Methods and systems for planarizing workpieces, e.g., microelectronic workpieces

Information

  • Patent Grant
  • 7182669
  • Patent Number
    7,182,669
  • Date Filed
    Monday, November 1, 2004
    20 years ago
  • Date Issued
    Tuesday, February 27, 2007
    17 years ago
Abstract
Planarizing workpieces, e.g., microelectronic workpieces, can employ a process indicator that is adapted to change an optical property in response to a planarizing condition. This process indicator may, for example, change color in response to reaching a particular temperature or in response to a particular shear force. In this example, the change in color of the process indicator may be correlated with an ongoing operating condition of the planarizing machine, such as excessive downforce, or correlated with an endpoint of the planarizing operation. Incorporating the process indicator in the planarizing medium, as proposed for select applications, can enable relatively simple, real-time collection of information that can be used to control a planarizing operation.
Description
TECHNICAL FIELD

The present invention provides certain improvements in processing microelectronic workpieces. The invention has particular utility in connection with planarizing microelectronic workpieces, e.g., semiconductor wafers.


BACKGROUND

Mechanical and chemical-mechanical planarizing processes (collectively “CMP processes”) remove material from the surface of semiconductor wafers, field emission displays, or other microelectronic workpieces in the production of microelectronic devices and other products. FIG. 1 schematically illustrates a CMP machine 10 with a platen 20, a carrier assembly 30, and a planarizing pad 40. The CMP machine 10 may also have an under-pad 25 attached to an upper surface 22 of the platen 20 and the lower surface of the planarizing pad 40. A drive assembly 26 rotates the platen 20 (indicated by arrow F), or it reciprocates the platen 20 back and forth (indicated by arrow G). Since the planarizing pad 40 is attached to the under-pad 25, the planarizing pad 40 moves with the platen 20 during planarization.


The carrier assembly 30 has a head 32 to which a microelectronic workpiece 12 may be attached, or the microelectronic workpiece 12 may be attached to a resilient pad 34 in the head 32. The head 32 may be a free-floating wafer carrier, or an actuator assembly 36 may be coupled to the head 32 to impart axial and/or rotational motion to the workpiece 12 (indicated by arrows H and I, respectively).


The planarizing pad 40 and a planarizing solution 44 on the pad 40 collectively define a planarizing medium that mechanically and/or chemically removes material from the surface of the workpiece 12. The planarizing pad 40 can be a soft pad or a hard pad. The planarizing pad 40 can also be a fixed-abrasive planarizing pad in which abrasive particles are fixedly bonded to a suspension material. In fixed-abrasive applications, the planarizing solution 44 is typically a non-abrasive “clean solution” without abrasive particles. In other applications, the planarizing pad 40 can be a non-abrasive pad composed of a polymeric material (e.g., polyurethane), resin, felt, or other suitable materials. The planarizing solutions 44 used with the non-abrasive planarizing pads are typically abrasive slurries with abrasive particles suspended in a liquid. The planarizing solution may be replenished from a planarizing solution supply 46.


If chemical-mechanical planarization (as opposed to plain mechanical planarization) is employed, the planarizing solution 44 will typically chemically interact with the surface of the workpiece 12 to speed up or otherwise optimize the removal of material from the surface of the workpiece. Increasingly, microelectronic device circuitry (i.e., trenches, vias, and the like) is being formed from copper. When planarizing a copper layer using a CMP process, the planarizing solution 44 is typically neutral to acidic and includes an oxidizer (e.g., hydrogen peroxide) to oxidize the copper and increase the copper removal rate. One particular slurry useful for polishing a copper layer is disclosed in International Publication Number WO 02/18099, the entirety of which is incorporated herein by reference.


To planarize the workpiece 12 with the CMP machine 10, the carrier assembly 30 presses the workpiece 12 face-downward against the polishing medium. More specifically, the carrier assembly 30 generally presses the workpiece 12 against the planarizing solution 44 on a planarizing surface 42 of the planarizing pad 40, and the platen 20 and/or the carrier assembly 30 move to rub the workpiece 12 against the planarizing surface 42. As the workpiece 12 rubs against the planarizing surface 42, material is removed from the face of the workpiece 12.


