As is known in the art, there are a variety of sensors that are useful for particular applications. For example, magnetic sensors are useful to detect movement, such as rotation, of an object of interest. Typically, Hall-effect sensors require a discrete decoupling capacitor component placed on or near the sensor to enhance EMC (Electromagnetic Compatibility) and reduce so-called long-wire noise problems. However, external capacitors incur added cost and processing at the individual device level. External capacitors also increase the total package size if the capacitor resides on the leadframe or requires an additional printed circuit board.
The present invention provides a magnetic sensor including an on chip capacitor formed from first and second conductive layers and a dielectric layer disposed over a substrate. With this arrangement, the need for an external decoupling capacitor may be eliminated. While the invention is primarily shown and described in conjunction with particular layer stack ups, devices and configurations, it is understood that the invention is applicable to circuits in general in which it is desirable to provide a capacitive impedance.
In one aspect of the invention, a magnetic sensor comprises a plurality of layers including a substrate including circuitry, at least one conductive layer to interconnect the circuitry, and an insulator layer to electrically insulate the at least one conductive layer. First and second conductive layers are disposed above the substrate, and a dielectric layer is disposed between the first and second conductive layers such that the first and second conductive layers and the dielectric layer form a capacitor. The sensor further includes a first terminal electrically connected to the first conductive layer and a second terminal electrically connected to the second conductive layer.
In another aspect of the invention, a method includes forming a first conductive layer over a substrate containing circuitry, forming a dielectric layer over the first conductive layer, and, forming a second conductive layer over the dielectric layer such that the first conductive layer, the dielectric layer, and the second conductive layer form a first capacitor. A first terminal can be coupled to the first conductive layer and a second terminal can be coupled to the second conductive layer.
In a further aspect of the invention, an integrated circuit device comprises a first substrate including circuitry, at least one conductive layer to interconnect the circuitry, an insulator layer to electrically insulate the at least one conductive layer, first and second conductive layers generally parallel to the substrate, a first dielectric layer disposed between the first and second conductive layers such that the first and second conductive layers and the first dielectric layer form a first on chip capacitor, and a second substrate in communication with the first substrate.
In another aspect of the invention, a method comprises forming a first conductive layer on a first substrate containing circuitry, forming a first dielectric layer on the first conductive layer, forming a second conductive layer on the first dielectric layer such that the first conductive layer, the first dielectric layer, and the second conductive layer form a first on chip capacitor, providing first and second terminals, wherein the first terminal is coupled to the first conductive layer and the second terminal is coupled to the second conductive layer, and coupling a second substrate to the first substrate.
The foregoing features of this invention, as well as the invention itself, may be more fully understood from the following description of the drawings in which:
A first metal layer 116 is disposed on the substrate 110 and an optional second layer 118, which is sandwiched between first and second insulating layers 120, 122, is disposed over the first metal layer 116. The first and second metal layers 116, 118 provide, for example, interconnection and routing for the device layer 112. The first and second insulating layers 120, 122 can be provided, for example, as interlayer dielectric and/or passivation layers.
First and second conductive layers 124, 126 are separated by a dielectric material 128 to form the on chip capacitor 102 above the substrate. The capacitor 102 is covered by a further insulating layer 130. In an exemplary embodiment, the capacitor 102 is separated, and electrically isolated, from the second metal layer 118 by the second insulating layer 122.
In an exemplary embodiment, a substrate 110, e.g., silicon, includes an integrated circuit (IC) in layers 112, 116, 120, 118, and/or 122 in which circuitry is formed in a manner well known to one of ordinary skill in the art. The device layer 112 can include a Hall element 114 that forms part of the magnetic sensor 100. The device layer may include various layers necessary to form an integrated circuit, including, but not limited to, implant or doped layers, polysilicon, epi layers, oxide, or nitride layers.
While a particular layer stack up is shown and described, it is understood that other embodiments having different layering orders and greater and fewer metal and other layers are within the scope of the invention. In addition, additional conductive layers can be added to form additional capacitors to meet the needs of a particular application.
