1. Field of the Invention
The present invention relates to: a method of polishing an object to be polished for processing the surface of the object to be polished into a convex or concave state; and a polishing pad.
2. Description of Related Art
Chemical mechanical polishing (CMP) has heretofore been applied in order to flattening the surface of an object to be polished such as a semiconductor wafer. In CMP, the polishing amount of the surface of an object to be polished is likely to be uneven on the surface. A technology for polishing an object to be polished uniformly and improving flatness is disclosed (for example, JP-A-2009-327567).
However, in the case of an optical component, for example, a wafer having a concave or convex surface is required sometimes. Previously, development has been advanced in the direction of improving flatness and there has been no technology of forming a concave or convex surface with a high degree of accuracy.
An object of the present invention is to provide: a polishing method of an object to be polished for processing a surface of the object to be polished into a concave or convex state with a high degree of accuracy by polishing the surface; and a polishing pad.
A method of polishing an object to be polished according to the present invention makes it possible to process the surface of the object to be polished such as a semiconductor wafer into a concave or convex state.
In order to solve the problem, the present invention provides a method of polishing an object to be polished and a polishing pad, stated below.
[1] A method of polishing an object to be polished, wherein the surface of the object to be polished is processed into a concave or convex state by: placing an object to be polished on a polishing pad over the boundary between a first polishing region and a second polishing region, the polishing pad having a first polishing region where grooves are formed and a second polishing region where grooves are formed in a different state from that of the first polishing region, and either one of the first polishing region and the second polishing region being formed on a region on the center side, and the other being formed on a region on the outer side in a radial direction on the surface of the polishing pad; and polishing the object to be polished by rotating the polishing pad and the object to be polished.
[2] The method of polishing an object to be polished according to [1], wherein the first polishing region is formed on the center side of the polishing pad and the surface of the object to be polished is processed into a concave state.
[3] The method of polishing an object to be polished according to [1], wherein the first polishing region is formed on the outer side of the polishing pad and the surface of the object to be polished is processed into a convex state.
[4] The method of polishing an object to be polished according to any one of [1] to [3], wherein concentric grooves are formed in the first polishing region of the polishing pad.
[5] A polishing pad, which has a first polishing region where grooves are formed and a second polishing region where grooves are formed in a different state from that of the first polishing region, wherein either one of the first polishing region and the second polishing region is formed on a region on the center side, and the other is formed on a region on the outer side in a radial direction on the surface of the polishing pad.
[6] A method of polishing an object to be polished, wherein the surface of the object to be polished is processed into a concave or convex state by: placing an object to be polished on a polishing pad having grooves formed on its surface; polishing the object to be polished by rotating the polishing pad and the object to be polished at number of revolutions different from each other so as to make polishing speed have a distribution on the surface of the object to be polished.
[7] The method of polishing an object to be polished according to [6], wherein the surface of the object to be polished is processed into a concave state by making the number of revolutions of the polishing pad larger than that of the object to be polished.
[8] The method of polishing an object to be polished according to [6], wherein the surface of the object to be polished is processed into a convex state by making the number of revolutions of the polishing pad smaller than that of the object to be polished.
[9] A method of polishing an object to be polished, wherein the surface of the object to be polished is processed into a concave or convex state by: placing an object to be polished on a polishing pad having grooves formed on its surface; and polishing the object to be polished by rotating the polishing pad and the object to be polished while supplying one of two slurries having different properties each other to a region of the polishing pad on the center side of the central part of the object to be polished in a radial direction of the polishing pad, and supplying the other slurry to a region of the of the polishing pad on the outer side of the central part of the object to be polished, respectively, or supplying a specified slurry to only one of the said two regions.
[10] The method of polishing an object to be polished according to [9], wherein the two slurries having different properties each other are ones having different pHs each other.
A method of polishing an object to be polished according to the present invention makes it possible to process the surface of the object to be polished into a concave or convex state. Since polishing conditions can be determined by the type of a polishing pad, number of revolutions, and slurry, the optimization of the conditions is facilitated.
It is possible to process the surface of an object to be polished into a concave or convex state by polishing the object to be polished with a polishing pad according to the present invention.
Embodiments of the present invention will be hereunder explained with reference to drawings. The present invention is not limited to the following embodiments and can be changed, corrected, and modified without departing from the scope of the present invention.
