The present invention relates to probe assemblies of the type commonly used for testing integrated circuits (ICs) that are fabricated on a wafer or substrate.
The trend in electronic production, particularly in integrated circuit technology, has been toward fabricating larger numbers of discrete circuit elements with higher operating frequencies and smaller geometries on a single substrate or “wafer.” After fabrication, the wafer is divided into a number of rectangular-shaped chips or “dies” where each die presents a rectangular or other regular arrangement of metallic bond or contact pads through which connections are made for the inputs and outputs of the electrical circuit on the die. Although each die is eventually packages separately, for efficiency sake, testing of the circuits formed on the wafer is preferably performed while the dies are still joined together on the wafer. One typical procedure is to support the wafer on a flat stage or “chuck” and to move the wafer in X, Y and Z directions relative to the head of a probing assembly so that contacts on the probing assembly move relative to the surface of the wafer for consecutive engagement with the contact pads of one or more of a plurality of dies or test structures on the wafer. Respective signal, power and ground conductors that interconnect the test instrumentation with the contacts on the probing assembly enable each circuit on the wafer to be sequentially connected to the instrumentation and tested.
Gleason et al., U.S. Pat. No. 5,914,613, discloses a membrane probing system for use in a probe station. The membrane probing system comprises a probe head and a membrane probing assembly. The probe head includes an interface board, a multi-layer printed circuit board that facilitates interconnection of the membrane probing assembly and the test instrumentation supplying power and signals to and receiving signals from the electrical circuit being tested, the device-under test (DUT). The power and signals are transmitted over one or more conductors that are conductively interconnected with respective data/signal traces on the interface board. The data/signal traces on the interface board are conductively connected to respective conductive traces on the surface of the membrane assembly. A metallic layer below the surface of the interface board provides a ground plane for the interface board and a ground reference for the power and lower frequency signals.
Typically, higher frequency signals; commonly in the radio or microwave frequency ranges, collectively referred herein to as RF signals; are communicated between the test instrumentation and the membrane probing system with coaxial cable. The coaxial cable is connected to an adapter that is secured to the interface board. A second portion of coaxial cable, conductively interconnected with the first portion in the adapter, is connected to one or more conductive traces on the surface of the interface board. Typically, the end of the second portion of coaxial cable is cut at an angle and the conductors of the cable are connected to respective traces on the interface board to transition the signal path from the coaxial cable to a co-planar waveguide. For example, the center connector of the coaxial cable may soldered to a trace on the interface board while the outer conductor of the cable, connected to a ground potential, is soldered to a pair of traces that are respectively spaced apart to either side of the trace to which the center conductor is connected transitioning the signal path from coaxial cable to a ground-signal-ground (GSG) co-planar waveguide on the interface board. The traces on the interface board are conductively engaged with respective, corresponding traces on the lower surface of the membrane assembly extending the co-planar waveguide to the contacts on the membrane. The impedance of the transition signal path from the coaxial cable to the coplanar waveguide on the membrane is, ideally, optimized, with a typical value of 50 ohms (Ω). However, inconsistencies in connections with the ground plane of the interface board may cause the impedance of a particular signal path to vary from the desired matched impedance producing a reflection of the RF signals that are absorbed by other structures resulting in erratic performance of the probing system.
The membrane of the probing system is supported by a support element that is made of an incompressible material, such as a hard polymer, and detachably affixed to the upper surface of the interface board. The support element includes a forward support or plunger portion that protrudes though a central aperture in the interface board to project below the interface board. The forward support has the shape of a truncated pyramid with a flat forward support surface. The membrane assembly which is also detachably secured to the interface board by the support element includes a center portion that extends over and is separated from the forward support surface of the support element by an intervening elastomeric layer. The flexible membrane assembly comprises one or more plies of insulating sheeting, such as polyimide film. Flexible conductive layers or strips are provided between or on these layers to form power/data/signal traces that interconnect with the traces on the interface board at one end. The second end of the traces on the membrane terminate in conductive connections to respective contacts which are arranged on the lower surface of the portion of the membrane extending over the forward support. The contacts are arranged in a pattern suitable for contacting the bond pads of the DUT when the chuck is moved to bring the contacts of the probe assembly into pressing engagement with the bond pads.
The contacts of the probing system comprise a beam which is affixed to the lower surface of the membrane assembly and which is conductively interconnected with the appropriate trace on the surface of the membrane. A contact bump or tip for engaging a bond pad of the DUT is affixed to one end of the beam. When the contact bump is pressed against the bond pad of the DUT, the membrane assembly is deflected, compressing a portion of the elastomeric layer proximate the end of the beam to which the contact bump is affixed. The compliance of the elastomeric layer enables relative displacement of the respective contact bumps and facilitates simultaneous engagement with a plurality of bond pads that may have respective contact surfaces that lie in different planes. The resilience of the elastomeric layer controls the force exerted by the contacts and returns the contacts to the at-rest position when the probe is withdrawn from pressing engagement with the DUT.
The bond pads on DUTs are subject to the rapid development of a layer of oxidation which can electrically insulate the bond pad from the contact. To improve the conductivity of the bond pad/contact interface, the contacts of membrane probes are commonly pressed into the bond pad with sufficient force to penetrate the oxide layer. While penetration of the oxide layer improves conductivity, excessive force can damage the bond pad. With the membrane probe disclosed by Gleason et al, the force of contact with the bond pad is exerted at one end of the beam and the off-center loading on the beam causes the beam to rotate as the portion elastomeric layer adjacent the deflected end of the beam is compressed. The rotation of the beam causes the surface of the contact bump to translate across the bond pad surface and abrade or scrub the oxide coating on the surface improving conductivity between the bond pad and the contact.
However, the conductors within the membrane assembly and attached to the contacts can be broken by excessive displacement of the contacts or may fail from fatigue due to repeated bending when the contacts are displaced during probing. In addition, bond pad material may build up in the area of the contacts of wafer probing assemblies requiring frequent cleaning and, eventual replacement due to wear. While the membrane assembly is detachable from the interface card for cleaning or replacement, the membrane assembly is complex and fairly expensive to replace.
What is desired, therefore, is a probing apparatus having improved impedance characteristics, longer service life and less expensive contacts that can be quickly replaced.
Referring in detail to the drawings where similar parts are identified by like reference numerals, and, more particularly to
The probe head 40 includes an interface board 52 on which traces 48 and shielded transmission lines are arranged for communicating data, signals and power between the test instrumentation and the DUT. Typically, high frequency signals are communicated between the test instrumentation and the probe with co-axial cables 53 which connect the instrumentation to co-axial cable adapters 55 on the interface board. The shielded transmission lines, typically comprising second lengths of co-axial cable 50 connect the adapters to metallic traces 87 on the interface board to transition the communication path from the coaxial cable to a co-planar waveguide. Referring also to
Referring also to
Referring to also
When the support element 54 is mounted on the upper side of the interface board 52 as shown in
The exemplary membrane probing assembly 42 is capable of probing a dense arrangement of contact pads over a large number of contact cycles in a manner that ensures reliable electrical connection between the contacts and pads during each cycle despite oxide buildup on the pads. This capability is a function of the construction and interconnection of the support element 54, the flexible membrane assembly 72 and the coupon 80. In particular, the membrane probing assembly is so constructed and connected to the support element to enable the contacts to engage a plurality of bond pads on the DUT even if the contact surfaces of the pads are not co-planar. Moreover, the contacts on the membrane assembly preferably wipe or scrub, in a locally controlled manner, laterally across the pads when brought into pressing engagement with the pads. Alternatively, the contacts may be constructed to enable the tips of the contacts to penetrate an oxide coating on the surfaces of the pads with substantially vertical motion. In the event that the contacts require replacement due to, for examples, a built up of pad material, wear, or a change in the arrangement of the pads to be probed, the contacts can be easily replaced by removing and replacing the coupon without the added expense of replacing the membrane assembly.
Referring also to
As indicated in
Referring to
The resilient elastomeric layer 98 of the coupon, backed by the incompressible support surface 70 and the substantially incompressible membrane 72, exerts a recovery force on each tilting beam contact and thus each contact tip to maintain an adequate level of contact tip-to-bond pad pressure during scrubbing. At the same time, the elastomeric layer accommodates minor height variations between the respective contacts and pads. Thus, when a relatively shorter contact is situated between an immediately adjacent pair of relatively taller contacts and these taller contacts are brought into engagement with their respective pads, deformation of the elastomeric layer enables the shorter contact to be brought into engagement with its pad after only a small amount of further over travel by the longer contact tips. Similarly, the compressibility of the elastomeric layer enables the contact tips to be brought into proper pressing engagement with a plurality of bond pads having surfaces that are not co-planar.
Referring to
While some probing assemblies do not utilize an interposer, the exemplary probing assembly of
The fuzz buttons protruding through the substrate of the interposer 164 contact conductive terminals 170 on one side of the space transformer 152. The space transformer 154 (indicated by a bracket) comprises a suitably circuited substrate 172, such as a multi-layer ceramic substrate having a plurality of terminals (contact areas, pads) 170 (two of many shown) disposed on the surface adjacent to the interposer and a plurality of terminals 174 (contact areas, pads) (two of many shown) disposed on the opposing surface. In the exemplary probing assembly, the contact pads adjacent the interposer are disposed at the pitch of the terminals of the interface board, and the contact pads 174 arranged on the opposing surface of the space transformer are disposed at a finer pitch corresponding to the pitch and arrangement of the needle-type probes included in the needle card with which the space transformer was intended to interface. While the pitch of the terminals of the interface board is commonly approximately 100 mil, the pitch of needle-type probes can be as fine as approximately 125 μm. Conductive traces 176 in the multilayer substrate of the space transformer re-route the electrical connections from the finely pitched pattern required to interface with the probe head to the more coarsely pitched pattern that is obtainable with a printed circuit board, such as the interface board.
The various elements of the probing assembly are stacked and any suitable mechanism for stacking these components and ensuring reliable electrical contacts may be employed. As illustrated, the probing assembly includes a rigid front mounting plate 180 arranged on one side of the interface board. A stand-off 182 with a central aperture to receive the space transformer is attached to the front mounting plate. A mounting ring 184 which is preferably made of a springy material such as phosphor bronze and which may have a pattern of springy tabs extending therefrom, is attachable by screws 186 to the stand-off with the space transformer captured between the mounting ring and the stand-off.
A coupon 150 (indicated by a bracket) comprising an elastomeric layer 190 and a plurality of electrically conductive contacts is affixed to the face of the space transformer, preferably with an adhesive 191. The contacts, for example exemplary contact 192, may comprise, generally, a relatively thick, elongate, rigid beam portion 194 with a post portion 196 proximate one end of the beam and a contact tip 102 projecting in the opposite direction from the opposite side of the beam proximate the second end of the beam. Although other shapes and materials may be utilized, the contact tip preferably has the general shape of a truncated pyramid and the distal end of the contact tip may be coated with a layer of nickel and/or rhodium to provide good electrical conductivity and wear resistant when the contact tip is repeatedly pressed into engagement with the bond pads of DUTs. The post 196 has a rounded end distal of the beam that abuts a terminal 174 of the space transformer 152. The rounded end facilitates movable contact between the post and the terminal when the contact tip is displaced upward by interaction with a bond pad. Additional dielectric layer(s) 198 may be affixed to the lower surface of the elastomeric layer.