CMP processes should consistently and accurately produce a uniformly planar surface on the workpiece to enable precise fabrication of circuits and photo-patterns. During the construction of transistors, contacts, interconnects and other features, many workpieces develop large “step heights” that create highly topographic surfaces. Such highly topographical surfaces can impair the accuracy of subsequent photolithographic procedures and other processes that are necessary for forming sub-micron features. For example, it is difficult to accurately focus photo patterns to meet tolerances approaching 0.1 micron on topographic surfaces because sub-micron photolithographic equipment generally has a very limited depth of field. Thus, CMP processes are often used to transform a topographical surface into a highly uniform, planar surface at various stages of manufacturing microelectronic devices on a workpiece.


In the highly competitive semiconductor industry, it is also desirable to maximize the throughput of CMP processing by producing a planar surface on a substrate as quickly as possible. The throughput of CMP processing is a function, at least in part, of the ability to stop CMP processing accurately at a desired endpoint. In a typical CMP process, the desired endpoint is reached when the surface of the substrate is planar and/or when enough material has been removed from the substrate to form discrete components on the substrate (e.g., shallow trench isolation areas, contacts, and damascene lines). Accurately stopping CMP processing at a desired endpoint is important for maintaining a high throughput because the substrate assembly may need to be re-polished if it is “under-planarized,” or components on the substrate may be destroyed if it is “over-polished.” Thus, it is highly desirable to stop CMP processing at the desired endpoint.


In one conventional method for determining the endpoint of CMP processing, the planarizing period of a particular substrate is determined using an estimated polishing rate based upon the polishing rate of identical substrates that were planarized under the same conditions. The estimated planarizing period for a particular substrate, however, may not be accurate because the polishing rate or other variables may change from one substrate to another. Thus, this method may not produce accurate results.


In another method for determining the endpoint of CMP processing, the substrate is removed from the pad and then a measuring device measures a change in thickness of the substrate. Removing the substrate from the pad, however, interrupts the planarizing process and may damage the substrate. Thus, this method generally reduces the throughput of CMP processing.


U.S. Pat. No. 5,433,651 issued to Lustig et al. (“Lustig”) discloses an in-situ chemical-mechanical polishing machine for monitoring the polishing process during a planarizing cycle. The polishing machine has a rotatable polishing table including a window embedded in the table. A polishing pad is attached to the table, and the pad has an aperture aligned with the window embedded in the table. The window is positioned at a location over which the workpiece can pass for in-situ viewing of a polishing surface of the workpiece from beneath the polishing table. The planarizing machine also includes a light source and a device for measuring a reflectance signal representative of an in-situ reflectance of the polishing surface of the workpiece. Lustig discloses terminating a planarizing cycle at the interface between two layers based on the different reflectances of the materials. In many CMP applications, however, the desired endpoint is not at an interface between layers of materials. In addition, the light source in Lustig must reflect from the surface of the workpiece, requiring that light pass through any polishing media between the window and the polishing surface twice. Any variations in the polishing media over time can change the absorption of the polishing media, introducing variability in the reflectance measurements. Thus, the system disclosed in Lustig may not provide accurate results in certain CMP applications.


Another optical endpointing system is a component of the MIRRA planarizing machine manufactured by Applied Materials Corporation of California. The MIRRA machine has a rotary platen with an optical emitter/sensor and a planarizing pad with a window over the optical emitter/sensor. The MIRRA machine has a light source that emits a single wavelength band of light and the sensor measures light reflected from the polishing surface of the workpiece. This machine can suffer from some of the same drawbacks associated with the system disclosed in Lustig.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic cross-sectional view of a planarizing machine in accordance with the prior art.



FIG. 2 is a schematic cross-sectional view of a rotary planarizing machine having a control system in accordance with an embodiment of the invention.



FIG. 3 is a schematic, partial cross-sectional view of the planarizing machine of FIG. 2 illustrating a partially planarized microelectronic substrate.



FIG. 4 is a schematic cross-sectional view of a rotary planarizing machine having a control system in accordance with an alternative embodiment of the invention.