As shown in
In another embodiment shown in
It is understood that higher breakdown voltage requirements for the capacitor may limit the amount of capacitance that can be provided by the on chip capacitor. Lower breakdown voltage requirements may increase the amount of capacitance that can be provided. Factors that determine the characteristics of the on chip capacitor 102 include, for example, die size, metal layer area, conductive layer area, dielectric material, selected breakdown voltage, layer spacing, geometry, and others.
A variety of dielectric materials for the capacitor 102 can be used including, but not limited to; silicon nitride, Tantalum oxide, Aluminum oxide, ceramics, glass, mica, polyesters (eg. Mylar), KAPTON, polyimides (e.g. Pyralin by HD Microsystems), benzocyclobutene (BCB, e.g. Cyclotene by Dow Chemical), and polynorbornene (e.g., Avatrel by Promerus). Inorganic dielectrics may be preferable for some applications based on their higher dielectric constant and the ability to create uniform thin films in the sub-micron range; e.g. 3,000 to 5,000 Angstroms in thickness.
These same dielectrics may be used where appropriate for interlayer dielectric, or final passivation materials. In the case of the interlayer dielectric, it may be advantageous to select a material that planarizes well, and has a low dielectric constant for use between the second metal layer 118 and the conductive layer 124. This should reduce any unwanted coupling of signals from lines on the metal layer 118 to the conductive layer 124, which may, for example, be a ground plane.
A variety of suitable materials can be used to provide the device layer for the sensor including silicon, gallium arsenide, silicon on insulator (SOI), and the like. In addition, various materials can be used to provide the metal layers and the conductive layers, which form the capacitor. Exemplary metal and conductive layer materials include copper, aluminum, alloys and/or other suitable metals.
In general, for a die size of about 2.5 to 3 mm2, the on chip capacitor provides in the order of 400 pF. For a larger die, e.g., about 5 mm2, the capacitor provides in the order of 800 pF. In exemplary embodiments, the capacitor provides a capacitance from about 100 pF to about 1,500 pF for a substrate ranging in size from about 1 mm2 to about 10 mm2.
In one particular embodiment, the first and second conductive layers 124, 126 (
A Hall sensor having an on chip capacitor of about 100 pF to about 1,500 pF and at least 50V breakdown voltage is well suited for many vehicle applications, such as anti-lock brake sensors (ABS), linear position sensors, angle sensors, transmission sensors, cam sensors, and crank sensors.
In general, the first and second conductive layers 124, 126 (
In one embodiment, the first and second layers cover an area of about eighty percent of the die area. Such a capacitor would provide a capacitance on the order of 400 pF, which can provide additional EMC protection to the circuitry on the die. In some devices, in the order of 200 pF may be sufficient for EMC or long-wire protection. In such a case the area required by the capacitor is not as large, and may be on the order of fifty percent of the total die area. In general, the capacitor can be sized to meet the needs of a particular application.
As used herein, the term die refers to a substrate, which may be a semiconductor or a semiconductor layer on an insulator, for example SOI substrates, with its associated circuits or electronic device elements. The circuits on the die may include semiconductor devices, for example diodes, and transistors, and passive devices, for example a resistor, inductor, or capacitor.
As shown in
It is understood that the apportionment of the first and second conductive layers 302, 304 can be made to achieve capacitance requirements for a particular application. In addition, the first and second conductive layers can be split to form any practical number of capacitors above the die. Such multiple capacitor configurations may be useful for applications that require more than two-wires; for example a three-wire part with power, ground, and independent output pins.
In step 400, first and second metal layers are formed over a substrate. In one particular embodiment, the base process includes two metal layers for interconnection and routing and a final passivation. It may be desirable to change the final passivation on the base process, which may typically include an oxide and nitride layer. After the second metal layer, in step 402 an interlayer dielectric is deposited. Again, this is the place where the final passivation would be performed in the base process. The interlayer dielectric can be an oxide, nitride, or organic dielectric such as a polyimide, or BCB. A material such as BCB has advantages in that it planarizes the underlying substrate well and allows a flat surface for the subsequent capacitor deposition. In step 404, the interlayer dielectric is then patterned to open connections to the bond pads in the underlying integrated circuit.
