A more complete appreciation of the invention and many of the attendant advantages thereof will become readily apparent with reference to the following detailed description, particularly when considered in conjunction with the accompanying drawings, in which:
In
The trench 113A and via 113B in
If a substrate containing the via 113B shown in
When the barrier metal film 116 is formed on the structure of
When the via 113B in
Conventional substrate cleaning or treating methods that are performed after formation of the structure depicted in
However, such an Ar plasma treatment has important drawbacks and limitations. In particular, while impurities adsorbed on the sidewall surfaces of the via 113B may be successfully removed by the Ar plasma treatment, sputter etching of the oxide layer 111Ox may cause re-deposition of the sputter-etched Cu oxide material 111x on the sidewall surfaces of the via 113B. This is schematically depicted in
Furthermore, an Ar plasma treatment may modify the low-k dielectric film 113 by increasing the dielectric constant of the dielectric film 113 in the vicinity of the contact at the bottom of the via 113B. Any increase in the dielectric constant can directly affect operation of a high-speed semiconductor device. In one example, a (low-density) dielectric film 113 may contain methyl functional groups in the bulk of the film 113, in addition to the adsorbed methyl groups depicted in
Embodiments on the invention provide a method for reducing or eliminating the abovementioned problems in the fabrication of a semiconductor device. Following formation of an etch feature in a dielectric film by a dry etching process, embodiments of the invention provide a method that forms active surfaces in the etched feature by removing adsorbed impurities from the etched feature without damaging the dielectric film. Furthermore, the method reduces an oxidized metal film formed at the exposed portion of a interconnect pattern at the bottom of the feature to the corresponding metal without sputtering the exposed interconnect pattern.
According to one embodiment of the invention, a method of integrated substrate processing is provided. The method includes providing a substrate containing an etch feature in a dielectric film, where a metal interconnect pattern formed underneath the etch feature is exposed, and performing an integrated process on the substrate in a substrate processing tool. The integrated process includes pretreating surfaces of the etch feature with a flow of hydrogen radicals. The flow of hydrogen radicals is generated by thermal decomposition of H2 gas by a hot filament source separated from the substrate by a showerhead plate containing gas passages facing the substrate. The integrated process further includes depositing a barrier metal film over the surfaces of the pretreated etch feature and the exposed metal interconnect pattern, and forming a metal film on the barrier metal film. The steps of depositing a barrier metal film, forming a metal film, and any steps between the depositing and the forming, are performed without exposing the substrate to an oxidizing environment such as air.
Embodiments of the invention are particularly useful when applied to processing of low density low-k dielectric films having a dielectric constant of 3.0 or lower. For example, the low density low-k dielectric films can include SiCOH films formed by CVD process, inorganic spin-on dielectric (SOD) films, and organic polymer films. The low density low-k dielectric films may be porous films.
According to one embodiment of the invention, a processing system is provided for integrated substrate processing in a substrate processing tool. The processing system contains a substrate holder configured for supporting and controlling the temperature of a substrate and a hot filament hydrogen radical source for generating hydrogen radicals. The hot filament hydrogen radical source includes a showerhead assembly containing an internal volume, at least one metal wire filament within the internal volume, where the at least one metal wire filament is heated to thermally dissociate H2 gas into the hydrogen radicals, a showerhead plate having gas passages facing the substrate for exposing the substrate to the hydrogen radicals, and a controller configured for controlling the hot filament hydrogen radical source.
