Method of operating a complementary bit resistance memory sensor and method of operation

Information

  • Patent Grant
  • 7366003
  • Patent Number
    7,366,003
  • Date Filed
    Wednesday, June 28, 2006
    18 years ago
  • Date Issued
    Tuesday, April 29, 2008
    16 years ago
Abstract
A method and apparatus are disclosed for sensing the resistance state of a resistance-based memory element using complementary resistance-based elements, one holding the resistance state being sensed and the other holding a complementary resistance state. A sense amplifier detects voltages discharging through the high and low resistance elements to determine the resistance state of an element being read.
Description
FIELD OF THE INVENTION

The invention relates to a method and apparatus for sensing the resistance of a Programmable Conductor Random Access Memory (PCRAM) element.


BACKGROUND OF THE INVENTION

PCRAM devices store binary data as two different resistance values, one higher than the other. The resistance value represents a particular binary value of logic “0” or logic “1”. When sensing the resistance value of a PCRAM device, it is common to compare the resistance of a memory cell undergoing a read operation with resistance of a reference cell to determine the resistance value of the cell being read and thus its logic state. Such an approach is disclosed in U.S. Pat. No. 5,883,827. However, this approach has some limitations.


If the reference cell is defective and a column of memory cells within an array uses a same defective reference cell, the entire column of memory cells will have erroneous resistance readings. In addition, specialized circuitry is required to write a resistance value into the reference cell, and a sense amplifier circuit for such an arrangement tends to be complex and large.


Typically, sensing schemes for PCRAM devices also tend to have a unique architecture which is different from that normally employed in typical DRAM circuits. Although PCRAM's differ from DRAM's in that they store binary values in resistive memory elements rather than as charges on capacitors, and although PCRAM's are non-volatile, where the capacitor structures employed in DRAM's are volatile, nevertheless it would be desirable if the read and write circuits for both devices were as similar as possible so that existing DRAM memory device architectures could be easily adapted to read and write PCRAM devices.


BRIEF SUMMARY OF THE INVENTION

The present invention provides a PCRAM memory device and its method of operation which utilizes a read architecture similar to that employed in some DRAM memory devices. A pair of complementary PCRAM memory cells comprising first and second programmable conductor memory elements are employed, each connected to respective access transistors. During a write operation, the first and second memory elements are written with complementary binary values, that is: if the first memory element is written to a high resistance state, then the second memory element is written to a low resistance state; whereas if the first memory element is written to a low resistance state, the second memory element is written to a higher resistance state.


During a read operation of, for example, the first memory element, a sense amplifier is connected so that its respective inputs are coupled to receive respective precharge voltages which discharge through the first and second memory elements. A sense amplifier reads the discharging voltages through the two memory elements to determine which is the larger voltage, thus determining the resistance (high or low) and logic state (high or low) of the memory cell being read.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the invention will become more apparent from the following detailed description of exemplary embodiments of the invention which are provided in connection with the accompanying drawings in which:



FIG. 1 shows an exemplary PCRAM device;



FIG. 2 is a schematic diagram depicting one aspect of the invention;



FIG. 3 is a schematic diagram depicting an additional aspect of the invention;



FIG. 4 is a schematic diagram depicting an additional aspect of the invention;



FIG. 5 shows the discharge rate characteristics of capacitors employed in the invention;



FIG. 6 shows the invention utilized in a computer system.





DETAILED DESCRIPTION OF THE INVENTION

The present invention employs a sense amplifier architecture which is somewhat similar to that employed in some conventional DRAM devices to sense the resistance states of PCRAM memory cells. In the invention, a binary value is stored as a resistance value in a first PCRAM cell while its complement resistance value is stored in a second PCRAM cell. During readout of the first PCRAM cell, both PCRAM cells are used to discharge a precharge voltage into respective inputs of a sense amplifier which reads the discharge voltages to determine the resistance and thus the binary value stored in the first PCRAM cell undergoing a read operation.