FIG. 5 is a schematic isometric view of a web-format planarizing machine in accordance with a different embodiment of the invention.



FIG. 6 is a schematic isometric view of a web-format planarizing machine in accordance with another embodiment of the invention.





DETAILED DESCRIPTION

Various embodiments of the present invention provide methods and apparatus for processing microelectronic workpieces. The terms “workpiece” and “workpiece assembly” may encompass a variety of articles of manufacture, including, e.g., semiconductor wafers, field emission displays, and other substrate-like structures either before or after forming components, interlevel dielectric layers, and other features and conductive elements of microelectronic devices. Many specific details of the invention are described below with reference to both rotary and web-format planarizing machines; the present invention can be practiced using other types of planarizing machines, too. The following description provides specific details of certain embodiments of the invention illustrated in the drawings to provide a thorough understanding of those embodiments. It should be recognized, however, that the present invention can be reflected in additional embodiments and the invention may be practiced without. some of the details in the following description.


In one embodiment, the present invention provides a chemical-mechanical polishing system that includes a carrier assembly, a planarizing medium, and an optical monitor. The carrier assembly is adapted to hold a microelectronic workpiece. The planarizing medium comprises a planarizing solution and a planarizing pad. The planarizing medium is positioned to contact the microelectronic workpiece and includes an abrasive and a process indicator. The process indicator is adapted to change an optical property in response to a polishing condition. The optical monitor is adapted to monitor the planarizing medium to detect the change in the optical property of the process indicator. If so desired, the process indicator may be a thermally responsive and/or shear-responsive dye, or a combination of two or more thermally responsive and/or shear-responsive dyes.


Another embodiment of the invention provides a polishing medium that includes an abrasive and a process indicator. The process indicator is adapted to change an optical property in response to a polishing condition, permitting optical detection of the polishing condition.


Other embodiments of the invention provide a slurry for polishing a microelectronic workpiece. The slurry includes a fluid component and an abrasive suspended in the fluid component. In one application, the fluid component comprises a thermally responsive dye that is adapted to change color upon reaching a first temperature. In an alternative application, the fluid component comprises a shear-responsive dye adapted to change color in response to a first shear force.


Still other embodiments of the invention provide CMP polishing pads adapted to polish microelectronic workpieces. The polishing pads include a matrix adapted to support an abrasive and a dye in the matrix. The matrix may have a planar polishing surface. In one version of this embodiment, the dye comprises a thermally responsive dye that is adapted to change color in response to a first temperature. In other versions, the dye comprises a shear-responsive dye that is adapted to change color in response to a first shear force.


Other embodiments of the invention provide methods of polishing a microelectronic workpiece. In one such embodiment, a planarizing solution is delivered to a planarizing surface of a planarizing pad. The planarizing solution and the planarizing pad comprise a planarizing medium that includes an abrasive. The planarizing solution includes a process indicator adapted to change an optical property in response to a planarizing condition. The microelectronic workpiece is rubbed against the planarizing medium and the optical property of the process indicator is monitored to detect the change in the optical property.


Methods according to certain alternative embodiments also involve delivering a planarizing solution to a planarizing surface of a planarizing pad, with the planarizing solution and the planarizing pad comprising a planarizing medium that includes an abrasive. These methods also include rubbing the microelectronic workpiece against the planarizing medium. In one of these methods, the planarizing solution comprises a thermally responsive dye adapted to change color in response to a first temperature and rubbing the microelectronic workpiece against the planarizing medium is ceased in response to detecting the color change of the thermally responsive dye. In another one of these methods, the planarizing solution comprises a shear-responsive dye adapted to change color in response to a first shear force and rubbing the microelectronic workpiece against the planarizing medium is ceased in response to detecting the color change of the shear-responsive dye.


For ease of understanding, the following discussion is broken down into several areas of emphasis. The first section discusses various process indicators suitable for embodiments of the invention. The second section discusses apparatus in accordance with embodiments of the invention. The third section outlines methods in accordance with the invention.