The contact 200 exemplifies a second type of contact that may included in the coupon. The contact 200 comprises a contact tip portion 202 which, preferably, has the shape of a truncated pyramid or cone and a body 204 with, preferably, a square or circular cross-section. A shoulder 206 may project from the body adjacent to the bottom surface of the elastomeric layer. The contact is conductively connected to the upper surface of the coupon 150 by a pig-tail 204 that is conductively attached to the body of the contact at one end and has a second end exposed at the upper surface of the coupon. The exposed portion of the pig-tail is arranged to contact a terminal 174 of the space transformer when the coupon is affixed to the surface of the transformer. Alternatively, a conductive connection between the contact and the terminal of the space transformer may incorporate a fuzz button, similar to fuzz button 168, that is embedded in the elastomeric layer with one end exposed at the surface of the coupon and the second end abutting the contact.
For better conductivity between a bond pad and the contact, the tip 202 of the contact 200 is intended to be pushed through the oxide layer that may develop on the surface of a bond pad and the elasticity of the elastomeric layer may be varied to aid penetration of the oxide layer. For example, the body 204 of the contact may be extended so as to directly contact the terminal of the space transformer, eliminating the need for the pigtail and enabling vertical movement of the contact in response to pressure from the pad to be limited to the deflection of the relatively rigid space transformer while the resiliency of the elastomeric layer may enable the contact to tilt if the surface of the pad is not parallel to the end surface of the tip of the contact. On the other hand, the elastomeric layer 190 may comprise a single layer with graduated resiliency or a plurality of sub-layers with differing resiliency to enable controlled vertical movement of the contact in response to the application of force at the tip of the contact. The coupon provides an economical way of converting a needle-type probing apparatus to a probing apparatus with much lower inductance. The relatively long, closely spaced, needle-like probes typically exhibit a single path inductance of 1-2 nano-Henrys (nH) which is sufficient to substantially distort high frequency signals and limit the usefulness of needle-type probes for testing devices with high frequency signals. On the other hand, single path inductance of 0.2 nH has been demonstrated with elastically suspended probes of membrane-type probing apparatuses.
Referring to
On the other hand, the body of the contact 252 terminates in the elastomeric layer and the contact can exhibit elastic behavior as determined by the properties of the elastomer layer. The elastomeric layer 98 may comprise sub-layers 98A and 98B, each having different elastic properties. The elasticity of the contact during vertical displacement may be determined by the properties of the sub-layer 98A which acts on a portion of the surface area of the upper end of the contact and the properties of sub-layer 98B which acts on the upper surface of a contact flange 253. A fuzz button 256 conductively connects the contact 252 with the trace 76.
Referring to
The ground contact tips 302 are conductively connected to a conductive backplane layer 318 deposited between a pair of dielectric layers 320 and 321. The elastomeric layer is affixed to lower surface of the dielectric layer 321. The backplane layer extends over the area of the coupon that is occupied by the contact tips 302-308. The backplane layer is conductively connected to a suitable conductor in the space transformer by a contact button 324 on the upper surface of the coupon which is connected to the backplane layer by a via 326. The contact button 324 is arranged to engage a corresponding contact button on the lower surface of the space transformer. The contact tips 302 include post portions 327 in contact with backplane or a pigtail 328 that conductively connects the side of the beam portion of the contact tip and the back plane layer.
High frequency signals are transmitted between the test instrument and the DUT through the high frequency contact tips 304. Each of the high frequency contact tips is connected to one of a pair of contact buttons 330 on the upper surface of the coupon by a via 332 and a high frequency signal trace 324 that is deposited between the upper surface of the elastomeric layer 312 and the dielectric layer 321 which separates the high frequency trace from the backplane layer.
The contact tips 308 facilitating the transmission of DC power to the DUT are connected to an appropriate conductor 334 in the space transformer through a contact button 336 on the upper surface of the coupon. A trace 338, including portions that are conductively affixed to the lower surfaces of the beam portions of the power contact tips 308, is affixed to the lower surface of a dielectric layer 340 that is, in turn, affixed to the lower surface of the elastomer layer. A via 342 connects the power trace on the lower surface of the coupon to a contact button 344 on the upper surface of the coupon.
The coupon 300c also enables communication of a lower frequency AC signal to the DUT through contact tips 306 which include posts conductively engaging a lower frequency signal layer 346. The lower frequency signal is conducted from the lower frequency signal layer to the space transformer through a via 348 connecting the lower frequency signal layer with a low frequency signal contact button 350 on the upper surface of the coupon. A multilayered coupon such as the coupon 300 including the tile 300c provides flexibility for connecting an arrangement of finely pitched contact tips with the more coarsely pitched contacts of more moderately priced space transformers.
Referring to
At RF frequencies, signal frequencies in the radio frequency and microwave frequency ranges, it is important to match the impedance, typically 50Ω, of the coaxial cable that typically interconnects the test instrumentation and the probing apparatus with the impedance of the coplanar waveguide that extends from the interface board 52 of the probing apparatus to the lower surface of the membrane in the area of the forward support surface 70. A mismatch of impedance will produce reflections of the signals which can couple to adjacent structures causing frequency dependent inaccuracies in the measurements of the DUT's performance. Referring to
Typically, the interface board includes a sub-surface conductive layer that is connected to a ground potential to provide a ground plane for the interface board co-planar waveguide. However, inconsistency in the interconnection of the interface board co-planar waveguide and the ground plane may produce an impedance mismatch as the signal path transitions from coaxial cable to co-planar waveguide. The inventors realized that eliminating the interconnections with the interface board ground plane would eliminate this source of error but would also increase the impedance of the interface board co-planar waveguide to unacceptable levels. The inventors came to the unexpected conclusion that the interface board ground plane could be eliminated by decreasing the gaps between the signal trace and the ground traces of the coplanar waveguide, interconnecting the ground traces of adjacent waveguides and providing a low impedance structure for interconnecting the traces of the membrane and interface board waveguides.
The exemplary interface board 500 includes a plurality of conductive traces deposited on the upper surface. Three traces 502, 504, 506 comprise an interface board co-planar waveguide 508 (indicated by a bracket). The center conductor 510 of a coaxial cable 502 is conductively interconnected with the center trace 502 of the waveguide and the outer conductor 514 of the cable is connected to a first side trace 504 spaced apart from one edge of the center trace and a second side trace 506 spaced apart from the second edge of the center trace. Typically, a signal is communicated between the test instrumentation and the probing apparatus over the center conductor of the coaxial cable and the outer conductor is connected to a ground level electrical potential. The interface board ground plane 516, if any, terminates a substantial distance from the area of the interface board that is overlaid by the traces of the waveguide and is not electrically interconnected with the traces of the waveguide. To reduce the impedance of the “ungrounded” waveguide, the width of the center trace 502 differs from the widths of the side traces and the widths of the respective side traces may also differ from each other. For example, the center trace or signal conductor of an exemplary GSG waveguide having an impedance of 50 Ω is 0.0179 inches wide and is separated from each of the spaced apart side traces of the waveguide by a gap of 0.004 inches. If a side trace, for example the side trace 506 of the exemplary waveguide is adjacent to the center traces of two waveguides, for example center trace 502 and the center trace 522 of a second waveguide 520 (indicated by a bracket), the side trace is shared by the adjacent waveguides 508, 512. The side trace preferably has a width of 0.029 inches and the outer conductors 514 of two adjacent coaxial cables 512, 526 are conductively connected to the trace. If a side trace, for example the side trace 504 of the exemplary interface board co-planar waveguide 508, is adjacent to only one center trace, the side trace has a width of 0.0107 inches.
Referring to also
The interconnection of the respective traces of the interface board waveguide and the corresponding traces of the membrane waveguide substantially effects the impedance of the waveguide. The electro-magnetic field is carried in the gap between the traces of a waveguide and the interconnection between the traces can produce a “pinch point” that substantially increases the waveguide's impedance. The inventors concluded that the more closely the geometry of the interconnecting structure resembles the geometry of the waveguide's traces the lower the impedance of the connection. Referring also to
Similarly, a portion of the side trace 534 on the membrane overlaps a portion of the side trace 504 on the surface of the interface board 500 and a portion of the membrane side trace 532 overlaps a portion of the interface board waveguide side trace 506. On the side (ground) traces, the pair 546 of raised pads 540 nearest the center trace 502 are located as close to the inner edge of the trace as is permitted by the tolerance to misalignment and the second pair 548 of raised pads are preferably located nearer the center line of the membrane trace than the second edge of the trace. The electro-magnetic field is carried in the region between the traces of the waveguide and locating the pads of interconnecting structure closer to the region in which the electro-magnetic field is confined reduces the inductance of the connection.
The accuracy of measurements performed with the membrane probing apparatus, particularly at frequencies in the radio and microwave frequency ranges, is improved by optimizing the impedance of the interface between co-axial cables, interconnecting the test instrumentation and the probing apparatus, and the co-planar waveguide that extends the signal path to the contact tips. A longer service life and lower operating cost for a membrane probing apparatus is achievable by including the contact tips on an elastic coupon that is attachable to a membrane that includes a plurality of traces over which signals, data and power can be transmitted. Replacing the probe needles of a needle type probing apparatus with a coupon attachable to a space transformer and including elastically supported contact tips can also improve the performance of a needle-type probing apparatus by substantially lower the inductance of the apparatus.
The detailed description, above, sets forth numerous specific details to provide a thorough understanding of the present invention. However, those skilled in the art will appreciate that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid obscuring the present invention.
All the references cited herein are incorporated by reference.
The terms and expressions that have been employed in the foregoing specification are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow.