The internal volume 37 contains at least one metal wire filament 59 for generating the hydrogen radicals by thermal dissociation of H2 in the internal volume 37. The at least one metal wire filament 59 may, for example, contain tungsten (W) metal or thoriated W metal. Thermal dissociation of H2 in the internal volume 37 is carried out by heating the at least one metal wire filament 59 to a desired temperature using power source 50 and electrical connectors (power feedthroughs) 55 mounted on flange 51. The at least one metal wire filament 59 may be heated to a temperature between 1200° C. and 2500° C., or a temperature between 1400° C. and 1600° C. The power source 50 may be a DC power source or an AC power source. Exemplary metal wire filament assemblies are described below in reference to
The hot filament hydrogen radical source 31 provides high flow of hydrogen radicals from the internal volume 37 through the gas passages 33 to the substrate 25. Unlike in conventional plasma sources, substantially no hydrogen ions are formed by the thermal dissociation of the H2 gas by the at least one heated metal wire filament 59, and thus the substrate 25 is not exposed to any potentially damaging ions or electrons. Furthermore, the presence of the showerhead plate 35 effectively reduces or eliminates light radiation from the at least one metal wire filament 59 that may damage the substrate 25. In addition, the presence of the showerhead plate 35 effectively reduces radiative heating of the substrate 25 by the at least one heated metal wire filament 59. The temperature of the showerhead assembly 30 may be controlled by the temperature control system 60 during substrate processing to further reduce the heating of the substrate 25 by the at least one metal wire filament 59.
Still referring to
In
The controller 70 can be used to configure any number of processing elements (10, 20, 30, 40, 42, 44, 50, and 60), and the controller 70 can collect, provide, process, store, and display data from processing elements. The controller 70 can comprise a number of applications for controlling one or more of the processing elements. For example, controller 70 can include a graphic user interface (GUI) component (not shown) that can provide easy to use interfaces that enable a user to monitor and/or control one or more processing elements.
Still referring to
Still referring to
In order to improve the thermal transfer between substrate 25 and substrate holder 20, substrate holder 20 can include a mechanical clamping system, or an electrical clamping system, such as an electrostatic clamping system, to affix substrate 25 to an upper surface of substrate holder 20. Furthermore, substrate holder 20 can further include a substrate backside gas delivery system configured to introduce gas to the back-side of substrate 25 in order to improve the gas-gap thermal conductance between substrate 25 and substrate holder 20. Such a system can be utilized when temperature control of the substrate is required at elevated or reduced temperatures. For example, the substrate backside gas system can comprise a two-zone gas distribution system, wherein the helium gas gap pressure can be independently varied between the center and the edge of substrate 25.
Furthermore, the process chamber 10 is coupled to a pressure control system 32, including a vacuum pumping system 34 and a valve 36, through a duct 38, wherein the pressure control system 32 is configured to controllably evacuate the process chamber 10 to a pressure suitable for performing a pretreating (cleaning) process on substrate 25. In one example, the pressure in the process chamber 10 and in the showerhead assembly 30 may be controlled between 10 mTorr and 10 Torr. In another example, the pressure may be maintained between 10 mTorr and 500 mTorr. The vacuum pumping system 34 can include a turbo-molecular vacuum pump (TMP) or a cryogenic pump, and valve 36 can include a gate valve for throttling the chamber pressure. In conventional plasma processing devices utilized for dry plasma etch, a TMP is generally employed. Moreover, a device for monitoring chamber pressure (not shown) can be coupled to the process chamber 10. The pressure measuring device can, for example, be a capacitance manometer.
Still referring to
However, the controller 70 may be implemented as a general purpose computer system that performs a portion or all of the microprocessor based processing steps of the invention in response to a processor executing one or more sequences of one or more instructions contained in a memory. Such instructions may be read into the controller memory from another computer readable medium, such as a hard disk or a removable media drive. One or more processors in a multi-processing arrangement may also be employed as the controller microprocessor to execute the sequences of instructions contained in main memory. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions. Thus, embodiments are not limited to any specific combination of hardware circuitry and software.