A polishing method according to the present invention is a polishing method used in chemical mechanical polishing (CMP) for polishing the surface of an object to be polished such as a semiconductor wafer. A schematic view of a CMP apparatus 1 is shown in
A polishing pad 10 according to the present invention, has a first polishing region 11 where grooves 15 are formed and a second polishing region 12 where grooves 15 are formed in a different state from that of the first polishing region 11, wherein either one of the first polishing region 11 and the second polishing region 12 is formed on a region on the center side, and the other is formed on a region on the outer side in a radial direction on the surface of the polishing pad 10. Here, the expression “different state from that of the first polishing region” includes a state where grooves 15 different from the ones of the first polishing region 11 are formed, or a state where no groove 15 is practically formed. Incidentally, even though there is formed no apparent groove 15 in the second polishing region 12, the object to be polished 20 may be polished to a certain degree by this second polishing region 12 due to the friction between the surface of the second polishing region 12 and that of the object to be polished 20. The first polishing region 11 is a region where polishing is prone to proceed compared to the second polishing region 12. That is, the amount to be polished is larger in the first polishing region 11 compared to the second polishing region 12. As such, the first polishing region 11 may have more grooves in number per unit length in the radial direction compared to the second polishing region 12. The number, depth, width and the like of the grooves 15 of the first polishing region 11 may be freely chosen, depending upon the kind of the object to be polished 20, the aim of the polishing and the like. However, the width of the grooves 15 of the first polishing region 11 may be 0.2 mm to 0.8 mm, and the pitch of the grooves 15 (the distance between the centers of two grooves 15) may be about 1 mm to 2 mm. In case of the second polishing region 12, grooves 15 may not be formed and the intact surface of a virgin polishing pad itself may be employed as it is. Indeed, when the grooves 15 are formed, the width of the grooves 15 may be 0.2 mm to 0.8 mm, and the pitch of the grooves 15 may be about 2.5 mm to 3.5 mm. Incidentally, in the case of processing the surface of an object to be polished 20 into a convex state, the first polishing region 11 is formed on a region on the outer side and the second polishing region 12 on the inner side. In the case of processing the surface of an object to be polished 20 into a concave state, the first polishing region 11 is formed on a region on the inner side and the second polishing region 12 on the outer side.
An embodiment of a polishing pad 10 is shown in
Embodiments wherein grooves 15 are formed in the second polishing region are shown in
A method of polishing an object to be polished according to the present invention comprises the steps of: placing an object to be polished 20 on a polishing pad 10 over the boundary between the first polishing region 11 and the second polishing region 12, the polishing pad 10 having a first polishing region 11 where grooves 15 are formed and a second polishing region 12 where grooves 15 are formed in a different state from that of the first polishing region, and either one of the first polishing region 11 and the second polishing region 12 being formed on a region on the center side, and the other being formed on a region on the outer side in a radial direction on the surface of the polishing pad 10; and polishing the object to be polished 20 by rotating the polishing pad 10 and the object to be polished 20. Then, as shown in
Examples of an object to be polished 20 in a method of polishing an object to be polished according to the present invention are: semiconductor wafers including Si, SiO2, etc.; monocrystal wafers including LN, LT, GaN, etc.; ceramics including alumina, zirconia, piezoelectric body, etc.; and metals including alloys of beryllium, copper, etc.
Other embodiments of a polishing pad 10 are shown in
It should be noted that, although each of
A method of polishing an object to be polished according to Embodiment 2 of the present invention will be explained by the use of
A polishing pad shown in
The revolution speed of a platen 2 (a polishing pad 10) is preferably 5 to 1,000 rpm, more preferably 10 to 500 rpm, and further preferably 1.0 to 150 rpm.
The revolution speed of an object to be polished 20 is preferably 5 to 1,000 rpm, more preferably 10 to 500 rpm, and further preferably 10 to 150 rpm.
The difference between the revolution speed of a platen 2 (a polishing pad 10) and the revolution speed of an object to be polished 20 is preferably 0 to 500 rpm (here 0 rpm is excluded), more preferably 0 to 450 rpm, and further preferably 0 to 100 rpm. If the increase in the curvature radius of the surface to be polished of an object to be polished 20 is required (for example, 50 million mm), it is preferable to bring the difference of the revolution speeds close to 0, but 0 rpm is not included.
It is possible to process the surface of the object to be polished 20 into a concave state by making the number of revolutions of the polishing pad 10 larger than that of the object to be polished 20.
Furthermore, it is possible to process the surface of the object to be polished 20 into a convex state by making the number of revolutions of the polishing pad 10 smaller than that of the object to be polished 20.
A method of polishing an object to be polished according to the present invention comprises the steps of: placing the object to be polished 20 on a polishing pad 10 having grooves 15 formed on its surface; and polishing the object to be polished 20 by rotating the polishing pad 10 and the object to be polished 20 while supplying one of two slurries having different properties from each other to a region of the polishing pad 10 on the center side of the central part 20c of the object to be polished 20 in a radial direction of the polishing pad 10, and supplying the other slurry to a region of the polishing pad 10 on the outer side of the central part 20c of the object to be polished 20, respectively. Alternatively, the slurry may be supplied to only one of the said two regions, i.e. the region on the center side or the region on the outer side. By so doing, it is possible to process the surface of the object to be polished 20 into a concave or convex state.