This application is a continuation patent application that claims priority to U.S. Pat. No. 8,410,806, which issued on Apr. 2, 2013, and which claims priority to U.S. Provisional Patent Application Ser. No. 61/199,910, which was filed on Nov. 21, 2008. The entire disclosures of the above-identified patent and patent application are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1337866 | Whitaker | Apr 1920 | A |
2142625 | Zoethout | Jan 1939 | A |
2376101 | Tyzzer | May 1945 | A |
2389668 | Johnson | Nov 1945 | A |
3176091 | Hanson et al. | Mar 1965 | A |
3193712 | Harris | Jul 1965 | A |
3230299 | Radziejowski | Jan 1966 | A |
3401126 | Miller et al. | Sep 1968 | A |
3429040 | Miller | Feb 1969 | A |
3441315 | Paes et al. | Apr 1969 | A |
3442831 | Dickstein et al. | May 1969 | A |
3445770 | Harmon | May 1969 | A |
3484679 | Hodgson et al. | Dec 1969 | A |
3541222 | Parks et al. | Nov 1970 | A |
3595228 | Simon et al. | Jul 1971 | A |
3596228 | Reed, Jr. et al. | Jul 1971 | A |
3609539 | Gunthert | Sep 1971 | A |
3634807 | Grobe et al. | Jan 1972 | A |
3654585 | Wickersham | Apr 1972 | A |
3680037 | Nellis et al. | Jul 1972 | A |
3700998 | Lee et al. | Oct 1972 | A |
3710251 | Hagge et al. | Jan 1973 | A |
3714572 | Ham et al. | Jan 1973 | A |
3740900 | Youmans et al. | Jun 1973 | A |
3806801 | Bove | Apr 1974 | A |
3829076 | Sofy | Aug 1974 | A |
3839672 | Anderson | Oct 1974 | A |
3849728 | Evans | Nov 1974 | A |
3858212 | Tompkins et al. | Dec 1974 | A |
3862790 | Davies et al. | Jan 1975 | A |
3866093 | Kusters et al. | Feb 1975 | A |
3936743 | Roch | Feb 1976 | A |
3952156 | Lahr | Apr 1976 | A |
3970934 | Aksu | Jul 1976 | A |
3971610 | Buchoff et al. | Jul 1976 | A |
3976959 | Gaspari | Aug 1976 | A |
3992073 | Buchoff et al. | Nov 1976 | A |
4008900 | Khoshaba | Feb 1977 | A |
4027935 | Byrnes et al. | Jun 1977 | A |
4038599 | Bove et al. | Jul 1977 | A |
4038894 | Knibbe et al. | Aug 1977 | A |
4049252 | Bell | Sep 1977 | A |
4066943 | Roch | Jan 1978 | A |
4072576 | Arwin et al. | Feb 1978 | A |
4093988 | Scott | Jun 1978 | A |
4099120 | Aksu | Jul 1978 | A |
4115735 | Stanford | Sep 1978 | A |
4135131 | Larsen et al. | Jan 1979 | A |
4184729 | Parks et al. | Jan 1980 | A |
4275446 | Blaess | Jun 1981 | A |
4277741 | Faxvog et al. | Jul 1981 | A |
4284033 | del Rio | Aug 1981 | A |
4284682 | Frosch et al. | Aug 1981 | A |
4287473 | Sawyer | Sep 1981 | A |
4306235 | Christmann | Dec 1981 | A |
4312117 | Robillard et al. | Jan 1982 | A |
4327180 | Chen | Apr 1982 | A |
4330783 | Toia | May 1982 | A |
4357575 | Uren et al. | Nov 1982 | A |
4376920 | Smith | Mar 1983 | A |
4383217 | Shiell | May 1983 | A |
4401945 | Juengel | Aug 1983 | A |
4425395 | Negishi et al. | Jan 1984 | A |
4453142 | Murphy | Jun 1984 | A |
4468629 | Choma, Jr. | Aug 1984 | A |
4487996 | Rabinowitz et al. | Dec 1984 | A |
4515133 | Roman | May 1985 | A |
4515439 | Esswein | May 1985 | A |
4528504 | Thornton, Jr. et al. | Jul 1985 | A |
4531474 | Inuta | Jul 1985 | A |
4552033 | Marzhauser | Nov 1985 | A |
4567321 | Harayama | Jan 1986 | A |
4568890 | Bates | Feb 1986 | A |
4581679 | Smolley | Apr 1986 | A |
4588950 | Henley | May 1986 | A |
4593243 | Lao et al. | Jun 1986 | A |
4600907 | Grellman et al. | Jul 1986 | A |
4621169 | Petinelli et al. | Nov 1986 | A |
4626618 | Takaoka et al. | Dec 1986 | A |
4636722 | Ardezzone | Jan 1987 | A |
4636772 | Yasunaga | Jan 1987 | A |
4641659 | Sepponen | Feb 1987 | A |
4642417 | Ruthrof et al. | Feb 1987 | A |
4646005 | Ryan | Feb 1987 | A |
4649339 | Grangroth et al. | Mar 1987 | A |
4651115 | Wu | Mar 1987 | A |
4663840 | Ubbens et al. | May 1987 | A |
4673839 | Veenendaal | Jun 1987 | A |
4684883 | Ackerman et al. | Aug 1987 | A |
4691163 | Blass et al. | Sep 1987 | A |
4697143 | Lockwood et al. | Sep 1987 | A |
4705447 | Smith | Nov 1987 | A |
4707657 | Bøegh-Petersen | Nov 1987 | A |
4711563 | Lass | Dec 1987 | A |
4713347 | Mitchell et al. | Dec 1987 | A |
4719417 | Evans | Jan 1988 | A |
4725793 | Igarashi | Feb 1988 | A |
4727391 | Tajima et al. | Feb 1988 | A |
4727637 | Buckwitz et al. | Mar 1988 | A |
4742571 | Letron | May 1988 | A |
4744041 | Strunk et al. | May 1988 | A |
4746857 | Sakai et al. | May 1988 | A |
4749942 | Sang et al. | Jun 1988 | A |
4754239 | Sedivec | Jun 1988 | A |
4755746 | Mallory et al. | Jul 1988 | A |
4755747 | Sato | Jul 1988 | A |
4755874 | Esrig et al. | Jul 1988 | A |
4757255 | Margozzi | Jul 1988 | A |
4766384 | Kleinberg et al. | Aug 1988 | A |
4772846 | Reeds | Sep 1988 | A |
4780670 | Cherry | Oct 1988 | A |
4791363 | Logan | Dec 1988 | A |
4793814 | Zifcak et al. | Dec 1988 | A |
4795962 | Yanagawa et al. | Jan 1989 | A |
4805627 | Klingenbeck et al. | Feb 1989 | A |
4812754 | Tracy et al. | Mar 1989 | A |
4827211 | Strid et al. | May 1989 | A |
4831494 | Arnold et al. | May 1989 | A |
4835495 | Simonutti | May 1989 | A |
4837507 | Hechtman | Jun 1989 | A |
4839587 | Flatley et al. | Jun 1989 | A |
4849689 | Gleason et al. | Jul 1989 | A |
4853624 | Rabjohn | Aug 1989 | A |
4853627 | Gleason et al. | Aug 1989 | A |
4859989 | McPherson | Aug 1989 | A |
4864227 | Sato | Sep 1989 | A |
4871883 | Guiol | Oct 1989 | A |
4871964 | Boll et al. | Oct 1989 | A |
4891584 | Kamieniecki et al. | Jan 1990 | A |
4893914 | Hancock et al. | Jan 1990 | A |
4894612 | Drake et al. | Jan 1990 | A |
4899998 | Teramachi | Feb 1990 | A |
4904933 | Snyder et al. | Feb 1990 | A |
4904935 | Calma et al. | Feb 1990 | A |
4906920 | Huff et al. | Mar 1990 | A |
4912399 | Greub et al. | Mar 1990 | A |
4916002 | Carver | Apr 1990 | A |
4916398 | Rath | Apr 1990 | A |
4918383 | Huff et al. | Apr 1990 | A |
4922128 | Dhong et al. | May 1990 | A |
4922186 | Tsuchiya et al. | May 1990 | A |
4922192 | Gross et al. | May 1990 | A |
4929893 | Sato et al. | May 1990 | A |
4975638 | Evans et al. | Dec 1990 | A |
4980637 | Huff et al. | Dec 1990 | A |
4983910 | Majidi-Ahy et al. | Jan 1991 | A |
4987100 | McBride et al. | Jan 1991 | A |
4991290 | MacKay | Feb 1991 | A |
4998062 | Ikeda | Mar 1991 | A |
5001423 | Abrami et al. | Mar 1991 | A |
5003253 | Majidi-Ahy et al. | Mar 1991 | A |
5020219 | Leedy | Jun 1991 | A |
5021186 | Ota et al. | Jun 1991 | A |
5030907 | Yih et al. | Jul 1991 | A |
5041782 | Marzan | Aug 1991 | A |
5045781 | Gleason et al. | Sep 1991 | A |
5059898 | Barsotti et al. | Oct 1991 | A |
5061192 | Chapin et al. | Oct 1991 | A |
5061823 | Carroll | Oct 1991 | A |
5066357 | Smyth, Jr. et al. | Nov 1991 | A |
5069628 | Crumly | Dec 1991 | A |
5082627 | Stanbro | Jan 1992 | A |
5084671 | Miyata et al. | Jan 1992 | A |
5089774 | Nakano | Feb 1992 | A |
5091692 | Ohno et al. | Feb 1992 | A |
5091732 | Mileski et al. | Feb 1992 | A |
5095891 | Reitter | Mar 1992 | A |
5097101 | Trobough | Mar 1992 | A |
5097207 | Blanz | Mar 1992 | A |
5107076 | Bullock et al. | Apr 1992 | A |
5126286 | Chance | Jun 1992 | A |
5126696 | Grote et al. | Jun 1992 | A |
5133119 | Afshari et al. | Jul 1992 | A |
5134365 | Okubo et al. | Jul 1992 | A |
5136237 | Smith et al. | Aug 1992 | A |
5138289 | McGrath | Aug 1992 | A |
5142224 | Smith et al. | Aug 1992 | A |
5145552 | Yoshizawa et al. | Sep 1992 | A |
5148103 | Pasiecznik, Jr. | Sep 1992 | A |
5159264 | Anderson | Oct 1992 | A |
5159267 | Anderson | Oct 1992 | A |
5159752 | Mahant-Shetti et al. | Nov 1992 | A |
5160883 | Blanz | Nov 1992 | A |
5164319 | Hafeman et al. | Nov 1992 | A |
5166606 | Blanz | Nov 1992 | A |
5172049 | Kiyokawa et al. | Dec 1992 | A |
5172050 | Swapp | Dec 1992 | A |
5172051 | Zamborelli | Dec 1992 | A |
5177438 | Littlebury et al. | Jan 1993 | A |
5180977 | Huff | Jan 1993 | A |
5187443 | Bereskin | Feb 1993 | A |
5198752 | Miyata et al. | Mar 1993 | A |
5198753 | Hamburgen | Mar 1993 | A |