FIG. 1 illustrates an exemplary cell arrangement provided within a portion of a PCRAM memory device constructed in accordance with the invention. A PCRAM memory element 102 is illustrated which has a chalcogenite glass body and lower 103 and upper 104 conductors. As is well known, a programmable conductor memory element has two stable resistance states: one high resistance and one low resistance. Normally, when at rest the memory has a high resistance state, but it can be programmed to a low resistance state by suitably applying bias voltages to the conductors 103 and 104. Typically, the low resistant state of a PCRAM memory element is characterized by a dendrite growth through the chalcogenite glass body or along the surface of the chalcogenite glass body between the conductors 103 and 104. A high resistant state is present when there is no such dendrite growth. The grown dendrite is relatively non-volatile in that it will remain in place for a relatively long time, e.g. days or weeks, after the bias voltage is removed.


As further shown in FIG. 1, the PCRAM memory element 102 is coupled by a conductive plug 101 to an access transistor 207 which is driven by a word line 105 which forms the gate structure of transistor 207. The access transistor is coupled through conductive plug 101 to one of the conductors 103 of the PCRAM memory element. The other conductor 104 of the PCRAM element is connected by a common cell plate 109 to a bias voltage, which is common to other PCRAM memory elements provided in the memory device.



FIG. 1 illustrates a common PCRAM architecture in which two adjacent memory cells 207, 211 are coupled to a common digit line 118. Thus, FIG. 1 also shows another access transistor 211 driven by a word line 107 which is connected through conductive plug 99 to another PCRAM memory element 104, which in turn is also connected also to the common cell plate 109. Access transistor 211 also has one terminal connected to digit line 118.



FIG. 2 shows an electrical schematic arrangement of a memory array employing the cell architecture illustrated in FIG. 1. Thus, the top portion of FIG. 2 illustrates the transistors 207 and 211 coupled to the respective PCRAM memory elements 102 and 106 with the access transistors 207 and 211 coupling the memory elements 102 and 106 to the digit line 118.


As also illustrated in FIG. 2, a complementary digit line D1* 120 is also provided in the memory array, to which another set of access transistors is connected which are in turn connected to other PCRAM memory elements. To simplify discussion, a single complementary pair of PCRAM cells is illustrated as 300. It includes transistor 207 and associated PCRAM memory element 102, which is coupled to the digit line 118 (D1), and an access transistor 209 and associated PCRAM memory element 124, which are coupled to digit line 120 (D1*).


During a write operation, a row line 104, which is coupled to transistor 207 and a row line 113 which is coupled to transistor 209 are activated such that if PCRAM memory element 102 is written to a high resistance state, PCRAM element 124 is written to a low resistance state, and vice versa. In this way, PCRAM memory elements 102 and 124 are accessed together and always store complementary resistance digit values. Thus assuming that PCRAM memory element 102 is the primary element which is being written to and read from, a sense amplifier 210 which is coupled to the digit lines 118 and 120 will read the value of PCRAM memory element 102 by comparing a discharging precharge voltage on digit line 118 to the discharging precharge voltage on digit line 120 during a memory read operation.


Thus, prior to a memory read, a precharge voltage is applied to complementary digit lines 118 and 120 by a precharge circuit 301. The precharge circuit is activated by a logic circuit on a precharge line which activates transistors 305 to supply a voltage, for example, Vcc/2, to both digit lines 118 and 120.


An equilibrate circuit 303 may also be provided which is activated by an equilibrate signal after the precharge circuit is activated to ensure that the voltages on lines 118 and 120 are the same. The voltages on lines 118 and 120 are held by a parasitic capacitance of the lines. After precharge and equilibrate (if present) circuits are activated, a read operation may be conducted on the complimentary cell pair 300. This read operation is illustrated in greater detail in FIG. 3, which is a simplification of the sense amplifier 210 input path.


Parasitic capacitance for the complementary digit lines 118 and 120 are illustrated as C1 and C1*. The respective access transistors 207 and 209 are illustrated as connected to their respective word lines 105 and 113. The PCRAM memory elements 102 and 124 are also illustrated. As noted, a binary value is stored, for example, in memory PCRAM memory element 102 as a resistance value. It will be either a high resistance value or a low resistance value, and the complementary resistance value will be stored in PCRAM memory element 124.