The controller 70 includes at least one computer readable medium or memory, such as the controller memory, for holding instructions programmed according to the teachings of the invention and for containing data structures, tables, records, or other data that may be necessary to implement the present invention. Examples of computer readable media are compact discs, hard disks, floppy disks, tape, magneto-optical disks, PROMs (EPROM, EEPROM, flash EPROM), DRAM, SRAM, SDRAM, or any other magnetic medium, compact discs (e.g., CD-ROM), or any other optical medium, punch cards, paper tape, or other physical medium with patterns of holes, a carrier wave (described below), or any other medium from which a computer can read.
Stored on any one or on a combination of computer readable media, software is included for controlling the controller 70, for driving a device or devices for implementing the invention, and/or for enabling the controller 70 to interact with a human user. Such software may include, but is not limited to, device drivers, operating systems, development tools, and applications software. Such computer readable media further includes the computer program product of the present invention for performing all or a portion (if processing is distributed) of the processing performed in implementing the invention.
The computer code devices of the present invention may be any interpretable or executable code mechanism, including but not limited to scripts, interpretable programs, dynamic link libraries (DLLs), Java classes, and complete executable programs. Moreover, parts of the processing of the present invention may be distributed for better performance, reliability, and/or cost.
The term “computer readable medium” as used herein refers to any medium that participates in providing instructions to the processor of the controller 70 for execution. A computer readable medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, optical, magnetic disks, and magneto-optical disks, such as the hard disk or the removable media drive. Volatile media includes dynamic memory, such as the main memory. Moreover, various forms of computer readable media may be involved in carrying out one or more sequences of one or more instructions to processor of controller for execution. For example, the instructions may initially be carried on a magnetic disk of a remote computer. The remote computer can load the instructions for implementing all or a portion of the present invention remotely into a dynamic memory and send the instructions over a network to the controller 70.
The controller 70 may be locally located relative to the processing system 1, or it may be remotely located relative to the processing system 1. For example, the controller 70 may exchange data with the processing system 1 using at least one of a direct connection, an intranet, the Internet and a wireless connection. The controller 70 may be coupled to an intranet at, for example, a customer site (i.e., a device maker, etc.), or it may be coupled to an intranet at, for example, a vendor site (i.e., an equipment manufacturer). Additionally, for example, the controller 70 may be coupled to the Internet. Furthermore, another computer (i.e., controller, server, etc.) may access, for example, the controller 70 to exchange data via at least one of a direct connection, an intranet, and the Internet. As also would be appreciated by those skilled in the art, the controller 70 may exchange data with the processing system 1 via a wireless connection.
As those skilled in the art will readily appreciate, many different combinations and configurations of metal wire filaments and electrical connectors may be used without departing from the scope of the invention. In one example, the electrical connectors and metal wire filaments may be arrange in a star-like pattern on the flange 51. In another example, the electrical connectors may be mounted as concentric circles on the flange 51.
In one example, SiCOH films 624 and 626 may be formed using a parallel-plate radio frequency (RF) plasma CVD system. The processing conditions may include a process pressure of about 3 Torr and a substrate temperature of about 25° C. RF energy of 1000 watts (W) with a frequency of 13.50 MHz may be utilized. SiCOH films formed in this manner can have a dielectric constant of about 3.0. These processing conditions and dielectric constant are only exemplary, as SiCOH films with higher porosity and lower dielectric constants may be formed.
In general, low-k dielectric films used for the dielectric films 624 or 626 are classified as inorganic dielectric films and organic dielectric films. Inorganic films include spin-on-dielectric (SOD) films, for example alkyl siloxane polymers and hydrogen silsesquioxane (HSQ) films. Other low-k inorganic films include, for example, fluorine-doped silicon oxide films that may be deposited by CVD processing. These inorganic films may have a porous structure that is effective in lowering the dielectric constant further.
Organic dielectric films include organic polymer films such as PTFE films, polyimide films, fluorine-doped polyimide films, benzocyclobutene (BCB) films, parylene-N films, parylene-F films, alkyl silsesquioxane polymer films such as MSQ films, and hydro-organic silsesquioxane (HOSP) films. Other organic dielectric films include fluorine-doped carbon film, diamond-like carbon (DLC) films, and SiCOH films. As for inorganic dielectric films, organic dielectric films may have a porous structure that is effective in lowering the dielectric constant further.