In step 406, a conductive layer is then deposited on the wafer and patterned to form one of the capacitor electrodes. In the illustrated embodiment, the lower capacitor electrode is connected to the ground bonding pad, but not any other portions of the underlying circuit. In some cases it may be desirable to have the lower capacitor layer on the other bonding pads of the integrated circuit, although these pads are not connected to the capacitor electrode. In step 408, the capacitor dielectric is deposited and patterned. The dielectric material may be silicon nitride, or other suitable material. In step 410, the second conductive layer of the capacitor is deposited on the wafer and patterned to form the top electrode of the capacitor. The upper layer of the capacitor may be connected to the Vcc pad of the integrated circuit, or it may be its own bonding pad. Having the upper layer of the capacitor as an independent pad allows the dielectric breakdown to be tested during the final test of the integrated circuit with an on-chip capacitor. In step 412, a final passivation layer is applied to the integrated circuit with the capacitor and pattern openings for the bonding pads.
The second capacitor 508 can similarly include third and fourth conductive layers 518, 520 and an insulative layer 522. The third conductive layers 518 can be disposed over a device layer 524 for the second die 506.
The first and second capacitors 504, 508 can be covered by respective optional insulating layers (not shown).
While the first and second on chip capacitors are shown above the respective substrates, it is understood that in other embodiments, one or more of the on chip capacitors is below the respective substrate. In general, the conductive layers forming the on chip capacitors are generally parallel to the respective substrate. It is understood that the geometry of the capacitors can vary. For example, in another embodiment shown in
It is understood that in other embodiments the first die 502 can have multiple on-chip capacitors. That is, the first and second metal layers 510, 512 can be divided, such as by etching, to form two on-chip capacitors for the first die. Similarly, the third and fourth conductive layers can be divided to provide multiple on-chip capacitors for the second die. In addition, one or both of the dies can have on-chip capacitors. Further, embodiments are contemplated with more than two dies with at least one of the dies having an on-chip capacitor. Other embodiments are contemplated having a variety of applications having a variety of configurations. For example, sensors, such as magnetic sensor elements, can be provided in one die, both dies, and/or multiple dies. Integrated circuits having on-chip capacitors can be provided as a wide variety of circuit types including sensors, system on a chip, processors, and the like.
In one embodiment, the first and second dies 502, 506 are formed from the same material, such as silicon. In other embodiments, the first and second dies are formed from different materials. Exemplary materials include Si, GaAs, InP, InSb, InGaAsP, SiGe, ceramic and glass.
The integrated circuit 600 includes lead fingers 614a-d to provide input/output connections for the sensor. As described above, connections, such as wire bonds, can be made between the leadfingers 614 and input/output pads 615 on the second die 606. Connections/pads can be provided for ground, VCC, and/or signals. While not shown, it is understood that pads can also be provided for connections between the first die 604 and the lead fingers.
In addition, respective first and second die pads 616, 618 enable electrical connections between the first and second dies 604, 606. It is understood that any practical number of die pads can be provided for desired connections between the dies.
It is understood that the inventive multi-die embodiments can have a variety of configurations, such as flip chip embodiments.
For example,
A second substrate or die 708 is coupled on top of the first die 702, such as by solder balls 710. The second die 708 can include a sensor element 712. A second on chip capacitor 714 is disposed on the second die 708.
Bonding wires can couple bonding pads 716 to lead fingers (not shown) on the lead frame.
As noted above, the first and second dies 702, 708 can be provided as the same material or different materials. Exemplary materials include Si, GaAs, InP, InSb, InGaAsP, SiGe, ceramic and glass. Further, sensing elements in the first and second dies can be the same type of device or different types of devices. Exemplary sensor elements include Hall effect, magnetoresistance, giant magnetoresistance (GMR), anistropic magnetoresistance (AMR), and tunneling magnetoresistance (TMR). The respective on chip capacitors 706, 714 can be sized to achieve a desired impedance, as discussed above.