During a read operation, the precharge voltage applied to the complementary digit lines 118 and 120 is allowed to discharge through the access transistors 207 and 209 and through the respective resistance values of the PCRAM memory elements 102 and 124. Because the resistance values will be different, one high and one low, the voltages on the digit lines D1 and D1* (118, 120) will begin to diverge during a read operation. Although the voltage initially applied to the complementary digit lines 118 and 120 is a voltage of Vcc/2, during a read operation this voltage actually is slightly higher by approximately 0.3 mV due to the presence of the parasitic capacitance C1 and C1* on the digit lines 118 and 120, as well as gate-drain capacitance inherent within transistors 207 and 209.



FIG. 5 illustrates the voltages on the complementary digit lines 118 and 120 during a read operation. The activation of the word lines 105 and 113 is illustrated as a pulse signal, and initially the voltage of Vcc/2+approximately 0.3 mV which exists on both digit lines D1 and D1* begins to decay. Because one PCRAM memory element, e.g. 102, has a higher resistance than the other, the voltage on the digit line associated with the lower resistance value, e.g. 124, will decay faster than the voltage on the digit line coupled to the higher resistance value, e.g. D1. This is illustrated in FIG. 5.


The divergence of the two voltages on the lines D1 and D1* progressively increases. At a predetermined time after the word lines 105 and 113 are activated, the sense amplifier 210 is activated. The sense amplifier can have an architecture typically employed in a DRAM arrangement which is illustrated in FIG. 4. Such a sense amplifier includes an Nsense amplifier latch 302 and a Psense amplifier latch 304. This structure is illustrated in FIG. 4.


Reverting back to FIG. 5, the N sense amplifier is fired first at a time t1. When the Nsense amplifier fires, the digit line which has the lower voltage, e.g. D1* in the example, is immediately pulled to ground. Thereafter, the Psense amplifier is fired at a time t2 which drives the higher voltage line, e.g. D1, to Vcc. Accordingly at a time t2, the sense amplifier 210 outputs a value of Vcc indicating the high resistant state for the PCRAM memory element 102.


Although FIG. 5 illustrates the signal timing which occurs when PCRAM memory element 102 has a higher resistance than memory element 104, obviously the signal levels are reversed if PCRAM memory element 102 has a low resistance state and PCRAM memory element 124 has a high resistance state. That is, the signal diagrams illustrated in the FIG. 5 would have the digit line D1* going towards Vcc and the digit line D1 going towards ground.



FIG. 5 also illustrates another aspect of the invention. As shown, the voltage for row lines 105, 113 increases from near ground level to a positive voltage near Vcc for a read operation. This voltage then returns to near ground level before the sense amplifier is enabled (before t1). As a result, there is no rewriting of a read PCRAM memory element. If such rewriting of a PCRAM cell is desired, then the voltage on row line 105, 113 having a memory element which is written to a low resistance state, may be at a voltage level near Vcc during operation of the sense amplifier 210, which will automatically rewrite (refresh) the read cell to the low resistance state.


Because programmable contact memory elements are resistive rather than capacitive memory elements, it is possible they will take longer to pull the digit lines up to Vcc and to ground than a typical capacitive memory element found within a DRAM. Supposing that to be true, older DRAM sense amplifier designs that run somewhat slower than the latest generation of DRAM sense amplifiers could also be used with PCRAM memory cells. The advantage of doing so would be that these older DRAM sense amplifiers have already been shown to perform effectively, and their test infrastructure is already confirmed. Consequently, a hybrid memory consisting of PCRAM memory elements using DRAM sense amplifiers can be produced having the advantages of PCRAM technology, yet being producible quickly and inexpensively.


Although FIG. 2 shows the complementary programmable contact memory element 102 and 106 and associated access transistors and digit lines D and D* as being provided in the same memory array, the complementary memory elements, access transistors and digit lines may also be provided in respective different memory arrays.