Next, the etch stop film 623 at the bottom of the via 624A is removed by an etchback process to expose the Cu interconnect pattern 622A at the bottom of the via 624A. Furthermore, the etch stop film 627 on the dielectric film 626 and the etch stop film 625 at the bottom of the trench 626A are removed. The resulting structure 620 is shown in
The above-described process of forming the structure 620 shown in
According to an embodiment of the invention, the structure 620 depicted in
Next, a barrier metal film 628 is deposited over the structure 620 as shown in
According to one embodiment of the invention, the substrate is introduced to a PEALD system 300 shown in
A gas inlet 306 is provided at the top of the showerhead 330 for introducing a source gas and a gas inlet 307 is provided for introducing a reducing gas such as H2, where the gas inlet 306 is connected to a plurality of source gas passages 308 formed in the interior of the showerhead 330, and each source gas passage 308 is connected to a corresponding gas outlet hole 309 in a source gas dispersion chamber (not shown) within the showerhead 330.
The gas inlet 307 is connected to a plurality of reducing gas passages 310 in the showerhead 330, where each of the reducing gas passages 310 is connected to a corresponding reducing gas outlet hole 311 in a reducing gas dispersion chamber (not shown) within the showerhead 330.
In the post-mix showerhead 330, no mixing of source gas and reducing gas occurs inside the showerhead 330, and therefore, no premature film formation due to reduction of the source gas occurs inside the showerhead 330.
A gas source 312 containing the source gas and a gas source 313 containing an inert carrier gas such as Ar are connected to the gas inlet 306 using valves 315 and mass flow controllers 316, where the source gas from the gas source 312 is transported to the processing space 301A inside the process chamber 301 by the carrier gas from the gas source 313 via the shower head 330. A gas source 314 that provides a reducing gas is connected to the gas inlet 307 via valve 315 and mass flow controller 316, and H2 gas is supplied from the gas source 314 to the process chamber 301. Although not shown, the PEALD system 300 may contain further gas lines for supplying another inert gas, for example Ar gas or N2 gas, into the process chamber 301 for purging the processing space 301A.
A RF power source 318 is connected to the showerhead 330 via an impedance matcher 317 and a frequency matcher 321. Gas supplied to the process chamber 301 is plasma excited by applying RF power from the RF power source 318 to the showerhead 330 via the matcher 321 to facilitate a film forming reaction in the process chamber 301.
Next, in Step 2, any remaining source gas in the processing space 301A is purged by introducing an Ar purge gas and/or by way of vacuum evacuation. In Step 3, H2 gas from the gas source 314 is introduced into the processing space 301A.
Furthermore, in step 3, plasma is generated using the RF power source 318 to excite the H2 gas and form hydrogen radicals or hydrogen ions in the processing space 301A. The hydrogen radicals and the hydrogen ions interact with the source gas molecules adsorbed onto the surface of the substrate W to form a film with a thickness between less than one to several molecular layers.
In Step 4, any remaining H2 gas in the processing space 301A is purged by introducing an Ar purge gas and/or by way of vacuum evacuation.
According to one embodiment of the invention, the PEALD process depicted in
Processing conditions for the PEALD process may further include a processing pressure of 10−4 Torr-1 Torr in the processing space 301A, and the temperature of the substrate W may be maintained between about 150° C. and about 350° C., for example at about 250° C.
In Step 1 of
Next, in the Step 2, the processing space 301A is purged by supplying Ar and H2 gas for about 1 second with flow rates of 100-2000 sccm and 0-2000 sccm, respectively.