5202558 | Barker | Apr 1993 | A |
5202648 | McCandless | Apr 1993 | A |
5207585 | Byrnes et al. | May 1993 | A |
5214243 | Johnson | May 1993 | A |
5214374 | St. Onge | May 1993 | A |
5225037 | Elder et al. | Jul 1993 | A |
5227730 | King et al. | Jul 1993 | A |
5232789 | Platz et al. | Aug 1993 | A |
5233197 | Bowman et al. | Aug 1993 | A |
5233306 | Misra | Aug 1993 | A |
5245292 | Milesky et al. | Sep 1993 | A |
5266889 | Harwood et al. | Nov 1993 | A |
5267088 | Nomura | Nov 1993 | A |
5270664 | McMurtry et al. | Dec 1993 | A |
5274336 | Crook et al. | Dec 1993 | A |
5280156 | Niori et al. | Jan 1994 | A |
5293175 | Hemmie et al. | Mar 1994 | A |
5298972 | Heffner | Mar 1994 | A |
5304924 | Yamano et al. | Apr 1994 | A |
5313157 | Pasiecznik, Jr. | May 1994 | A |
5315237 | Iwakura et al. | May 1994 | A |
5321352 | Takebuchi | Jun 1994 | A |
5321453 | Mori et al. | Jun 1994 | A |
5326412 | Schreiber et al. | Jul 1994 | A |
5355079 | Evans et al. | Oct 1994 | A |
5357211 | Bryson et al. | Oct 1994 | A |
5361049 | Rubin et al. | Nov 1994 | A |
5363050 | Guo et al. | Nov 1994 | A |
5367165 | Toda et al. | Nov 1994 | A |
5368634 | Hackett | Nov 1994 | A |
5369368 | Kassen et al. | Nov 1994 | A |
5371654 | Beaman et al. | Dec 1994 | A |
5373231 | Boll et al. | Dec 1994 | A |
5374938 | Hatazawa et al. | Dec 1994 | A |
5376790 | Linker et al. | Dec 1994 | A |
5389885 | Swart | Feb 1995 | A |
5395253 | Crumly | Mar 1995 | A |
5397855 | Ferlier | Mar 1995 | A |
5404111 | Mori et al. | Apr 1995 | A |
5408188 | Katoh | Apr 1995 | A |
5408189 | Swart et al. | Apr 1995 | A |
5412330 | Ravel et al. | May 1995 | A |
5412866 | Woith et al. | May 1995 | A |
5414565 | Sullivan et al. | May 1995 | A |
5422574 | Kister | Jun 1995 | A |
5441690 | Ayala-Esquilin et al. | Aug 1995 | A |
5451722 | Gregoire | Sep 1995 | A |
5451884 | Sauerland | Sep 1995 | A |
5453404 | Leedy | Sep 1995 | A |
5457398 | Schwindt et al. | Oct 1995 | A |
5467024 | Swapp | Nov 1995 | A |
5469324 | Henderson et al. | Nov 1995 | A |
5475316 | Hurley et al. | Dec 1995 | A |
5476211 | Khandros | Dec 1995 | A |
5477011 | Singles et al. | Dec 1995 | A |
5478748 | Akins, Jr. et al. | Dec 1995 | A |
5479108 | Cheng | Dec 1995 | A |
5479109 | Lau et al. | Dec 1995 | A |
5481196 | Nosov | Jan 1996 | A |
5481936 | Yanagisawa | Jan 1996 | A |
5487999 | Farnworth | Jan 1996 | A |
5488954 | Sleva et al. | Feb 1996 | A |
5493070 | Habu | Feb 1996 | A |
5493236 | Ishii et al. | Feb 1996 | A |
5500606 | Holmes | Mar 1996 | A |
5505150 | James et al. | Apr 1996 | A |
5506498 | Anderson et al. | Apr 1996 | A |
5506515 | Godshalk et al. | Apr 1996 | A |
5510792 | Ono et al. | Apr 1996 | A |
5511010 | Burns | Apr 1996 | A |
5512835 | Rivera et al. | Apr 1996 | A |
5517126 | Yamaguchi | May 1996 | A |
5521518 | Higgins | May 1996 | A |
5521522 | Abe et al. | May 1996 | A |
5523694 | Cole, Jr. | Jun 1996 | A |
5528158 | Sinsheimer et al. | Jun 1996 | A |
5530372 | Lee et al. | Jun 1996 | A |
5531022 | Beaman et al. | Jul 1996 | A |
5532608 | Behfar-Rad et al. | Jul 1996 | A |
5537372 | Albrecht et al. | Jul 1996 | A |
5539323 | Davis, Jr. | Jul 1996 | A |
5539676 | Yamaguchi | Jul 1996 | A |
5565788 | Burr et al. | Oct 1996 | A |
5565881 | Phillips et al. | Oct 1996 | A |
5569591 | Kell et al. | Oct 1996 | A |
5571324 | Sago et al. | Nov 1996 | A |
5578932 | Adamian | Nov 1996 | A |
5583445 | Mullen | Dec 1996 | A |
5584120 | Roberts | Dec 1996 | A |
5584608 | Gillespie | Dec 1996 | A |
5589781 | Higgins et al. | Dec 1996 | A |
5600256 | Woith et al. | Feb 1997 | A |
5601740 | Eldridge et al. | Feb 1997 | A |
5610529 | Schwindt | Mar 1997 | A |
5611008 | Yap | Mar 1997 | A |
5617035 | Swapp | Apr 1997 | A |
5623213 | Liu et al. | Apr 1997 | A |
5623214 | Pasiecznik, Jr. | Apr 1997 | A |
5628057 | Phillips et al. | May 1997 | A |
5631571 | Spaziani et al. | May 1997 | A |
5633780 | Cronin | May 1997 | A |
5634267 | Farnworth et al. | Jun 1997 | A |
5635846 | Beaman et al. | Jun 1997 | A |
5642298 | Mallory et al. | Jun 1997 | A |
5644248 | Fujimoto | Jul 1997 | A |
5653939 | Hollis et al. | Aug 1997 | A |
5656942 | Watts et al. | Aug 1997 | A |
5659421 | Rahmel et al. | Aug 1997 | A |
5666063 | Abercrombie et al. | Sep 1997 | A |
5669316 | Faz et al. | Sep 1997 | A |
5670322 | Eggers et al. | Sep 1997 | A |
5670888 | Cheng | Sep 1997 | A |
5672816 | Park et al. | Sep 1997 | A |
5675499 | Lee et al. | Oct 1997 | A |
5675932 | Mauney | Oct 1997 | A |
5676360 | Boucher et al. | Oct 1997 | A |
5685232 | Inoue | Nov 1997 | A |
5686317 | Akram et al. | Nov 1997 | A |
5688618 | Hulderman et al. | Nov 1997 | A |
5700844 | Hedrik et al. | Dec 1997 | A |
5704355 | Bridges | Jan 1998 | A |
5715819 | Svenson et al. | Feb 1998 | A |
5720098 | Kister | Feb 1998 | A |
5723347 | Hirano et al. | Mar 1998 | A |
5726211 | Hedrick et al. | Mar 1998 | A |
5731920 | Katsuragawa | Mar 1998 | A |
5742174 | Kister et al. | Apr 1998 | A |
5744383 | Fritz | Apr 1998 | A |
5744971 | Chan et al. | Apr 1998 | A |
5748506 | Bockelman | May 1998 | A |
5751252 | Phillips | May 1998 | A |
5756021 | Hedrick et al. | May 1998 | A |
5767690 | Fujimoto | Jun 1998 | A |
5772451 | Dozier, II et al. | Jun 1998 | A |
5773780 | Eldridge et al. | Jun 1998 | A |
5777485 | Tanaka et al. | Jul 1998 | A |
5785538 | Beaman et al. | Jul 1998 | A |
5792668 | Fuller et al. | Aug 1998 | A |
5793213 | Bockelman et al. | Aug 1998 | A |
5794133 | Kashima | Aug 1998 | A |
5804607 | Hedrick et al. | Sep 1998 | A |
5804982 | Lo et al. | Sep 1998 | A |
5804983 | Nakajima et al. | Sep 1998 | A |
5806181 | Khandros et al. | Sep 1998 | A |
5807107 | Bright et al. | Sep 1998 | A |
5810607 | Shih et al. | Sep 1998 | A |
5810609 | Faraci et al. | Sep 1998 | A |
5811751 | Leong et al. | Sep 1998 | A |
5811982 | Beaman et al. | Sep 1998 | A |
5813847 | Eroglu et al. | Sep 1998 | A |
5814847 | Shihadeh et al. | Sep 1998 | A |
5820014 | Dozier, II et al. | Oct 1998 | A |
5821763 | Beaman et al. | Oct 1998 | A |
5824494 | Feldberg | Oct 1998 | A |
5829128 | Eldridge et al. | Nov 1998 | A |
5829437 | Bridges | Nov 1998 | A |
5831442 | Heigl | Nov 1998 | A |
5832601 | Eldridge et al. | Nov 1998 | A |
5833601 | Swartz et al. | Nov 1998 | A |
5838160 | Beaman et al. | Nov 1998 | A |
5841288 | Meaney et al. | Nov 1998 | A |
5846708 | Hollis et al. | Dec 1998 | A |
5847569 | Ho et al. | Dec 1998 | A |
5848500 | Kirk | Dec 1998 | A |
5852232 | Samsavar et al. | Dec 1998 | A |
5854608 | Leisten | Dec 1998 | A |
5864946 | Eldridge et al. | Feb 1999 | A |
5867073 | Weinreb et al. | Feb 1999 | A |
5869326 | Hofmann | Feb 1999 | A |
5869974 | Akram et al. | Feb 1999 | A |
5874361 | Collins et al. | Feb 1999 | A |
5876082 | Kempf et al. | Mar 1999 | A |
5878486 | Eldridge et al. | Mar 1999 | A |
5883522 | O'Boyle | Mar 1999 | A |
5883523 | Ferland et al. | Mar 1999 | A |
5884398 | Eldridge et al. | Mar 1999 | A |
5888075 | Hasegawa et al. | Mar 1999 | A |
5892539 | Colvin | Apr 1999 | A |
5896038 | Budnaitis et al. | Apr 1999 | A |
5896326 | Akashi | Apr 1999 | A |
5900737 | Graham et al. | May 1999 | A |
5900738 | Khandros et al. | May 1999 | A |
5903143 | Mochizuki et al. | May 1999 | A |
5905421 | Oldfield | May 1999 | A |
5910727 | Fujihara et al. | Jun 1999 | A |
5912046 | Eldridge et al. | Jun 1999 | A |
5914613 | Gleason et al. | Jun 1999 | A |
5914614 | Beaman et al. | Jun 1999 | A |
5916689 | Collins et al. | Jun 1999 | A |
5917707 | Khandros et al. | Jun 1999 | A |
5926029 | Ference et al. | Jul 1999 | A |
5926951 | Khandros et al. | Jul 1999 | A |
5944093 | Viswanath | Aug 1999 | A |
5945836 | Sayre et al. | Aug 1999 | A |
5949383 | Hayes et al. | Sep 1999 | A |
5949579 | Baker | Sep 1999 | A |