FIG. 6 is a block diagram of a processor-based system 400 utilizing a PCRAM memory device 200 constructed in accordance with one of the embodiments of the present invention. The processor-based system 400 may be a computer system, a process control system or any other system employing a processor and associated memory. The system 400 includes a central processing unit (CPU) 402, e.g., a microprocessor, that communicates with the PCRAM memory device 408 and an I/O device 404 over a bus 420. It must be noted that the bus 420 may be a series of buses and bridges commonly used in a processor-based system, but for convenience purposes only, the bus 420 has been illustrated as a single bus. A second I/O device 406 is illustrated, but is not necessary to practice the invention. The processor-based system 400 also includes read-only memory (ROM) 410 and may include peripheral devices such as a floppy disk drive 412 and a compact disk (CD) ROM drive 414 that also communicates with the CPU 402 over the bus 420 as is well known in the art.


One or more memory devices 200 may be provided on a plug-in memory module 256, e.g. SIMM, DIMM or other plug-in memory module, for easy connection with or disconnection from the bus 420. While the invention has been described and illustrated with reference to specific exemplary embodiments, it should be understood that many modifications and substitutions can be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be considered as limited by the foregoing description but is only limited by the scope of the appended claims.

Claims
  • 1. A method of producing a programmable resistance memory device, said method comprising: forming first and second digit lines;forming first and second programmable resistance memory elements;forming first and second access transistors for respectively coupling said first and second memory elements to said first and second digit lines;forming a precharge circuit for precharging said first and second digit lines to a first voltage;forming respective row lines for operating said access transistors to couple said memory elements to respective digit lines; andforming a sense amplifier which has inputs respectively coupled to said digit lines.
  • 2. The method as in claim 1 further comprising forming a row decoder for decoding row address signals and selectively and simultaneously enabling said word lines.
  • 3. The method as in claim 1 wherein said memory elements are fabricated in a common memory array.
  • 4. The method as in claim 1 wherein said memory elements are fabricated in different memory arrays.
  • 5. The method as in claim 1 further comprising forming an equilibrate circuit for equilibrating said digit lines.
  • 6. A method of forming a memory device, the method comprising: forming an array of memory cells, wherein said act of forming further comprises:forming first and second digit lines;forming first and second programmable resistance memory elements;forming first and second access transistors for respectively coupling said first and second memory elements to said first and second digit lines;forming a precharge circuit for precharging said first and second digit lines to a first voltage;forming respective row lines for operating said access transistors to couple said memory elements to respective digit lines; andforming a sense amplifier which has inputs respectively coupled to said digit lines.
  • 7. The method of claim 6, wherein said first act of forming further comprises forming a row decoder for decoding row address signals and selectively and simultaneously enabling said word lines.
  • 8. The method of claim 6, wherein said first act of forming further comprises forming an equilibrate circuit for equilibrating said digit lines.
CROSS REFERENCES TO RELATED APPLICATIONS

This application is a divisional of application Ser. No. 11/236,562, filed Sep. 28, 2005 now U.S. Pat. No. 7,242,603, which is a divisional of application Ser. No. 10/866,091, filed Jun. 14, 2004 now U.S. Pat. No. 7,002,833, which is a continuation of application Ser. No. 09/988,627, filed Nov. 20, 2001, now U.S. Pat. No. 6,791,859, the entire disclosures of which are incorporated herein by reference.