While the invention is primarily shown and described in conjunction with integrated circuit sensors, and particularly magnetic sensors, it is understood that the invention is applicable to integrated circuits in general for which it is desirable to provide a capacitor. In addition, while the on-chip capacitors are shown above a die it is understood that embodiments are contemplated in which the on chip capacitor is below the die. That is, the conductive layers forming the on-chip capacitor are generally parallel with the plane in which the die rests. In one embodiment, interdigitated electrodes could also be used to form on-chip capacitors in a single layer of metal.
It is understood that a variety of suitable fabrication processes can be used to form a sensor having an on chip capacitor including, but not limited to, bipolar, DMOS, bi-CMOS, CMOS, and processes and combinations of these and other processes.
While exemplary embodiments contained herein discuss the use of a Hall effect sensor, it would be apparent to one of ordinary skill in the art that other types of magnetic field sensors may also be used in place of or in combination with a Hall element. For example the device could use an anisotropic magnetoresistance (AMR) sensor and/or a Giant Magnetoresistance (GMR) sensor. In the case of GMR sensors, the GMR element is intended to cover the range of sensors comprised of multiple material stacks, for example: linear spin valves, a tunneling magnetoresistance (TMR), or a colossal magnetoresistance (CMR) sensor. In other embodiments, the sensor includes a back bias magnet.
Having described exemplary embodiments of the invention, it will now become apparent to one of ordinary skill in the art that other embodiments incorporating their concepts may also be used. The embodiments contained herein should not be limited to disclosed embodiments but rather should be limited only by the spirit and scope of the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
The present application is a continuation-in-part application of U.S. patent application Ser. No. 11/279,780, filed on Apr. 14, 2006, now U.S. Pat. No. 7,573,112 which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4409608 | Yoder | Oct 1983 | A |
4994731 | Sanner | Feb 1991 | A |
5244834 | Suzuki et al. | Sep 1993 | A |
5399905 | Honda et al. | Mar 1995 | A |
5414355 | Davidson et al. | May 1995 | A |
5563199 | Harada et al. | Oct 1996 | A |
5579194 | MacKenzie et al. | Nov 1996 | A |
5581179 | Engel et al. | Dec 1996 | A |
5648682 | Nakazawa et al. | Jul 1997 | A |
5666004 | Bhattacharyya et al. | Sep 1997 | A |
5691869 | Engel et al. | Nov 1997 | A |
5714405 | Tsubosaki et al. | Feb 1998 | A |
5726577 | Engel et al. | Mar 1998 | A |
5729130 | Moody et al. | Mar 1998 | A |
5804880 | Mathew | Sep 1998 | A |
5822849 | Casali et al. | Oct 1998 | A |
5912556 | Frazee et al. | Jun 1999 | A |
5940256 | MacKenzie et al. | Aug 1999 | A |
5973388 | Chew et al. | Oct 1999 | A |
6057997 | MacKenzie et al. | May 2000 | A |
6265865 | Engel et al. | Jul 2001 | B1 |
6316736 | Jairazbhoy et al. | Nov 2001 | B1 |