5959461 | Brown et al. | Sep 1999 | A |
5963364 | Leong et al. | Oct 1999 | A |
5970429 | Martin | Oct 1999 | A |
5973504 | Chong | Oct 1999 | A |
5981268 | Kovacs et al. | Nov 1999 | A |
5982166 | Mautz | Nov 1999 | A |
5983493 | Eldridge et al. | Nov 1999 | A |
5990695 | Daugherty, Jr. | Nov 1999 | A |
5993611 | Moroney, III et al. | Nov 1999 | A |
5994152 | Khandros et al. | Nov 1999 | A |
5995914 | Cabot | Nov 1999 | A |
5996102 | Haulin | Nov 1999 | A |
5998228 | Eldridge et al. | Dec 1999 | A |
5998768 | Hunter et al. | Dec 1999 | A |
5998864 | Khandros et al. | Dec 1999 | A |
5999268 | Yonezawa et al. | Dec 1999 | A |
6001760 | Katsuda et al. | Dec 1999 | A |
6002426 | Back et al. | Dec 1999 | A |
6013586 | McGhee et al. | Jan 2000 | A |
6019612 | Hasegawa et al. | Feb 2000 | A |
6020745 | Taraci | Feb 2000 | A |
6023103 | Chang et al. | Feb 2000 | A |
6028435 | Nikawa | Feb 2000 | A |
6029344 | Khandros et al. | Feb 2000 | A |
6031383 | Streib et al. | Feb 2000 | A |
6032356 | Eldridge et al. | Mar 2000 | A |
6032714 | Fenton | Mar 2000 | A |
6033935 | Dozier, II et al. | Mar 2000 | A |
6034533 | Tervo et al. | Mar 2000 | A |
6037785 | Higgins | Mar 2000 | A |
6040739 | Wedeen et al. | Mar 2000 | A |
6042712 | Mathieu | Mar 2000 | A |
6043563 | Eldridge et al. | Mar 2000 | A |
6049216 | Yang et al. | Apr 2000 | A |
6049976 | Khandros | Apr 2000 | A |
6050829 | Eldridge et al. | Apr 2000 | A |
6051422 | Kovacs et al. | Apr 2000 | A |
6052653 | Mazur et al. | Apr 2000 | A |
6054651 | Fogel et al. | Apr 2000 | A |
6054869 | Hutton et al. | Apr 2000 | A |
6059982 | Palagonia et al. | May 2000 | A |
6060888 | Blackham et al. | May 2000 | A |
6060892 | Yamagata | May 2000 | A |
6061589 | Bridges et al. | May 2000 | A |
6062879 | Beaman et al. | May 2000 | A |
6064213 | Khandros et al. | May 2000 | A |
6064217 | Smith | May 2000 | A |
6064218 | Godfrey et al. | May 2000 | A |
6066911 | Lindemann et al. | May 2000 | A |
6075376 | Schwindt | Jun 2000 | A |
6078183 | Cole, Jr. | Jun 2000 | A |
6078500 | Beaman et al. | Jun 2000 | A |
6090261 | Mathieu | Jul 2000 | A |
6091236 | Piety et al. | Jul 2000 | A |
6091255 | Godfrey | Jul 2000 | A |
6096567 | Kaplan et al. | Aug 2000 | A |
6100815 | Pailthorp | Aug 2000 | A |
6104201 | Beaman et al. | Aug 2000 | A |
6104206 | Verkuil | Aug 2000 | A |
6110823 | Eldridge et al. | Aug 2000 | A |
6114864 | Soejima et al. | Sep 2000 | A |
6114865 | Lagowski et al. | Sep 2000 | A |
6118287 | Boll et al. | Sep 2000 | A |
6118894 | Schwartz et al. | Sep 2000 | A |
6124725 | Sato | Sep 2000 | A |
6127831 | Khoury et al. | Oct 2000 | A |
6137302 | Schwindt | Oct 2000 | A |
6144212 | Mizuta | Nov 2000 | A |
6147502 | Fryer et al. | Nov 2000 | A |
6147851 | Anderson | Nov 2000 | A |
6150186 | Chen et al. | Nov 2000 | A |
6160407 | Nikawa | Dec 2000 | A |
6160412 | Martel et al. | Dec 2000 | A |
6166333 | Crumly et al. | Dec 2000 | A |
6166553 | Sinsheimer | Dec 2000 | A |
6168974 | Chang et al. | Jan 2001 | B1 |
6169410 | Grace et al. | Jan 2001 | B1 |
6172337 | Johnsgard et al. | Jan 2001 | B1 |
6174744 | Watanabe et al. | Jan 2001 | B1 |
6175228 | Zamborelli et al. | Jan 2001 | B1 |
6176091 | Kishi et al. | Jan 2001 | B1 |
6181144 | Hembree et al. | Jan 2001 | B1 |
6181149 | Godfrey et al. | Jan 2001 | B1 |
6181297 | Leisten | Jan 2001 | B1 |
6181416 | Falk | Jan 2001 | B1 |
6184053 | Eldridge et al. | Feb 2001 | B1 |
6184587 | Khandros et al. | Feb 2001 | B1 |
6184845 | Leisten et al. | Feb 2001 | B1 |
6191596 | Abiko | Feb 2001 | B1 |
6194720 | Li et al. | Feb 2001 | B1 |
6206273 | Beaman et al. | Mar 2001 | B1 |
6208225 | Miller | Mar 2001 | B1 |
6211663 | Moulthrop et al. | Apr 2001 | B1 |
6211837 | Crouch et al. | Apr 2001 | B1 |
6215196 | Eldridge et al. | Apr 2001 | B1 |
6215295 | Smith, III | Apr 2001 | B1 |
6215670 | Khandros | Apr 2001 | B1 |
6218910 | Miller | Apr 2001 | B1 |
6222031 | Wakabayashi et al. | Apr 2001 | B1 |
6229327 | Boll et al. | May 2001 | B1 |
6232149 | Dozier, II et al. | May 2001 | B1 |
6232787 | Lo et al. | May 2001 | B1 |
6232788 | Schwindt et al. | May 2001 | B1 |
6233613 | Walker et al. | May 2001 | B1 |
6236223 | Brady et al. | May 2001 | B1 |
6242803 | Khandros et al. | Jun 2001 | B1 |
6242929 | Mizuta | Jun 2001 | B1 |
6245692 | Pearce et al. | Jun 2001 | B1 |
6246247 | Eldridge et al. | Jun 2001 | B1 |
6250933 | Khoury et al. | Jun 2001 | B1 |
6251595 | Gordon et al. | Jun 2001 | B1 |
6255126 | Mathieu et al. | Jul 2001 | B1 |
6256882 | Gleason et al. | Jul 2001 | B1 |
6257564 | Avneri et al. | Jul 2001 | B1 |
6265950 | Schmidt et al. | Jul 2001 | B1 |
6268015 | Mathieu et al. | Jul 2001 | B1 |
6268016 | Bhatt et al. | Jul 2001 | B1 |
6271673 | Furuta et al. | Aug 2001 | B1 |
6274823 | Khandros et al. | Aug 2001 | B1 |
6275738 | Kasevich et al. | Aug 2001 | B1 |
6278051 | Peabody | Aug 2001 | B1 |
6278411 | Ohlsson et al. | Aug 2001 | B1 |
6281691 | Matsunaga et al. | Aug 2001 | B1 |
6286208 | Shih et al. | Sep 2001 | B1 |
6292760 | Burns | Sep 2001 | B1 |
6295729 | Beaman et al. | Oct 2001 | B1 |
6300775 | Peach et al. | Oct 2001 | B1 |
6300780 | Beaman et al. | Oct 2001 | B1 |
6307161 | Grube et al. | Oct 2001 | B1 |
6307387 | Gleason et al. | Oct 2001 | B1 |
6307672 | DeNure | Oct 2001 | B1 |
6310483 | Taura et al. | Oct 2001 | B1 |
6320372 | Keller | Nov 2001 | B1 |
6320396 | Nikawa | Nov 2001 | B1 |
6327034 | Hoover et al. | Dec 2001 | B1 |
6329827 | Beaman et al. | Dec 2001 | B1 |
6330164 | Khandros et al. | Dec 2001 | B1 |
6332270 | Beaman et al. | Dec 2001 | B2 |
6334247 | Beaman et al. | Jan 2002 | B1 |
6335625 | Bryant et al. | Jan 2002 | B1 |
6339338 | Eldridge et al. | Jan 2002 | B1 |
6340568 | Hefti | Jan 2002 | B2 |
6340895 | Uher et al. | Jan 2002 | B1 |
6351885 | Suzuki et al. | Mar 2002 | B2 |
6352454 | Kim et al. | Mar 2002 | B1 |
6359456 | Hembree et al. | Mar 2002 | B1 |
6362792 | Sawamura et al. | Mar 2002 | B1 |
6366247 | Sawamura et al. | Apr 2002 | B1 |
6369776 | Leisten et al. | Apr 2002 | B1 |
6376258 | Hefti | Apr 2002 | B2 |
6384614 | Hager et al. | May 2002 | B1 |
6395480 | Hefti | May 2002 | B1 |
6396296 | Tarter et al. | May 2002 | B1 |
6396298 | Young et al. | May 2002 | B1 |
6400168 | Matsunaga et al. | Jun 2002 | B2 |
6404211 | Hamel et al. | Jun 2002 | B2 |
6404213 | Noda | Jun 2002 | B2 |
6407562 | Whiteman | Jun 2002 | B1 |
6409724 | Penny et al. | Jun 2002 | B1 |
6414478 | Suzuki | Jul 2002 | B1 |
6415858 | Getchel et al. | Jul 2002 | B1 |
6418009 | Brunette | Jul 2002 | B1 |
6419500 | Kister | Jul 2002 | B1 |
6420722 | Moore et al. | Jul 2002 | B2 |
6420887 | Kister et al. | Jul 2002 | B1 |
6424164 | Kister | Jul 2002 | B1 |
6424316 | Leisten et al. | Jul 2002 | B1 |
6429029 | Eldridge et al. | Aug 2002 | B1 |
6441315 | Eldridge et al. | Aug 2002 | B1 |
6442831 | Khandros et al. | Sep 2002 | B1 |
6447339 | Reed et al. | Sep 2002 | B1 |
6448788 | Meaney et al. | Sep 2002 | B1 |
6448865 | Miller | Sep 2002 | B1 |
6452406 | Beaman et al. | Sep 2002 | B1 |
6452411 | Miller et al. | Sep 2002 | B1 |
6456099 | Eldridge et al. | Sep 2002 | B1 |
6456103 | Eldridge et al. | Sep 2002 | B1 |
6459343 | Miller | Oct 2002 | B1 |
6459739 | Vitenberg | Oct 2002 | B1 |
6468098 | Eldridge | Oct 2002 | B1 |
6475822 | Eldridge et al. | Nov 2002 | B2 |
6476333 | Khandros et al. | Nov 2002 | B1 |
6476442 | Williams et al. | Nov 2002 | B1 |
6476630 | Whitten et al. | Nov 2002 | B1 |
6479308 | Eldridge | Nov 2002 | B1 |
6480013 | Nayler et al. | Nov 2002 | B1 |
6480978 | Roy et al. | Nov 2002 | B1 |
6481939 | Gillespie et al. | Nov 2002 | B1 |
6482013 | Eldridge et al. | Nov 2002 | B2 |
6483327 | Bruce et al. | Nov 2002 | B1 |
6488405 | Eppes et al. | Dec 2002 | B1 |
6490471 | Svenson et al. | Dec 2002 | B2 |