Process Indicators


Workpieces are polished for a number of reasons in various stages of manufacture. In some operations, microelectronic workpieces with an irregular outer surface may be polished just long enough to smooth out the surface irregularities without removing a great deal of material. During the course of this operation, friction between the surface of the microelectronic workpiece and the planarizing medium of the CMP machine will increase as more of the workpiece's surface area comes into contact with the planarizing medium. This increased friction can increase the shear force on the planarizing medium and may elevate the temperature of the planarizing medium.


In other operations, substantially more of the surface of the microelectronic workpiece is removed. For example, in forming Shallow-Trench-Isolation (STI) structures, a substrate may include a number of trenches that are filled with a metal, a semiconductor, or other suitable material. The material used to fill the trenches is often applied across the entire surface of the substrate, leaving an overburden of material outside of the trenches. Once the overburden has been removed and the polishing medium begins to act on the substrate or any intermediate layer between the substrate and the overburden, the friction between the polishing medium and the workpiece may change. Again, the change in friction between the microelectronic workpiece and the polishing pad can change the shear force between the polishing medium and the workpiece and the temperature of the polishing medium can change.


In the preceding examples, the change in friction between the planarizing medium and the microelectronic workpiece is used to help determine when to stop the polishing process, conventionally known as “endpointing.” It may also be desirable to monitor polishing conditions during the course of a planarizing cycle. For example, variations in the downforce of the workpiece against the polishing medium or the linear velocity of the workpiece with respect to the polishing medium can lead to undesirable variations in product quality. Being able to monitor these operating variations in real time could enhance quality control.


Certain embodiments of the present invention employ process indicators that change an optical property in response to a condition of the planarizing operation. In one embodiment, the process indicator is thermally responsive and will change an optical property, e.g., a change in a reflectance spectrum, in response to a change in temperature. In another embodiment, the process indicator is shear-responsive and will change an optical property, e.g., a change in a reflectance spectrum, in response to a change in shear force. Process indicators responsive to other polishing conditions, e.g., a compressive (as opposed to shear) force of the workpiece against the planarizing medium, may also be useful.


As explained in more detail below, the planarizing medium of a CMP machine will commonly include a planarizing pad and a planarizing solution. In accordance with different embodiments of the invention, the selected process indicator(s) may be incorporated in the planarizing pad, in the planarizing solution, or in both the planarizing pad and the planarizing solution. It may be desirable to include any shear-responsive process indicator(s) in the planarizing solution. Thermally responsive process indicators may work well as a component of the planarizing solution and/or the planarizing pad. Process indicators adapted to respond to compressive, as opposed to shear, forces may be well suited for inclusion in the planarizing pad.


A wide variety of thermally responsive, shear-responsive, and compression-responsive process indicators are known in the art and many such compositions are commercially available. In one embodiment, the process indicator comprises a thermally responsive fluid adapted to change a reflectance spectrum upon reaching a selected temperature. If this change in reflectance spectrum is in visible wavelengths of light, they may be detected as a change in color. The change may, instead, occur in non-visible wavelengths, e.g., in the infrared or the ultraviolet region. Known thermochromic dyes that exhibit such behavior include leuco dye compositions and thermochromic liquid crystals (including sterol-drived “cholosteric” chemicals, non-sterol based “chiral nematic” chemicals, and combinations of both cholosteric and chiral nematic components).


Leuco dyes are generally colorless or relatively light-colored, basic substances which may change color or otherwise change their optical properties when oxidized by acidic substances. Hence, conventional leuco dye-based thermochromic dyes will commonly include a suitable leuco dye; a source of labile hydrogen, such as a phenolic compound, an organic acid or metal salt thereof, or a hydroxybenzoic acid ester; an organic diluent such as an ester; water; and polyvinyl alcohol. (As used herein, the term “leuco dye” may refer to the leuco dye itself, e.g., 6′-(diethylamino)-3′-methyl-2′-(phenyl amino) spiro(isobenzofuran-1(3H),9′(9H)xanthen)-3-one, or to a thermochromic dye composition which includes a leuco dye.) Leuco dyes are commercially available from Color Change Corporation of Streamwood, Ill., U.S.A. Leuco dyes are also discussed in published International Application WO 01/04221 (“Thermochromic Ink Composition and Article Made Therefrom”) and U.S. Pat. No. 6,165,937 (“Thermal Paper With a Near Infrared Radiation Scannable Data Image”), each of which is incorporated herein by reference in its entirety.