In Step 3, H2 gas from the gas source 314 is supplied with a flow rate of 200-2000 sccm. Furthermore, in Step 3, the RF power source 318 may provide a RF power of 100-2000 W with a frequency of 13.56 MHz to the showerhead 330 to form a plasma in the processing space 301A. Upon plasma exposure, the adsorbed TAIMATA molecules form a TaN or TaCN film on the structure 620 of
Furthermore, in Step 4 of
Steps 1-4 may be repeated to form a TaN or TaCN film with a desired thickness. The TaN or TaCN film thickness can, for example, be between about 1 nm and 5 nm, or between 1 nm and 3 nm. Other source gases that may be used for forming a TaN or TaCN film include metal organic compounds such as (pentakis(diethylamido) tantalum (Ta[N(C2H5)2]5, PDEAT), pentakis(ethylmethylamido) tantalum (Ta[N(C2H5CH3)]5, PEMAT), pentakis(methylamido) tantalum (Ta[N(CH3)2]5, PDMAT), (t-butylimino tris(diethylamino) tantalum (Ta(NC(CH3)3)(N(C2H5)2)3, TBTDET), Ta(NC2H5)(N(C2H5)2)3, Ta(NC(CH3)3)(N(CH3)2)3, tert-butyl-tris-ethylmethylamido tantalum Ta(NC(CH3)3)(NC2H5(CH3)3)3, TBTEMAT), Ta(NC(CH3)2)3, or Ta(NC2H5)2)3,
A Ta film may be formed by a PEALD process using TaCl5 source gas, a processing pressure of 10−3 Torr −1 Torr in the processing space 301A, and a substrate temperature 150° C.-350° C. Furthermore, in the Step 1 of
Next, in the Step 2, the processing space 301A is purged by supplying Ar and H2 gas for about 1 second with flow rates of 100-2000 sccm and 0-2000 sccm, respectively.
In Step 3, H2 gas from the gas source 314 is supplied with a flow rate of 200-2000 sccm. Furthermore, in Step 3, the RF power source 318 may provide a RF power of 100-2000 W with a frequency of 13.56 MHz to the showerhead 330 to form a plasma in the processing space 301A. Upon plasma exposure, the adsorbed TaCl5 molecules form a Ta film on the structure 620 of
Furthermore, in Step 4 of
Steps 1-4 may be repeated to form a Ta film with a desired thickness. The Ta film thickness can, for example, be between about 1 nm and 5 nm, or between 1 nm and 3 nm. Other source gases that may be used for forming a Ta film include TaF5, TaBr5, or TaI5. According to another embodiment of the invention, the Ta film may be deposited by a PVD process such as sputtering process. According to one embodiment of the invention, the barrier metal film 628 may be exposed to Ar plasma sputtering to substantially completely remove the barrier metal film from the bottom of the via 624A and at least partially from the bottom of the trench 626A to reduce the contact resistance at the bottom of the via 624A.
After depositing the barrier metal film 628 (e.g., a TaN or TaCN/Ta bilayer film) depicted in
The Cu precursor compound is contained in source container 414 as a liquid, and Ar gas supplied to the source container 414 to flow the liquid precursor compound through precursor supply line 415 and valve 415A. The precursor supply line 415 and valve 415A are maintained at a predetermined temperature.
The liquid precursor compound is flowed through a mass flow controller 415B and a valve 415C controlled by the mass flow controller 415B, to a vaporizer 416. In one example, Cu(hexafluoroacetylacetonato) trimethylvinylsilane [(Cu(hfac)TMVS)] may be used as the precursor compound, and the vaporizer 416 maintained at a temperature of between 50° C. and 70° C. In addition, the precursor supply line 415 contains a drain valve 415D.
In the vaporizer 416, the precursor compound is vaporized to form a vapor or gas that is supplied to the showerhead 413 in the process chamber 411 using valve 416C. The vaporized precursor compound is supplied together with a H2 gas from the line 416A using the valve 416B, where the line 416A and the valve 416B are maintained between of room temperature and about 60° C. The source supply line 416D, including the valve 416C, and a line extending from the vaporizer 416 to the process chamber 411 may be maintained at the same or similar temperature as the vaporizer to avoid condensation of the vaporized precursor compound. Furthermore, the showerhead 413 and the process chamber 411 may be maintained at a temperature between 50° C. and 70° C. The vaporizer 416 may be evacuated using a dry pump (not shown) and a valve 416E.
