancement-mode Si3N4/AlGaN/GaN MISHFETs,” IEEE Electron Device Letters, 2006, 27(10):793-795. |
Wang et al., “Demonstration of submicron depletion-mode GaAs MOSFETs with negligible drain current drift and hysteresis,” IEEE Electron Device Letters, vol. 20, No. 9, Sep. 1999, pp. 457-459. |
Wu et al., “A 97.8% efficient GaN HEMT boost converter with 300-W output power at 1 MHz,” IEEE Electron Device Letters, 2008, 29(8):824-26. |
Wu, “AlGaN/GaN micowave power high mobility transistors,” Diss. University of California, Santa Barbara, 1997, 134 pp. |
Yoshida, “AlGan/GaN power FET,” Furukawa Review, 2002, 21:7-11. |
Zhang, “High voltage GaN HEMTs with low on-resistance for switching applications,” Diss. University of California, Santa Barbara, 2002, 166 pp. |
Authorized officer Simin Baharlou, International Preliminary Report on Patentability in PCT/US2008/076160, mailed Mar. 25, 2010, 6 pages. |
Authorized officer Beate Giffo-Schmitt, International Preliminary Report on Patentability in PCT/US2010/021824, mailed Aug. 18, 2011, 6 pages. |
Authorized officer Nora Lindner, International Preliminary Report on Patentability in PCT/US2010/059486, mailed Jun. 21, 2012, 6 pages. |
Authorized officer Lingfei Bai, International Preliminary Report on Patentability in PCT/US2012/059007, mailed Apr. 17, 2014, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20140094010 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13269367 | Oct 2011 | US |
Child | 14068944 | US |