6491968 | Mathieu et al. | Dec 2002 | B1 |
6499121 | Roy et al. | Dec 2002 | B1 |
6501343 | Miller | Dec 2002 | B2 |
6509751 | Mathieu et al. | Jan 2003 | B1 |
6512482 | Nelson et al. | Jan 2003 | B1 |
6514783 | Welstand | Feb 2003 | B1 |
6520778 | Eldridge et al. | Feb 2003 | B1 |
6525552 | Kister | Feb 2003 | B2 |
6525555 | Khandros et al. | Feb 2003 | B1 |
6526655 | Beaman et al. | Mar 2003 | B2 |
6528984 | Beaman et al. | Mar 2003 | B2 |
6528993 | Shin et al. | Mar 2003 | B1 |
6529844 | Kapetanic et al. | Mar 2003 | B1 |
6530148 | Kister | Mar 2003 | B1 |
6534856 | Dozier, II et al. | Mar 2003 | B1 |
6538214 | Khandros | Mar 2003 | B2 |
6538538 | Hreish et al. | Mar 2003 | B2 |
6539531 | Miller et al. | Mar 2003 | B2 |
6548311 | Knoll | Apr 2003 | B1 |
6549022 | Cole, Jr. et al. | Apr 2003 | B1 |
6549106 | Martin | Apr 2003 | B2 |
6551884 | Masuoka | Apr 2003 | B2 |
6559671 | Miller et al. | May 2003 | B2 |
6566079 | Hefti | May 2003 | B2 |
6573702 | Marcuse et al. | Jun 2003 | B2 |
6578264 | Gleason et al. | Jun 2003 | B1 |
6580283 | Carbone et al. | Jun 2003 | B1 |
6582979 | Coccioli et al. | Jun 2003 | B2 |
6586956 | Aldaz et al. | Jul 2003 | B2 |
6587327 | Devoe et al. | Jul 2003 | B1 |
6597187 | Eldridge et al. | Jul 2003 | B2 |
6603322 | Boll et al. | Aug 2003 | B1 |
6603323 | Miller et al. | Aug 2003 | B1 |
6603324 | Eldridge et al. | Aug 2003 | B2 |
6605951 | Cowan | Aug 2003 | B1 |
6605955 | Costello et al. | Aug 2003 | B1 |
6606014 | Miller | Aug 2003 | B2 |
6606575 | Miller | Aug 2003 | B2 |
6608494 | Bruce et al. | Aug 2003 | B1 |
6611417 | Chen | Aug 2003 | B2 |
6615485 | Eldridge et al. | Sep 2003 | B2 |
6616966 | Mathieu et al. | Sep 2003 | B2 |
6617862 | Bruce | Sep 2003 | B1 |
6621082 | Morita et al. | Sep 2003 | B2 |
6621260 | Eldridge et al. | Sep 2003 | B2 |
6622103 | Miller | Sep 2003 | B1 |
6624648 | Eldridge et al. | Sep 2003 | B2 |
6627461 | Chapman et al. | Sep 2003 | B2 |
6627483 | Ondricek et al. | Sep 2003 | B2 |
6627980 | Eldridge | Sep 2003 | B2 |
6628503 | Sogard | Sep 2003 | B2 |
6628980 | Atalar et al. | Sep 2003 | B2 |
6633174 | Satya et al. | Oct 2003 | B1 |
6636182 | Mehitretter | Oct 2003 | B2 |
6639461 | Tam et al. | Oct 2003 | B1 |
6640415 | Eslamy et al. | Nov 2003 | B2 |
6640432 | Mathieu et al. | Nov 2003 | B1 |
6642625 | Dozier, II et al. | Nov 2003 | B2 |
6643597 | Dunsmore | Nov 2003 | B1 |
6644982 | Ondricek et al. | Nov 2003 | B1 |
6646520 | Miller | Nov 2003 | B2 |
6653903 | Leich et al. | Nov 2003 | B2 |
6655023 | Eldridge et al. | Dec 2003 | B1 |
6657455 | Eldridge et al. | Dec 2003 | B2 |
6657601 | McLean | Dec 2003 | B2 |
6661316 | Hreish et al. | Dec 2003 | B2 |
6664628 | Khandros et al. | Dec 2003 | B2 |
6669489 | Dozier, II et al. | Dec 2003 | B1 |
6672875 | Mathieu et al. | Jan 2004 | B1 |
6677744 | Long | Jan 2004 | B1 |
6678850 | Roy et al. | Jan 2004 | B2 |
6678876 | Stevens et al. | Jan 2004 | B2 |
6680659 | Miller | Jan 2004 | B2 |
6685817 | Mathieu | Feb 2004 | B1 |
6686754 | Miller | Feb 2004 | B2 |
6690185 | Khandros et al. | Feb 2004 | B1 |
6701265 | Hill et al. | Mar 2004 | B2 |
6701612 | Khandros et al. | Mar 2004 | B2 |
6707548 | Kreimer et al. | Mar 2004 | B2 |
6708386 | Gleason et al. | Mar 2004 | B2 |
6708403 | Beaman et al. | Mar 2004 | B2 |
6710798 | Hershel et al. | Mar 2004 | B1 |
6713374 | Eldridge et al. | Mar 2004 | B2 |
6714828 | Eldridge et al. | Mar 2004 | B2 |
6717426 | Iwasaki | Apr 2004 | B2 |
6720501 | Henson | Apr 2004 | B1 |
6722032 | Beaman et al. | Apr 2004 | B2 |
6724205 | Hayden et al. | Apr 2004 | B1 |
6724928 | Davis | Apr 2004 | B1 |
6727579 | Eldridge et al. | Apr 2004 | B1 |
6727580 | Eldridge et al. | Apr 2004 | B1 |
6727716 | Sharif | Apr 2004 | B1 |
6729019 | Grube et al. | May 2004 | B2 |
6731804 | Carrieri et al. | May 2004 | B1 |
6734687 | Ishitani et al. | May 2004 | B1 |
6737920 | Jen et al. | May 2004 | B2 |
6741085 | Khandros et al. | May 2004 | B1 |
6741092 | Eldridge et al. | May 2004 | B2 |
6744268 | Hollman | Jun 2004 | B2 |
6753679 | Kwong et al. | Jun 2004 | B1 |
6753699 | Stockstad | Jun 2004 | B2 |
6759311 | Eldridge et al. | Jul 2004 | B2 |
6764869 | Eldridge | Jul 2004 | B2 |
6768328 | Self et al. | Jul 2004 | B2 |
6770955 | Coccioli et al. | Aug 2004 | B1 |
6771806 | Satya et al. | Aug 2004 | B1 |
6777319 | Grube et al. | Aug 2004 | B2 |
6778140 | Yeh | Aug 2004 | B1 |
6778406 | Eldridge et al. | Aug 2004 | B2 |
6780001 | Eldridge et al. | Aug 2004 | B2 |
6784674 | Miller | Aug 2004 | B2 |
6784677 | Miller et al. | Aug 2004 | B2 |
6784679 | Sweet et al. | Aug 2004 | B2 |
6788093 | Aitren et al. | Sep 2004 | B2 |
6788094 | Khandros et al. | Sep 2004 | B2 |
6791176 | Mathieu et al. | Sep 2004 | B2 |
6794888 | Kawaguchi et al. | Sep 2004 | B2 |
6794950 | Du Toit et al. | Sep 2004 | B2 |
6798225 | Miller | Sep 2004 | B2 |
6798226 | Altmann et al. | Sep 2004 | B2 |
6806724 | Hayden et al. | Oct 2004 | B2 |
6806836 | Ogawa et al. | Oct 2004 | B2 |
6807734 | Eldridge et al. | Oct 2004 | B2 |
6809533 | Anlage et al. | Oct 2004 | B1 |
6811406 | Grube | Nov 2004 | B2 |
6812691 | Miller | Nov 2004 | B2 |
6812718 | Chong et al. | Nov 2004 | B1 |
6815963 | Gleason et al. | Nov 2004 | B2 |
6816031 | Miller | Nov 2004 | B1 |
6817052 | Grube | Nov 2004 | B2 |
6818840 | Khandros | Nov 2004 | B2 |
6822463 | Jacobs | Nov 2004 | B1 |
6822529 | Miller | Nov 2004 | B2 |
6825052 | Eldridge et al. | Nov 2004 | B2 |
6825422 | Eldridge et al. | Nov 2004 | B2 |
6827584 | Mathieu et al. | Dec 2004 | B2 |
6835898 | Eldridge et al. | Dec 2004 | B2 |
6836962 | Khandros et al. | Jan 2005 | B2 |
6838885 | Kamitani | Jan 2005 | B2 |
6838890 | Tervo et al. | Jan 2005 | B2 |
6839964 | Henson | Jan 2005 | B2 |
6845491 | Miller et al. | Jan 2005 | B2 |
6856129 | Thomas et al. | Feb 2005 | B2 |
6856150 | Sporck et al. | Feb 2005 | B2 |
6860009 | Gleason et al. | Mar 2005 | B2 |
6862727 | Stevens | Mar 2005 | B2 |
6864105 | Grube et al. | Mar 2005 | B2 |
6864694 | McTigue | Mar 2005 | B2 |
6870381 | Grube | Mar 2005 | B2 |
6882239 | Miller | Apr 2005 | B2 |
6882546 | Miller | Apr 2005 | B2 |
6887723 | Ondricek et al. | May 2005 | B1 |
6888362 | Eldridge et al. | May 2005 | B2 |
6891385 | Miller | May 2005 | B2 |
6900646 | Kasukabe et al. | May 2005 | B2 |
6900647 | Yoshida et al. | May 2005 | B2 |
6900652 | Mazur | May 2005 | B2 |
6900653 | Yu et al. | May 2005 | B2 |
6902416 | Feldman | Jun 2005 | B2 |
6902941 | Sun | Jun 2005 | B2 |
6903563 | Yoshida et al. | Jun 2005 | B2 |
6906506 | Reano et al. | Jun 2005 | B1 |
6906539 | Wilson et al. | Jun 2005 | B2 |
6906542 | Sakagawa et al. | Jun 2005 | B2 |
6906543 | Lou et al. | Jun 2005 | B2 |
6907149 | Slater | Jun 2005 | B2 |
6908364 | Back et al. | Jun 2005 | B2 |
6909297 | Ji et al. | Jun 2005 | B2 |
6909300 | Lu et al. | Jun 2005 | B2 |
6909983 | Sutherland | Jun 2005 | B2 |
6910268 | Miller | Jun 2005 | B2 |
6911814 | Miller et al. | Jun 2005 | B2 |
6911826 | Plotnikov et al. | Jun 2005 | B2 |
6911834 | Mitchell et al. | Jun 2005 | B2 |
6911835 | Chraft et al. | Jun 2005 | B2 |
6912468 | Marin et al. | Jun 2005 | B2 |
6913468 | Dozier, II et al. | Jul 2005 | B2 |
6914244 | Alani | Jul 2005 | B2 |
6914427 | Gifford et al. | Jul 2005 | B2 |
6914430 | Hasegawa et al. | Jul 2005 | B2 |
6914580 | Leisten | Jul 2005 | B2 |
6917195 | Hollman | Jul 2005 | B2 |
6917210 | Miller | Jul 2005 | B2 |
6917211 | Yoshida et al. | Jul 2005 | B2 |
6917525 | Mok et al. | Jul 2005 | B2 |
6917732 | Miyata et al. | Jul 2005 | B2 |
6919732 | Yoshida et al. | Jul 2005 | B2 |
6922069 | Jun | Jul 2005 | B2 |
6924653 | Schaeffer et al. | Aug 2005 | B2 |
6924655 | Kirby | Aug 2005 | B2 |
6927078 | Saijyo et al. | Aug 2005 | B2 |
6927079 | Fyfield | Aug 2005 | B1 |