US Referenced Citations (238)
Number Name Date Kind
3271591 Ovshinsky Sep 1966 A
3622319 Sharp Nov 1971 A
3743847 Boland Jul 1973 A
3961314 Klose et al. Jun 1976 A
3966317 Wacks et al. Jun 1976 A
3983542 Ovshinsky Sep 1976 A
3988720 Ovshinsky Oct 1976 A
4112512 Arzubi et al. Sep 1978 A
4177474 Ovshinsky Dec 1979 A
4267261 Hallman et al. May 1981 A
4269935 Masters et al. May 1981 A
4312938 Drexler et al. Jan 1982 A
4316946 Masters et al. Feb 1982 A
4320191 Yoshikawa et al. Mar 1982 A
4405710 Balasubramanyam et al. Sep 1983 A
4419421 Wichelhaus et al. Dec 1983 A
4499557 Holmberg et al. Feb 1985 A
4597162 Johnson et al. Jul 1986 A
4608296 Keem et al. Aug 1986 A
4637895 Ovshinsky et al. Jan 1987 A
4646266 Ovshinsky et al. Feb 1987 A
4664939 Ovshinsky May 1987 A
4668968 Ovshinsky et al. May 1987 A
4670763 Ovshinsky et al. Jun 1987 A
4671618 Wu et al. Jun 1987 A
4673957 Ovshinsky et al. Jun 1987 A
4678679 Ovshinsky Jul 1987 A
4696758 Ovshinsky et al. Sep 1987 A
4698234 Ovshinsky et al. Oct 1987 A
4710899 Young et al. Dec 1987 A
4728406 Banerjee et al. Mar 1988 A
4737379 Hudgens et al. Apr 1988 A
4766471 Ovshinsky et al. Aug 1988 A
4769338 Ovshinsky et al. Sep 1988 A
4775425 Guha et al. Oct 1988 A
4788594 Ovshinsky et al. Nov 1988 A
4795657 Formigoni et al. Jan 1989 A
4800526 Lewis Jan 1989 A
4809044 Pryor et al. Feb 1989 A
4818717 Johnson et al. Apr 1989 A
4843443 Ovshinsky et al. Jun 1989 A
4845533 Pryor et al. Jul 1989 A
4847674 Sliwa et al. Jul 1989 A
4853785 Ovshinsky et al. Aug 1989 A
4891330 Guha et al. Jan 1990 A
4980799 Tobita Dec 1990 A
5128099 Strand et al. Jul 1992 A
5159661 Ovshinsky et al. Oct 1992 A
5166758 Ovshinsky et al. Nov 1992 A
5177567 Klersy et al. Jan 1993 A
5219788 Abernathey et al. Jun 1993 A
5238862 Blalock et al. Aug 1993 A
5272359 Nagasubramanian et al. Dec 1993 A
5296716 Ovshinsky et al. Mar 1994 A
5314772 Kozicki May 1994 A
5315131 Kishimoto et al. May 1994 A
5335219 Ovshinsky et al. Aug 1994 A
5341328 Ovshinsky et al. Aug 1994 A
5350484 Gardner et al. Sep 1994 A
5359205 Ovshinsky Oct 1994 A
5360981 Owen et al. Nov 1994 A
5406509 Ovshinsky et al. Apr 1995 A
5414271 Ovshinsky et al. May 1995 A
5500532 Kozicki et al. Mar 1996 A
5512328 Yoshimura et al. Apr 1996 A
5512773 Wolf et al. Apr 1996 A
5534711 Ovshinsky et al. Jul 1996 A
5534712 Ovshinsky et al. Jul 1996 A
5536947 Klersy et al. Jul 1996 A
5543737 Ovshinsky Aug 1996 A
5591501 Ovshinsky et al. Jan 1997 A
5596522 Ovshinsky et al. Jan 1997 A
5687112 Ovshinsky Nov 1997 A
5694054 Ovshinsky et al. Dec 1997 A
5699293 Tehrani et al. Dec 1997 A
5714768 Ovshinsky et al. Feb 1998 A
5726083 Takaishi Mar 1998 A
5751012 Wolstenholme et al. May 1998 A
5761115 Kozicki et al. Jun 1998 A
5789277 Zahorik et al. Aug 1998 A
5814527 Wolstenholme et al. Sep 1998 A
5818749 Harshfield Oct 1998 A