The CVD system 400 depicted in
After forming the Cu seed layer 629 in
After a thermal annealing step, the bulk Cu film 630 and the barrier metal film 628 on the dielectric film 626 are removed by a CMP process to form the structure 620 shown in
Referring to
The load-lock chambers 502A and 502B are coupled to a vacuum wafer transfer system 503 using gate valves G3 and G4. The vacuum wafer transfer system 503 includes a wafer transfer robot and is coupled to degassing system 504A, (pretreating) processing system 504B described in
Furthermore, the vacuum wafer transfer system 503 is coupled to a second vacuum wafer transfer system 505 through wafer handling system 504D and gate valve G8. The second vacuum wafer transfer system 505 includes a second wafer transfer robot. Coupled to the second vacuum wafer transfer system 505 is Cu IPVD or Cu CVD system 506A configured for forming the Cu seed layer 629 of
A Ru CVD or Ru IPVD system 506D for depositing a Ru film as a part of the barrier metal film 628 is coupled to the second vacuum wafer transfer system 505. One example of a Ru CVD system 506D is described U.S. patent application Publication Ser. No. 10/996,145, entitled METHOD AND DEPOSITION SYSTEM FOR INCREASING DEPOSITION RATES OF METAL LAYERS FROM METAL-CARBONYL PRECURSORS, the entire content of which is herein incorporated by reference. In addition, an IPVD barrier metal system 506C is coupled to the second vacuum wafer transfer system 505. The IPVD barrier metal system 506C is an alternate system to the PEALD barrier metal system 504C for depositing a Ta-containing, Ti-containing, or W-containing barrier metal film 628 of
The substrate processing tool 500 includes a controller 510 that can be coupled to and control any or all of the processing systems and processing elements depicted in
The controller 510 can include a microprocessor, memory, and a digital I/O port capable of generating control voltages sufficient to communicate, activate inputs, and exchange information with the substrate processing tool 500 as well as monitor outputs from the substrate processing tool 500. For example, a program stored in the memory may be utilized to activate the inputs of the substrate processing tool 500 according to a process recipe in order to perform integrated substrate processing. One example of the controller 510 is a DELL PRECISION WORKSTATION 610™, available from Dell Corporation, Austin, Tex.
However, the controller 510 may be implemented as a general purpose computer system that performs a portion or all of the microprocessor based processing steps of the invention in response to a processor executing one or more sequences of one or more instructions contained in a memory. Such instructions may be read into the controller memory from another computer readable medium, such as a hard disk or a removable media drive. One or more processors in a multi-processing arrangement may also be employed as the controller microprocessor to execute the sequences of instructions contained in main memory. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions. Thus, embodiments are not limited to any specific combination of hardware circuitry and software.
The controller 510 may be locally located relative to the substrate processing tool 500, or it may be remotely located relative to the substrate processing tool 500. For example, the controller 510 may exchange data with the substrate processing tool 500 using at least one of a direct connection, an intranet, the Internet and a wireless connection. The controller 510 may be coupled to an intranet at, for example, a customer site (i.e., a device maker, etc.), or it may be coupled to an intranet at, for example, a vendor site (i.e., an equipment manufacturer). Additionally, for example, the controller 510 may be coupled to the Internet. Furthermore, another computer (i.e., controller, server, etc.) may access, for example, the controller 510 to exchange data via at least one of a direct connection, an intranet, and the Internet. As also would be appreciated by those skilled in the art, the controller 510 may exchange data with the substrate processing tool 500 via a wireless connection.