Thermochromic liquid crystals (TLCs) are commercially available from a variety of sources, including Hallcrest, Inc. of Glenview, Ill., U.S.A. TLCs will reflect different wavelengths of light over a range of temperatures. As used herein, the word “light” means radiation over the wavelength range of the infrared, visible, and ultraviolet regions. At lower temperatures, conventional TLCs may reflect light primarily or exclusively in the infrared region and may visually appear generally clear or colorless. As the temperature increases to an intermediate temperature range, TLCs will reflect visible light. At yet higher temperatures, TLCs commonly move into the ultraviolet spectrum, again appearing essentially clear or colorless in the visible spectrum. At the lower end of the intermediate temperature range, TLCs will appear red. As the temperature increases within the intermediate temperature range, the visible color of the TLCs will pass through other colors of the visible spectrum, moving from orange to yellow to green to blue and then to violet at the upper end of the intermediate temperature range. Unlike leuco dyes, which typically will exhibit a single change in reflectance spectrum (either reversible or irreversible) at a specific temperature or narrow band of temperatures, the reflectance spectrum of a TLC can provide meaningful temperature feedback across a range of temperatures.


Another type of temperature-sensitive dye that may be included in a process indicator is a luminophor of the type employed in temperature sensitive paints (TSPs), often used in aerodynamic testing. Generally, such dyes are excited by absorbing light, typically in the long ultraviolet to blue range, and emit a red-shifted light. These luminophors are typically dispersed in a matrix of an insulator, e.g., a polyurethane. The intensity of the red-shifted light that is emitted by the luminophors generally decreases with increasing temperature. By correlating the measured intensity of the TSP to one or more known temperatures, the TSP can be used to detect a particular target temperature or give a quantitative indication of temperatures within a range of operating temperatures.


Suitable luminophors and insulators may be selected for any of a variety of different temperature ranges. One luminophor that exhibits suitable sensitivity in the range of about 25–250° F. is ruthenium tris(1,10-phenantholine)dichloride(“RU-phen”). Hubner et al. discuss the use of RU-phen in TSPs in “Heat Transfer Measurements in Hypersonic Flow Using Luminescent Coating Techniques,” published in the proceedings of the American Institute of Aeronautics and Astronautic (AIAA) 40th Aerospace Sciences Meeting & Exhibit as paper no. AIAA 2002-0741, and techniques for using TSPs in aerodynamics applications are discussed by Hamner et al. in “Using Temperature Sensitive Paint Technology,” published in the proceedings of the AIAA 40th Aerospace Sciences Meeting & Exhibit as paper no. AIAA 2002-0742, each of which is incorporated herein by reference in its entirety.


A variety of shear-sensitive materials useful as process indicators are known in the art. Shear-sensitive cholosteric liquid crystals, which are said to be relatively temperature-insensitive yet shear-sensitive, are commercially available from Hallcrest, Inc. of Glenview, Ill., U.S.A. Such shear-sensitive formulations are typically mixtures which show a single color transition or other reflectance change at a “clearing point”; if the shear is increased above the clearing point, the shear-sensitive liquid crystals may become clear or colorless. NASA has developed a technique for measuring magnitude and direction of shear force on a surface employing liquid crystals. In this technique, a white light source is directed at a liquid crystal coating and an angular shift in the reflected spectrum from the liquid crystal coating can be used to quantitatively determine the shear force. This technique is detailed in U.S. Pat. No. 5,438,879, issued to Reda (“Reda”), the entirety of which is incorporated herein by reference.


In another embodiment, a process indicator may comprise a compression-responsive material that will change optical properties in response to a planarizing condition. Luminophor-based pressure-sensitive coatings are well known in the art of aerodynamics and many of the same luminophors used in TSPs can also be used in such pressure-sensitive layers. U.S. Pat. No. 6,104,448, the entirety of which is incorporated herein by reference, suggests a liquid crystal-based compression-responsive indicator in which liquid crystals are compartmentalized in a series of separate cells, with application of sufficient mechanical force changing the crystals within the shell from a generally optically clear state to a more light-reflecting state.