6927586 | Thiessen | Aug 2005 | B2 |
6927587 | Yoshioka | Aug 2005 | B2 |
6927598 | Lee et al. | Aug 2005 | B2 |
6930498 | Tervo et al. | Aug 2005 | B2 |
6933713 | Cannon | Aug 2005 | B2 |
6933717 | Dogaru et al. | Aug 2005 | B1 |
6933725 | Lim et al. | Aug 2005 | B2 |
6933736 | Kobayashi et al. | Aug 2005 | B2 |
6933737 | Sugawara | Aug 2005 | B2 |
6937020 | Munson et al. | Aug 2005 | B2 |
6937037 | Eldridge et al. | Aug 2005 | B2 |
6937039 | Barr et al. | Aug 2005 | B2 |
6937040 | Maeda et al. | Aug 2005 | B2 |
6937042 | Yoshida et al. | Aug 2005 | B2 |
6937045 | Sinclair | Aug 2005 | B2 |
6937341 | Woollam et al. | Aug 2005 | B1 |
6940264 | Ryken, Jr. et al. | Sep 2005 | B2 |
6940283 | McQueeney | Sep 2005 | B2 |
6943563 | Martens | Sep 2005 | B2 |
6943571 | Worledge | Sep 2005 | B2 |
6943574 | Actmann et al. | Sep 2005 | B2 |
6944380 | Hideo et al. | Sep 2005 | B1 |
6946375 | Hattori et al. | Sep 2005 | B2 |
6946859 | Karavakis et al. | Sep 2005 | B2 |
6946860 | Cheng | Sep 2005 | B2 |
6948391 | Brassell et al. | Sep 2005 | B2 |
6948981 | Pade | Sep 2005 | B2 |
6970001 | Chheda et al. | Nov 2005 | B2 |
6987483 | Tran | Jan 2006 | B2 |
7001785 | Chen | Feb 2006 | B1 |
7002133 | Beausoleil et al. | Feb 2006 | B2 |
7002363 | Mathieu | Feb 2006 | B2 |
7002364 | Kang et al. | Feb 2006 | B2 |
7003184 | Ronnekleiv et al. | Feb 2006 | B2 |
7005842 | Fink et al. | Feb 2006 | B2 |
7005868 | McTigue | Feb 2006 | B2 |
7005879 | Robertazzi | Feb 2006 | B1 |
7006046 | Aisenbrey | Feb 2006 | B2 |
7007380 | Das et al. | Mar 2006 | B2 |
7009188 | Wang | Mar 2006 | B2 |
7009383 | Harwood et al. | Mar 2006 | B2 |
7009415 | Kobayashi et al. | Mar 2006 | B2 |
7011531 | Egitto et al. | Mar 2006 | B2 |
7012425 | Shoji | Mar 2006 | B2 |
7012441 | Chou et al. | Mar 2006 | B2 |
7013221 | Friend et al. | Mar 2006 | B1 |
7014499 | Yoon | Mar 2006 | B2 |
7015455 | Mitsuoka et al. | Mar 2006 | B2 |
7015689 | Kasajima et al. | Mar 2006 | B2 |
7015690 | Wang et al. | Mar 2006 | B2 |
7015703 | Hopkins et al. | Mar 2006 | B2 |
7015707 | Cherian | Mar 2006 | B2 |
7015708 | Beckous et al. | Mar 2006 | B2 |
7015709 | Capps et al. | Mar 2006 | B2 |
7015710 | Yoshida et al. | Mar 2006 | B2 |
7015711 | Rothaug et al. | Mar 2006 | B2 |
7019541 | Kittrell | Mar 2006 | B2 |
7019544 | Jacobs et al. | Mar 2006 | B1 |
7019701 | Ohno et al. | Mar 2006 | B2 |
7020360 | Satomura et al. | Mar 2006 | B2 |
7020363 | Johannessen | Mar 2006 | B2 |
7022976 | Santana, Jr. et al. | Apr 2006 | B1 |
7022985 | Knebel et al. | Apr 2006 | B2 |
7023225 | Blackwood | Apr 2006 | B2 |
7023226 | Okumura et al. | Apr 2006 | B2 |
7023231 | Howland, Jr. et al. | Apr 2006 | B2 |
7025628 | LaMeres et al. | Apr 2006 | B2 |
7026832 | Chaya et al. | Apr 2006 | B2 |
7026833 | Rincon et al. | Apr 2006 | B2 |
7026834 | Hwang | Apr 2006 | B2 |
7026835 | Farnworth et al. | Apr 2006 | B2 |
7030599 | Douglas | Apr 2006 | B2 |
7030827 | Mahler et al. | Apr 2006 | B2 |
7032307 | Matsunaga et al. | Apr 2006 | B2 |
7034553 | Gilboe | Apr 2006 | B2 |
7035738 | Matsumoto et al. | Apr 2006 | B2 |
7057404 | Gleason et al. | Jun 2006 | B2 |
7088981 | Chang | Aug 2006 | B2 |
7096133 | Martin et al. | Aug 2006 | B1 |
7148711 | Tervo et al. | Dec 2006 | B2 |
7187188 | Andrews et al. | Mar 2007 | B2 |
7188037 | Hidehira | Mar 2007 | B2 |
7212088 | Norregaard et al. | May 2007 | B1 |
7266889 | Gleason et al. | Sep 2007 | B2 |
7368927 | Smith | May 2008 | B2 |
7888957 | Smith et al. | Feb 2011 | B2 |
20010002794 | Draving et al. | Jun 2001 | A1 |
20010009061 | Gleason et al. | Jul 2001 | A1 |
20010009377 | Schwindt et al. | Jul 2001 | A1 |
20010010468 | Gleason et al. | Aug 2001 | A1 |
20010020283 | Sakaguchi | Sep 2001 | A1 |
20010024116 | Draving | Sep 2001 | A1 |
20010030549 | Gleason et al. | Oct 2001 | A1 |
20010043073 | Montoya | Nov 2001 | A1 |
20010044152 | Burnett | Nov 2001 | A1 |
20010045511 | Moore et al. | Nov 2001 | A1 |
20010054906 | Fujimura | Dec 2001 | A1 |
20020005728 | Babson et al. | Jan 2002 | A1 |
20020008533 | Ito et al. | Jan 2002 | A1 |
20020009377 | Shafer | Jan 2002 | A1 |
20020009378 | Obara | Jan 2002 | A1 |
20020011859 | Smith et al. | Jan 2002 | A1 |
20020011863 | Takahashi et al. | Jan 2002 | A1 |
20020050828 | Seward, IV et al. | May 2002 | A1 |
20020070743 | Felici et al. | Jun 2002 | A1 |
20020070745 | Johnson et al. | Jun 2002 | A1 |
20020079911 | Schwindt | Jun 2002 | A1 |
20020109514 | Brandorff et al. | Aug 2002 | A1 |
20020118034 | Laureanti | Aug 2002 | A1 |
20020149377 | Hefti et al. | Oct 2002 | A1 |
20020153909 | Petersen et al. | Oct 2002 | A1 |
20020163769 | Brown | Nov 2002 | A1 |
20020168659 | Hefti et al. | Nov 2002 | A1 |
20020180466 | Hiramatsu et al. | Dec 2002 | A1 |
20020197709 | Van der Weide et al. | Dec 2002 | A1 |
20030010877 | Landreville et al. | Jan 2003 | A1 |
20030030822 | Finarov | Feb 2003 | A1 |
20030032000 | Liu et al. | Feb 2003 | A1 |
20030040004 | Hefti et al. | Feb 2003 | A1 |
20030057513 | Leedy | Mar 2003 | A1 |
20030057957 | McQuade et al. | Mar 2003 | A1 |
20030062915 | Arnold et al. | Apr 2003 | A1 |
20030072549 | Facer et al. | Apr 2003 | A1 |
20030088180 | vanVeen et al. | May 2003 | A1 |
20030119057 | Gascoyne et al. | Jun 2003 | A1 |
20030128086 | Martin | Jul 2003 | A1 |
20030139662 | Seidman | Jul 2003 | A1 |
20030139790 | Ingle et al. | Jul 2003 | A1 |
20030155939 | Lutz et al. | Aug 2003 | A1 |
20030170898 | Gundersen et al. | Sep 2003 | A1 |
20030184332 | Tomimatsu et al. | Oct 2003 | A1 |
20040015060 | Samsoondar et al. | Jan 2004 | A1 |
20040021475 | Ito et al. | Feb 2004 | A1 |
20040061514 | Schwindt et al. | Apr 2004 | A1 |
20040066181 | Thies | Apr 2004 | A1 |
20040069776 | Fagrell et al. | Apr 2004 | A1 |
20040090223 | Yonezawa | May 2004 | A1 |
20040095145 | Boudiaf et al. | May 2004 | A1 |
20040095641 | Russum et al. | May 2004 | A1 |
20040100276 | Fanton | May 2004 | A1 |
20040100297 | Tanioka et al. | May 2004 | A1 |
20040108847 | Stoll et al. | Jun 2004 | A1 |
20040113640 | Cooper et al. | Jun 2004 | A1 |
20040124861 | Zaerpoor | Jul 2004 | A1 |
20040130787 | Thome-Forster et al. | Jul 2004 | A1 |
20040132222 | Hembree et al. | Jul 2004 | A1 |
20040134899 | Hiramatsu et al. | Jul 2004 | A1 |
20040147034 | Gore et al. | Jul 2004 | A1 |
20040162689 | Jamneala et al. | Aug 2004 | A1 |
20040175294 | Ellison et al. | Sep 2004 | A1 |
20040186382 | Modell et al. | Sep 2004 | A1 |
20040193382 | Adamian et al. | Sep 2004 | A1 |
20040197771 | Powers et al. | Oct 2004 | A1 |
20040199350 | Blackham et al. | Oct 2004 | A1 |
20040207072 | Hiramatsu et al. | Oct 2004 | A1 |
20040207424 | Hollman | Oct 2004 | A1 |
20040239338 | Johnsson et al. | Dec 2004 | A1 |
20040246004 | Heuermann | Dec 2004 | A1 |
20040251922 | Martens et al. | Dec 2004 | A1 |
20050024069 | Hayden et al. | Feb 2005 | A1 |
20050026276 | Chou | Feb 2005 | A1 |
20050030047 | Adamian | Feb 2005 | A1 |
20050054029 | Tomimatsu et al. | Mar 2005 | A1 |
20050062533 | Vice | Mar 2005 | A1 |
20050083130 | Grilo | Apr 2005 | A1 |
20050101846 | Fine et al. | May 2005 | A1 |
20050156675 | Rohde et al. | Jul 2005 | A1 |
20050164160 | Gunter et al. | Jul 2005 | A1 |
20050165316 | Lowery et al. | Jul 2005 | A1 |
20050168722 | Forstner et al. | Aug 2005 | A1 |
20050174191 | Brunker et al. | Aug 2005 | A1 |
20050178980 | Skidmore et al. | Aug 2005 | A1 |
20050195124 | Puente Baliarda et al. | Sep 2005 | A1 |
20050236587 | Kodama et al. | Oct 2005 | A1 |
20050237102 | Tanaka | Oct 2005 | A1 |
20060052075 | Galivanche et al. | Mar 2006 | A1 |
20060077649 | Kumagai | Apr 2006 | A1 |
20060155270 | Hancock et al. | Jul 2006 | A1 |
20060226864 | Kramer | Oct 2006 | A1 |
20070024506 | Hardacker | Feb 2007 | A1 |
20070030021 | Cowan et al. | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