5825046 Czubatyj et al. Oct 1998 A
5841150 Gonzalez et al. Nov 1998 A
5846889 Harbison et al. Dec 1998 A
5851882 Harshfield Dec 1998 A
5869843 Harshfield Feb 1999 A
5883827 Morgan Mar 1999 A
5896312 Kozicki et al. Apr 1999 A
5903504 Chevallier et al. May 1999 A
5912839 Ovshinsky et al. Jun 1999 A
5914893 Kozicki et al. Jun 1999 A
5914902 Lawrence et al. Jun 1999 A
5920788 Reinberg Jul 1999 A
5933365 Klersy et al. Aug 1999 A
5936880 Payne Aug 1999 A
5936882 Dunn Aug 1999 A
5998066 Block et al. Dec 1999 A
6011757 Ovshinsky Jan 2000 A
6031287 Harshfield Feb 2000 A
6072716 Jacobson et al. Jun 2000 A
6077729 Harshfield Jun 2000 A
6084796 Kozicki et al. Jul 2000 A
6087674 Ovshinsky et al. Jul 2000 A
6117720 Harshfield Sep 2000 A
6141241 Ovshinsky et al. Oct 2000 A
6143604 Chiang et al. Nov 2000 A
6177338 Liaw et al. Jan 2001 B1
6191972 Miura et al. Feb 2001 B1
6191989 Luk et al. Feb 2001 B1
6236059 Wolsteinholme et al. May 2001 B1
6243311 Keeth Jun 2001 B1
RE37259 Ovshinsky Jul 2001 E
6297170 Gabriel et al. Oct 2001 B1
6300684 Gonzalez et al. Oct 2001 B1
6314014 Lowrey et al. Nov 2001 B1
6316784 Zahorik et al. Nov 2001 B1
6329606 Freyman et al. Dec 2001 B1
6339544 Chiang et al. Jan 2002 B1
6347058 Houghton et al. Feb 2002 B1
6348365 Moore et al. Feb 2002 B1
6350679 McDaniel et al. Feb 2002 B1
6376284 Gonzalez et al. Apr 2002 B1
6388324 Kozicki et al. May 2002 B2
6391688 Gonzalez et al. May 2002 B1
6404665 Lowery et al. Jun 2002 B1
6414376 Thakur et al. Jul 2002 B1
6418049 Kozicki et al. Jul 2002 B1
6420725 Harshfield Jul 2002 B1
6423628 Li et al. Jul 2002 B1
6429064 Wicker Aug 2002 B1
6437383 Xu Aug 2002 B1
6440837 Harshfield Aug 2002 B1
6442088 Tsuchida et al. Aug 2002 B1
6462981 Numata et al. Oct 2002 B2
6462984 Xu et al. Oct 2002 B1
6469364 Kozicki Oct 2002 B1
6473332 Ignatiev et al. Oct 2002 B1
6480438 Park Nov 2002 B1
6487106 Kozicki Nov 2002 B1
6487113 Park et al. Nov 2002 B1
6490190 Ramcke et al. Dec 2002 B1
6501111 Lowery Dec 2002 B1
6507061 Hudgens et al. Jan 2003 B1
6511862 Hudgens et al. Jan 2003 B2
6511867 Lowery et al. Jan 2003 B2
6512241 Lai Jan 2003 B1
6514805 Xu et al. Feb 2003 B2
6531373 Gill et al. Mar 2003 B2
6534781 Dennison Mar 2003 B2
6545287 Chiang Apr 2003 B2
6545907 Lowery et al. Apr 2003 B1
6555860 Lowery et al. Apr 2003 B2
6563164 Lowery et al. May 2003 B2
6566700 Xu May 2003 B2
6567293 Lowery et al. May 2003 B1
6569705 Chiang et al. May 2003 B2
6570784 Lowery May 2003 B2
6576921 Lowery Jun 2003 B2
6577525 Baker Jun 2003 B2
6586761 Lowery Jul 2003 B2
6587371 Hidaka Jul 2003 B1
6589714 Maimon et al. Jul 2003 B2
6590807 Lowery Jul 2003 B2
6593176 Dennison Jul 2003 B2
6597009 Wicker Jul 2003 B2
6605527 Dennison et al. Aug 2003 B2
6608773 Lowrey et al. Aug 2003 B2
6613604 Maimon et al. Sep 2003 B2
6621095 Chiang et al. Sep 2003 B2