As those skilled in the art will readily recognize, embodiments of the invention may not require the use of all the processing systems depicted in
Referring now to
After the degassing step 1101 in the degassing system 504A, the wafer is returned to the vacuum wafer transfer system 503 through the gate valve G5, and next the wafer is transported to the (pretreating) processing system 504B through the gate valve G6. In step 1102, the wafer is pretreated by exposure to hydrogen radicals in the pretreating processing system 504B as shown in
Following the pretreating step 1102, the wafer is returned to the vacuum wafer transfer system 503 through the gate valve G6.
Next, a barrier metal film 628 depicted in
According to one embodiment of the invention, in step 1103, the wafer may be transferred to the PEALD barrier metal deposition system 504C for depositing a Ta-containing barrier metal film 628 by a PEALD process. Following formation of the barrier metal film 628 in the PEALD barrier metal deposition system 504C, the wafer is returned to the vacuum wafer transfer system 503 through the gate valve G7, and then transferred to the second vacuum wafer transfer system 505 from the wafer handling system 504D through the gate valve G8. Once in the second vacuum wafer transfer system 505, the wafer may then be introduced into the Cu CVD or Cu IPVD system 506A through the gate valve G9 for depositing, in step 1104, the Cu seed layer 629 depicted in
After formation of the Cu seed layer 629 in step 1104, the wafer is returned to the second vacuum wafer transfer system 505 through the gate valve G9 and then the wafer is transferred to the vacuum wafer transfer system 503 through the gate valve G8 and the wafer handling system 504D. Next, the wafer is returned to the wafer transfer system 501 from the vacuum wafer transfer system 503 through the gate valve G3, load-lock chamber 502A and the gate valve G1, or through the gate valve G4, the load-lock chamber 502B and the gate valve G2. Thereafter, the wafer is returned to the cassette module 501A or 501B. Once removed from the substrate processing tool 500, in step 1105, the bulk Cu film 630 depicted in
According to another embodiment of the invention, in step 1103, the wafer may be transferred to the second vacuum wafer transfer system 505 and to the IPVD barrier metal system 506C for depositing a Ta-containing barrier metal film 628 by an IPVD process. Thereafter, in step 1104, a Cu seed layer 629 may be deposited onto the barrier metal film 628 and a bulk Cu film 630 plated onto the Cu seed layer 629 as described above.
According to still another embodiment of the invention, step 1103 may further include depositing a Ru film onto a Ta-containing film to form the barrier metal film 628. The Ru film may be deposited in the processing system 506D by Ru CVD or Ru IPVD. Thereafter, in step 1104, a Cu seed layer 629 may be deposited onto the barrier metal film 628 and a bulk Cu film 630 plated onto the Cu seed layer 629 as described above.
According to one embodiment of the invention, step 1104 may be omitted and a Ru film deposited in step 1103 onto a Ta-containing film may act as a barrier and a seed layer for subsequent Cu plating in step 1105.
According to one embodiment of the invention, the barrier metal film 628 may be substantially completely removed from the bottom of the via 624A and at least partially from the bottom of the trench 626A by sputter etching in processing system 506B prior to depositing a Cu seed layer 629.
Although only certain embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiment without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention.
The present invention is related to U.S. patent application Ser. No. 11/537,562, entitled PROCESSING SYSTEM CONTAINING A HOT FILAMENT HYDROGEN RADICAL SOURCE FOR INTEGRATED SUBSTRATE PROCESSING, filed on even date herewith; U.S. patent application Ser. No. 11/277,908, entitled METHOD FOR INTEGRATING A CONFORMAL RUTHENIUM LAYER INTO COPPER METALLIZATION OF HIGH ASPECT RATIO FEATURES; and U.S. patent application Ser. No. 11/142,457, entitled SUBSTRATE PROCESSING METHOD AND FABRICATION OF A SEMICONDUCTOR DEVICE; and the entire contents of which are herein incorporated by reference.