4012839 | Oct 1990 | DE |
4223658 | Jan 1993 | DE |
0230348 | Jul 1987 | EP |
0259163 | Mar 1988 | EP |
0304868 | Mar 1989 | EP |
0945736 | Sep 1999 | EP |
56-88333 | Jul 1981 | JP |
57-163035 | Oct 1982 | JP |
62-11243 | Jan 1987 | JP |
62-51235 | Mar 1987 | JP |
62-107937 | May 1987 | JP |
62-239050 | Oct 1987 | JP |
63-108736 | May 1988 | JP |
63-129640 | Jun 1988 | JP |
1-165968 | Jun 1989 | JP |
1-214038 | Aug 1989 | JP |
1-219575 | Sep 1989 | JP |
2-22836 | Jan 1990 | JP |
2129393 | May 1990 | JP |
2-191352 | Jul 1990 | JP |
3-175367 | Jul 1991 | JP |
3-196206 | Aug 1991 | JP |
3-228348 | Oct 1991 | JP |
4-130639 | May 1992 | JP |
4-159043 | Jun 1992 | JP |
4165361 | Jun 1992 | JP |
4-206930 | Jul 1992 | JP |
4-340248 | Nov 1992 | JP |
5-82631 | Apr 1993 | JP |
6-85044 | Mar 1994 | JP |
6-102313 | Apr 1994 | JP |
6-132709 | May 1994 | JP |
7-12871 | Jan 1995 | JP |
8-35987 | Feb 1996 | JP |
8-261898 | Oct 1996 | JP |
8-330401 | Dec 1996 | JP |
11-4001 | Jan 1999 | JP |
2000-329664 | Nov 2000 | JP |
2001-124676 | May 2001 | JP |
2002-203879 | Jul 2002 | JP |
843040 | Jun 1981 | SU |
1392603 | Apr 1988 | SU |
WO 9807040 | Feb 1998 | WO |
WO 0073905 | Dec 2000 | WO |
WO 0107207 | Feb 2001 | WO |
WO 0169656 | Sep 2001 | WO |
Entry |
---|
English-language abstract of Chinese Patent No. CN 1083975, Mar. 16, 1994. |
English-language abstract of German Patent No. DE 3637549, May 11, 1988. |
English-language abstract of German Patent No. DE 19522774, Jan. 2, 1997. |
English-language abstract of German Patent No. DE 10000324, Jul. 19, 2001. |
English-language abstract of Japanese Patent No. JP 53-037077, Apr. 5, 1978. |
English-language abstract of Japanese Patent No. JP 53-052354, May 12, 1978. |
English-language abstract of Japanese Patent No. JP 55-115383, Sep. 5, 1980. |
English-language abstract of Japanese Patent No. JP 56-007439, Jan. 26, 1981. |
English-language abstract of Japanese Patent No. JP 57-075480, May 12, 1982. |
English-language abstract of Japanese Patent No. JP 62-098634, May 8, 1987. |
English-language abstract of Japanese Patent No. JP 63-143814, Jun. 16, 1988. |
English-language abstract of Japanese Patent No. JP 63-318745, Dec. 27, 1988. |
English-language abstract of Japanese Patent No. JP 1-296167, Nov. 29, 1989. |
English-language abstract of Japanese Patent No. JP 2-124469, May 11, 1990. |
English-language abstract of Japanese Patent No. JP 51-57790, Jun. 25, 1993. |
English-language abstract of Japanese Patent No. JP 51-66893, Jul. 2, 1993. |
English-language abstract of Japanese Patent No. JP 60-71425, Mar. 15, 1994. |
English-language abstract of Japanese Patent No. JP 7-005078, Jan. 10, 1995. |
English-language abstract of Japanese Patent No. JP 10-116866, May 6, 1998. |
English-language abstract of Japanese Patent No. JP 11-023975, Jan. 29, 1999. |
English-language abstract of Japanese Patent No. JP 2001-189285, Jul. 10, 2001. |
English-language abstract of Japanese Patent No. JP 2001-189378, Jul. 10, 2001. |
English-language abstract of Japanese Patent No. JP 2002-243502, Aug. 28, 2002. |
English-language abstract of PCT Patent Application Publication No. WO 2004/065944, Aug. 5, 2004. |
English-language abstract of PCT Patent Application Publication No. WO 2004/079299, Sep. 16, 2004. |
English-language abstract of PCT Patent Application Publication No. WO 2005/062025, Jul. 7, 2005. |
Aebersold, Ruedi, et al., “insight review articles, Mass spectrometry-based proteomics,” Nature, vol. 422, Mar. 13, 2003, pp. 198-207. |
Afsar, Mohammed Nurul, et al., “The Measurement of the Properties of Materials,” Proceedings of the IEEE, vol. 74, No. 1, Jan. 1986, pp. 183-199. |
Basu, Saswata, et al., “An SOLR Calibration for Accurate Measurement of Orthogonal On-Wafer DUTS,” 1997 IEEE MTT-S Digest, pp. 1335-1338. |
Boguski, Mark S., et al., “Biomedical informatics for proteomics,” insight: review article, Nature, vol. 422, pp. 233-237, Mar. 13, 2003; doi:10.1038/nature01515. |
Cascade Microtech, Inc., “Probe Heads, Care and cleaning of coaxial input microwave probes,” Microwave Probe Care and Cleaning Instruction Manual, 1990, 28 pages. |
Cascade Microtech, Inc., “Information Sheet for Pyramid Probe,” 5 pages, 2001. |
Fink, Donald G., et al., “Bridge Circuits, Detectors, and Amplifiers, Principles of Bridge Measurements,” Electronics Engineers' Handbook, First Edition, McGraw-Hill Book Company, New York, 1975, pp. 17-22-17-27. |
Grober, Robert D., et al., “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70 (11), Mar. 17, 1997, American Institute of Physics, 1997, pp. 1354-1356. |
Hanash, Sam, “insight review articles, Disease proteomics,” Nature, vol. 422, Mar. 13, 2003, pp. 226-232. |
Hayden, Leonard, “A Multi-Line TRL Calibration,” Feb. 2, 1994, 5 pages. |
Kim, Yong-Dae, et al., “Fabrication of a Silicon Micro-Probe for Vertical Probe Card Application,” Japanese Journal of Applied Physics, vol. 37, pp. 7070-7073, 1998. |
Kraszewski, Andrzej W., et al., “Use of a Microwave Cavity for Sensing Dielectric Properties of Arbitrarily Shaped Biological Objects,” IEEE Transactions on Microwave Theory and Techniques, vol. 338, No. 7, Jul. 1990, pp. 858-863. |
Liang, Qingqing, et al., “Accurate ac Transistor Characterization to 110 GHz Using a New Four-port Self-Calibrated Extraction Technique,” IEEE, 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 282-285. |
Marte, Barbara, Senior Editor, “Nature Insight Proteomics,” Nature, vol. 422, Mar. 13, 2003, pp. 191-194. |
Martens, J., “Multiport SOLR Calibrations: Performance and an Analysis of Some Standards Dependencies,” ARFTG Microwave Measurements Conference, Dec. 4-5, 2003, pp. 205-213. |
Phizicky, Eric, et al., “insight: review article, Protein analysis on a proteomic scale,” Nature, vol. 422, pp. 208-215, Mar. 13, 2003; doi: 10.1038/nature01512. |
Purroy, Francesc, et al., “New Theoretical Analysis of the LRRM Calibration Technique for Vector Network Analyzers,” IEEE Transactions on Instrumentation and Measurement, vol. 50, No. 5, Oct. 2001, pp. 1307-1313. |
Risacher, Christophe, et al., “Waveguide-to-Microstrip Transition With Integrated Bias-T,” IEEE Microwave and Wireless Components Letters, vol. 13, No. 7, Jul. 2003, pp. 262-264. |
Sali, Andrej, et al., “insight: review article, From words to literature in structural proteomics,” Nature, vol. 422, pp. 216-225, Mar. 13, 2003; doi: 10.1038/nature01513. |
Seguinot, Christophe, et al., “Multimode TRL—A New Concept in Microwave Measurements: Theory and Experimental Verification,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, No. 5, May 1998, pp. 536-542. |
Sharma, Arvind Kumar, “Tunable Waveguide-to-Microstrip Transition for Millimeter-Wave Applications,” J-27, RCA Laboratories, David Sarnoff Research Center, Princeton, NJ, 1987 IEEE MTT-S Digest, pp. 353-356. |
Sohn, L. L., et al., “Capacitance cytometry: Measuring biological cells one by one,” PNAS Sep. 26, 2000, vol. 97, No. 20, pp. 10687-10690, www.pnas.org. |
Tyers, Mike, et al., “insight overview, From genomics to proteomics,” Nature, vol. 422, Mar. 13, 2003, pp. 193-197. |
Venkatesh, M. S., et al., “An overview of dielectric properties measuring techniques,” Canadian Biosystems Engineering, vol. 47, 2005, pp. 7.15-7.30. |
Xu, Deming, et al., “Measurement of the Dielectric Properties of Biological Substances Using an Improved Open-Ended Coaxial Line Resonator Method,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-35, No. 12, Dec. 1987, pp. 1424-1428. |
Number | Date | Country | |
---|---|---|---|
20130220513 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61199910 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12592186 | Nov 2009 | US |
Child | 13854725 | US |