6359331 | Rinehart et al. | Mar 2002 | B1 |
6396712 | Kuijk | May 2002 | B1 |
6420779 | Sharma et al. | Jul 2002 | B1 |
6429652 | Allen et al. | Aug 2002 | B1 |
6486535 | Liu | Nov 2002 | B2 |
6501270 | Opie | Dec 2002 | B1 |
6504366 | Bodin et al. | Jan 2003 | B2 |
6563199 | Yasunaga et al. | May 2003 | B2 |
6608375 | Terui et al. | Aug 2003 | B2 |
6610923 | Nagashima et al. | Aug 2003 | B1 |
6642609 | Minamio et al. | Nov 2003 | B1 |
6696952 | Zirbes | Feb 2004 | B2 |
6713836 | Liu et al. | Mar 2004 | B2 |
6737298 | Shim et al. | May 2004 | B2 |
6747300 | Nadd et al. | Jun 2004 | B2 |
6775140 | Shim et al. | Aug 2004 | B2 |
6781359 | Stauth et al. | Aug 2004 | B2 |
6798057 | Bolkin et al. | Sep 2004 | B2 |
6809416 | Sharma | Oct 2004 | B1 |
6812687 | Ohtsuka | Nov 2004 | B1 |
6825067 | Ararao et al. | Nov 2004 | B2 |
6832420 | Liu | Dec 2004 | B2 |
6853178 | Hayat-Dawoodi | Feb 2005 | B2 |
6861283 | Sharma | Mar 2005 | B2 |
6875634 | Shim et al. | Apr 2005 | B2 |
6921955 | Goto | Jul 2005 | B2 |
6960493 | Ararao et al. | Nov 2005 | B2 |
6974909 | Tanaka et al. | Dec 2005 | B2 |
6995315 | Sharma et al. | Feb 2006 | B2 |
7005325 | Chow et al. | Feb 2006 | B2 |
7026808 | Vig et al. | Apr 2006 | B2 |
7075287 | Mangtani et al. | Jul 2006 | B1 |
7166807 | Gagnon et al. | Jan 2007 | B2 |
7259624 | Barnett | Aug 2007 | B2 |
7265531 | Stauth et al. | Sep 2007 | B2 |
7304370 | Imaizumi et al. | Dec 2007 | B2 |
7358724 | Taylor et al. | Apr 2008 | B2 |
7378721 | Frazee et al. | May 2008 | B2 |
7476816 | Doogue et al. | Jan 2009 | B2 |
7476953 | Taylor et al. | Jan 2009 | B2 |
20020027488 | Hayat-Dawoodi et al. | Mar 2002 | A1 |
20020195693 | Liu et al. | Dec 2002 | A1 |
20030209784 | Schmitz et al. | Nov 2003 | A1 |
20040094826 | Yang et al. | May 2004 | A1 |
20040135220 | Goto | Jul 2004 | A1 |
20040135574 | Hagio | Jul 2004 | A1 |
20040207035 | Witcraft et al. | Oct 2004 | A1 |
20040207077 | Leal et al. | Oct 2004 | A1 |
20040207400 | Witcraft et al. | Oct 2004 | A1 |
20040262718 | Ramakrishna | Dec 2004 | A1 |
20050035448 | Hsu et al. | Feb 2005 | A1 |
20050040814 | Vig et al. | Feb 2005 | A1 |
20050151448 | Hikida et al. | Jul 2005 | A1 |
20050173783 | Chow et al. | Aug 2005 | A1 |
20050224248 | Gagnon et al. | Oct 2005 | A1 |
20050248005 | Hayat-Dawoodi | Nov 2005 | A1 |
20050253507 | Fujimura et al. | Nov 2005 | A1 |
20050270748 | Hsu | Dec 2005 | A1 |
20050274982 | Ueda et al. | Dec 2005 | A1 |
20060077598 | Taylor et al. | Apr 2006 | A1 |
20060219436 | Taylor et al. | Oct 2006 | A1 |
20060267135 | Wolfgang et al. | Nov 2006 | A1 |
20070007631 | Knittl | Jan 2007 | A1 |
20070018642 | Ao | Jan 2007 | A1 |
20070138651 | Hauenstein | Jun 2007 | A1 |
20070170533 | Doogue et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
40 31 560 | Apr 1992 | DE |
9079865 | Mar 1997 | JP |
WO 0174139 | Oct 2001 | WO |
WO 0174139 | Oct 2001 | WO |
WO 2005013363 | Feb 2005 | WO |
WO 2005013363 | Feb 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070241423 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11279780 | Apr 2006 | US |
Child | 11554619 | US |