The subject matter herein generally relates to wireless communications.
Copper is generally used in manufacturing conductive wire layer; however, large signal losses occur when the copper conductive wire layer is used to transmit a high frequency signal.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.
Several definitions that apply throughout this disclosure will now be presented.
The term “substantially” is defined to be essentially conforming to the particular dimension, shape, or other feature that the term modifies, such that the component need not be exact. For example, “substantially cylindrical” means that the object resembles a cylinder, but can have one or more deviations from a true cylinder. The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series, and the like. The references “a plurality of” and “a number of” mean “at least two.”
A material of the insulating sheet 10 is selected from the group consisting of polynaphthalene dicarboxylic acid glycol ester (PEN), polyimide (PI), and polyterephthalate (PET). The conductive circuit 40 includes a silver conductive layer 22 formed on the insulating sheet 10, a copper conductive layer 20 formed on the silver conductive layer 22, and a silver covering layer 30 covering a top surface and side surfaces of the copper conductive layer 20. The copper conductive layer 20 is sandwiched between the silver conductive layer 22 and the silver covering layer 30. A thickness of the silver conductive layer 22 is about 0.1-2 nanometers. A thickness of the silver conductive layer 22 is same as thickness of the silver covering layer 30.
An electrical conductivity of silver is about σ=6.17*107 S/m, an electrical conductivity of copper is about σ=5.80*107 S/m. When the high frequency signal transmission structure 100 is used for a high frequency signal, the current of the high frequency signal flowing through the conductive circuit 40 tends to be distributed on a surface of the conductive circuit 40, due to conductive skin effect. Thus the current tends to be distributed on surfaces of the silver conductive layer 22 and of the silver covering layer 30 because the silver layers 22 and 30 enclose the copper conductive layer 20. Since the electrical conductivity of silver is greater than the electrical conductivity of copper, transmission losses are reduced, and an increase is achieved in the transmission efficiency of the high frequency signal.
At block 201, as shown in
At block 202, as shown in
At block 203, as shown in
A method for forming the copper conductive layer 20 on the silver bottom layer 12 comprises:
Firstly, as shown in
Secondly, as shown in
Thirdly, as shown in
Lastly, as shown in
At block 204, as shown in
At block 205, as shown in
The silver covering layer 30 is formed using a sterling silver method. That is to say, in a silver solution, silver ion in the silver solution is replaced with copper comprised in the copper conductive layer 20, namely 2Ag++Cu→2Ag+Cu2+. A silver covering layer 30 is gradually formed on the copper conductive layer 20, in this way, a thickness of the conductive circuit 40 is better controlled. A high frequency signal transmission structure 100 is thereby obtained.
The embodiments shown and described above are only examples. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, including in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
201610397198.0 | Jun 2016 | CN | national |
This application is a divisional application of a commonly-assigned application entitled “HIGH FREQUENCY SIGNAL TRANSMISSION STRUCTURE AND METHOD FOR SAME”, filed on 2016 Sep. 26 with application Ser. No. 15/275,481. The disclosure of the above-identified application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15275481 | Sep 2016 | US |
Child | 16577062 | US |