The process indicator best suited for any particular CMP process will depend on the planarizing condition to be monitored. For example, if the process indicator is to be used in endpointing a CMP process, it may respond to a temperature or a pressure that may be correlated to the desired endpoint. As noted above, the desired endpoint may be associated with a change in friction between the workpiece and the planarizing pad, which can lead to a temperature change, typically a temperature increase. A leuco dye may be selected which changes from a specific reflectance spectrum to another (e.g., from a color to clear) at a temperature which can be correlated to the endpoint. This temperature may correspond precisely with the endpoint. Alternatively, the temperature may be achieved prior to the endpoint and polishing may continue for a specified period of time after the reflectance change is detected. As noted previously, TLCs may shift reflectance spectrum over a range of temperatures. In one embodiment, a TLC is selected in which anticipated operating temperatures or a temperature which is to be detected, e.g., a temperature which is correlated with a planarizing endpoint, falls within the intermediate temperature range at which the TLC has a visible color. If a TSP is employed, a luminophor that is stable and exhibits suitable sensitivity within the anticipated range of operating temperatures may be employed.


If the process indicator is a shear-sensitive liquid crystal that exhibits a single color change from a reflected color to a clear, colorless condition at a clearing point, the clearing point should be selected to correspond to a known planarizing condition, such as the shear stress which occurs at a planarizing endpoint or a specified point in time prior to the endpoint. If the process suggested by Reda is employed, liquid crystals should be selected which are stable and reflect the source light under the anticipated processing conditions.


If the process indicator is to be incorporated in the planarizing solution, care should be taken to select a process indicator that is stable in the planarizing solution. This process indicator may also be substantially non-reactive with the other components of the planarizing solution and/or the workpiece. It is anticipated that a relatively small volume of process indicator in the planarizing solution will suffice to generate a detectable optical change. For example, it is anticipated that a process indicator comprising no more than about 0.1 weight % of the planarizing solution will yield a detectable signal.


The process indicator, or a fraction thereof, may be incorporated in the polishing pad in a variety of different fashions. For example, the process indicator may comprise a plurality of discrete liquid volumes carried in a matrix of the planarizing pad. For example, the planarizing pad may comprise a resin matrix (e.g., a polyurethane resin) and an optically responsive dye, liquid crystal, or other suitable liquid may be included as a plurality of discrete liquid volumes within that matrix. The process indicator may be dispersed throughout the entire thickness of the polishing pad. In another embodiment, though, the process indicator is included only in an upper portion of the planarizing pad proximate the planarizing surface. Again, relatively small volumes of the process indicator within the planarizing pad may be sufficient to generate a readily detectable change in color or other optical property being detected. Process indicators comprising no more than about 0.1 weight % of the portion of the planarizing pad within which they are incorporated are expected to suffice.


In one embodiment, the process indicator comprises a single component, e.g., a single type of liquid crystal or luminophor or a single liquid dye composition. As noted above, both TLCs and luminophors typically vary optical properties across a range of temperatures. Utilizing a process indicator that comprises a single type of TLC or luminophor, therefore, can yield data over a range of temperatures. A process indicator comprising a single leuco dye composition will typically exhibit a single color change at a single temperature or narrow range of temperatures.


In other embodiments, a multiple-component process indicator is employed. Such a multiple-component process indicator may include a first component that is adapted to change an optical property in response to a first planarizing condition and a second component which is adapted to change an optical property in response to a second planarizing condition. The first and second planarizing conditions may be different, such that each of the components will generate an optically detectable change upon the occurrence of a different planarizing condition. The process indicator is not limited to two components, though; any suitable number of components may be employed to indicate a variety of different planarizing conditions. In particular, the multi-component process indicator may include three, four, or more different components and each of these components may be adapted to respond to a different planarizing condition.