6625054 Lowery et al. Sep 2003 B2
6642102 Xu Nov 2003 B2
6646297 Dennison Nov 2003 B2
6649928 Dennison Nov 2003 B2
6667900 Lowery et al. Dec 2003 B2
6671710 Ovshinsky et al. Dec 2003 B2
6673648 Lowery Jan 2004 B2
6673700 Dennison et al. Jan 2004 B2
6674115 Hudgens et al. Jan 2004 B2
6687153 Lowery Feb 2004 B2
6687427 Ramalingam et al. Feb 2004 B2
6690026 Peterson Feb 2004 B2
6696355 Dennison Feb 2004 B2
6707712 Lowery Mar 2004 B2
6714954 Ovshinsky et al. Mar 2004 B2
6757784 Lu et al. Jun 2004 B2
6791859 Hush et al. Sep 2004 B2
7002833 Hush et al. Feb 2006 B2
20020000666 Kozicki et al. Jan 2002 A1
20020027805 Roohparvar Mar 2002 A1
20020057594 Hirai May 2002 A1
20020072188 Gilton Jun 2002 A1
20020106849 Moore Aug 2002 A1
20020123169 Moore et al. Sep 2002 A1
20020123170 Moore et al. Sep 2002 A1
20020123248 Moore et al. Sep 2002 A1
20020127886 Moore et al. Sep 2002 A1
20020132417 Li Sep 2002 A1
20020160551 Harshfield Oct 2002 A1
20020163827 Krieger et al. Nov 2002 A1
20020168820 Kozicki Nov 2002 A1
20020168852 Kozicki Nov 2002 A1
20020190289 Harshfield et al. Dec 2002 A1
20020190350 Kozicki et al. Dec 2002 A1
20030001229 Moore et al. Jan 2003 A1
20030027416 Moore Feb 2003 A1
20030032254 Gilton Feb 2003 A1
20030035314 Kozicki Feb 2003 A1
20030035315 Kozicki Feb 2003 A1
20030038301 Moore Feb 2003 A1
20030043631 Gilton et al. Mar 2003 A1
20030045049 Campbell et al. Mar 2003 A1
20030045054 Campbell et al. Mar 2003 A1
20030047765 Campbell Mar 2003 A1
20030047772 Li Mar 2003 A1
20030047773 Li Mar 2003 A1
20030048519 Kozicki Mar 2003 A1
20030048744 Ovshinsky et al. Mar 2003 A1
20030049912 Campbell et al. Mar 2003 A1
20030068861 Li et al. Apr 2003 A1
20030068862 Li et al. Apr 2003 A1
20030095426 Hush et al. May 2003 A1
20030096497 Moore et al. May 2003 A1
20030107105 Kozicki Jun 2003 A1
20030117831 Hush Jun 2003 A1
20030128612 Moore et al. Jul 2003 A1
20030137869 Kozicki Jul 2003 A1
20030143782 Gilton et al. Jul 2003 A1
20030155589 Campbell et al. Aug 2003 A1
20030155606 Campbell et al. Aug 2003 A1
20030156447 Kozicki Aug 2003 A1
20030156463 Casper et al. Aug 2003 A1
20030209728 Kozicki et al. Nov 2003 A1
20030209971 Kozicki et al. Nov 2003 A1
20030210564 Kozicki et al. Nov 2003 A1
20030212724 Ovshinsky et al. Nov 2003 A1
20030212725 Ovshinsky et al. Nov 2003 A1
20040035401 Ramachandran et al. Feb 2004 A1
Foreign Referenced Citations (6)
Number Date Country
1109170 Jun 2001 EP
56126916 Oct 1998 JP
WO 9748032 Dec 1997 WO
WO 9928914 Jun 1999 WO
WO 0048196 Aug 2000 WO
WO 0221542 Mar 2002 WO
Related Publications (1)
Number Date Country
20060245234 A1 Nov 2006 US
Divisions (2)
Number Date Country
Parent 11236562 Sep 2005 US
Child 11476043 US
Parent 10866091 Jun 2004 US
Child 11236562 US
Continuations (1)
Number Date Country
Parent 09988627 Nov 2001 US
Child 10866091 US