In Embodiment 3, a polishing pad 10 having concentric grooves 15 formed as shown in
Slurry is supplied from a slurry supply unit 4 in a CMP apparatus 1 onto the surface of a polishing pad 10. The slurry includes a polishing member, an acid, an oxidizer, and water. As a polishing member, colloidal silica, fumed silica, alumina, titania, zirconia, a mixture of these, etc. can be used. Furthermore, as an oxidizer, peroxide, nitrate, etc. can be used. Moreover, the slurry may contain a pH adjuster. As a pH adjuster, an acidic substance or a basic substance is arbitrarily used in order to adjust the pH of the slurry to a desired value.
The pH in the region of a polishing pad 10 on the center side of the central part 20c of an object to be polished 20 is preferably 0 to 12.0, more preferably 3.0 to 10.0, and further preferably 4.0 to 10.0. The pH in the region of a polishing pad 10 on the outer side of the central part 20c of an object to be polished 20 is preferably 10.0 to 14.0, more preferably 12.0 to 14.0, and further preferably 13.0 to 14.0. It should be noted that, if the pH value in the region on the center side and the pH value in the region on the outer side are reversed from the above values, concave and convex of a surface are also formed reversely. Furthermore, in the case of an object to be polished 20 is a monocrystal wafer of LN (LiNbO3) for example, the polishing speed in acid (pH 3 to 5) is 200% (two times) and the polishing speed in strong alkali (pH 13 or higher) is approximately zero (0%) when the ordinary polishing speed through the use of colloidal silica is 1.
In place of using different slurries in the region of a polishing pad 10 on the center side and in the region thereof on the outer side, respectively, an object to be polished 20 may also be polished while slurry is supplied only to either the region of a polishing pad 10 on the center side of the central part 20c of the object to be polished 20 or the region of a polishing pad 10 on the outer side of the central part 20c of the object to be polished 20 in a radial direction of the polishing pad 10. By so doing, it is possible to process the surface of an object to be polished 20 into a concave or convex state.
The present invention will be hereunder explained further in detail on the basis of examples, but the present invention is not limited to these examples.
A polishing pad 10 (
An object to be polished 20 was polished by using a polishing pad 10 having lattice-shaped grooves 15 formed on the whole surface and having a diameter of 300 mm, and rotating the polishing pad 10 and the object to be polished 20 at different numbers of revolutions (refer to
An object to be polished 20 was polished by using the polishing pad 10 of Example 2 and rotating the polishing pad 10 and the object to be polished 20 at different numbers of revolutions (refer to
An object to be polished 20 was polished by using a polishing pad 10 having concentric grooves 15 formed on the whole surface and having a diameter of 300 mm (refer to
Number | Date | Country | Kind |
---|---|---|---|
2010-201729 | Sep 2010 | JP | national |
2011-191422 | Sep 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3583111 | Volk | Jun 1971 | A |
5441598 | Yu et al. | Aug 1995 | A |
5679063 | Kimura et al. | Oct 1997 | A |
6123608 | Nakagawa et al. | Sep 2000 | A |
6165904 | Kim | Dec 2000 | A |
6276991 | Kobayashi et al. | Aug 2001 | B1 |
6607423 | Arcayan et al. | Aug 2003 | B1 |
6964598 | Leong et al. | Nov 2005 | B1 |
7137874 | Bovio et al. | Nov 2006 | B1 |
7300340 | Elmufdi et al. | Nov 2007 | B1 |
20050107008 | Miyazawa | May 2005 | A1 |
20060099889 | Tabata et al. | May 2006 | A1 |
20100159811 | Muldowney | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
1461251 | Dec 2003 | CN |
196 02 458 | Dec 1996 | DE |
0 054 368 | Jun 1982 | EP |
2000-117620 | Apr 2000 | JP |
2000-155924 | Jun 2000 | JP |
2003-173992 | Jun 2003 | JP |
2004-327567 | Nov 2004 | JP |
2006-159398 | Jun 2006 | JP |
2007-005482 | Jan 2007 | JP |
2007-054944 | Mar 2007 | JP |
2008-068394 | Mar 2008 | JP |
2009-000749 | Jan 2009 | JP |
2010-155339 | Jul 2010 | JP |
Entry |
---|
Japanese Office Action, Japanese Application No. 2011-191422, dated Apr. 1, 2014 (2 pages). |
Japanese Office Action (Application No. 2011-191422) dated Jun. 24, 2014. |
Extended European Search Report (Application No. 11180163.5) dated Nov. 14, 2014. |
Chinese Office Action (Application No. 201110265297.0) dated Oct. 29, 2014. |
Number | Date | Country | |
---|---|---|---|
20120064803 A1 | Mar 2012 | US |