In one embodiment, at least a first component and a second component of a multi-component process indicator are adapted to respond to the same type of planarizing condition. Hence, the first component may change an optical property upon reaching a first temperature and the second component may generate a visible change upon reaching a different second temperature. If the first and second components are both leuco dyes, for example, each of these components may exhibit a visible color change upon reaching a different activation temperature. The optical change exhibited by the first component may be different from the optical change exhibited by the second component. Using the same example, the two leuco dyes may have different colors to highlight that a dye's transition temperature has been reached. In one specific example, the first component comprises a blue leuco dye and the second component comprises a yellow leuco dye. At lower temperatures, the process indicator will be green (blue plus yellow); once the first leuco dye reaches its activation temperature and changes from blue to clear, the process indicator will change from green to yellow, the color of the second dye; the second dye may undergo its transition from colored to clear at a second, higher temperature, causing the process indicator to change from yellow to a clear condition. Even if the first and second components of the process indicator are adapted to respond to the same type of planarizing condition, there is no need for both of the components to be the same type of indicator. For example, the first component may comprise a leuco dye and the second component may comprise a liquid crystal, each of which changes optical property in response to a different temperature.


In an alternative embodiment, at least the first and second components of a multi-component process indicator are adapted to respond to different types of planarizing conditions. For example, the first process indicator may undergo an optical change in response to a change in temperature while the second component may exhibit its optical change in response to changes in the shear force. Other combinations of different types of planarizing conditions may also be employed.


As noted above, the process indicator may be included in virtually any suitable component of the planarizing system. For example, the process indicator or components thereof may be included in the planarizing solution, in the planarizing pad, or in both the planarizing solution and the planarizing pad. In another embodiment, the process indicator or at least one component thereof may be incorporated in the workpiece itself. This can be useful in reconditioning planarizing pads, for example, wherein the planarizing pad includes a process indicator and the planarizing medium for the reconditioning process (which will typically include a polishing solution and a reconditioning disk) may or may not include a second component of the process indicator. In one specific example, a thermally responsive liquid crystal or dye may be incorporated in the matrix of the planarizing pad and a shear-responsive liquid crystal may be included in the planarizing solution.


Apparatus



FIG. 2 is a cross-sectional view of a planarizing machine 100 in accordance with one embodiment of the invention. Several features of the planarizing machine 100 are shown schematically. The planarizing machine 100 of this embodiment includes a table or platen 120 coupled to a drive mechanism 121 that rotates the platen 120. The platen 120 can include a cavity 122 having an opening 123 at a support surface 124. The planarizing machine 100 can also include a carrier assembly 130 having a workpiece holder 132 or head coupled to a drive mechanism 136. The workpiece holder 132 holds and controls a workpiece 12 during a planarizing cycle. The workpiece holder 132 can include a plurality of nozzles 133 through which a planarizing solution 135 can flow during a planarizing cycle. The carrier assembly 130 can be substantially the same as the carrier assembly 30 described above with reference to FIG. 1.


The planarizing machine 100 can also include a planarizing medium 150 comprising a planarizing solution 135 and a planarizing pad 140 having a planarizing body 142 and an optically transmissive window 144. The planarizing body 142 can be form of an abrasive or non-abrasive material having a planarizing surface 146. For example, an abrasive planarizing body 142 can have a resin matrix (e.g., a polyurethane resin) and a plurality of abrasive particles fixedly attached to the resin matrix. Suitable abrasive planarizing bodies 142 are disclosed in U.S. Pat. Nos. 5,645,471, 5,879,222, 5,624,303, 6,039,633, and 6,139,402, each of which is incorporated herein in its entirety by reference.


The optically transmissive window 144 can be an insert in the planarizing body 142. Suitable materials for the optically transmissive window include polyester (e.g., optically transmissive MYLAR); polycarbonate (e.g., LEXAN); fluoropolymers (e.g., TEFLON); glass; or other optically transmissive materials that are also suitable for contacting a surface of a microelectronic workpiece 12 during a planarizing cycle. A suitable planarizing pad having an optically transmissive window is disclosed in U.S. patent application Ser. No. 09/595,797, which is herein incorporated in its entirety by reference. In certain embodiments, either the optically transmissive window 144 extends through the entire thickness of the planarizing body 142, as illustrated in FIGS. 2 and 3, or a transmissive window 144 having a thickness less than the thickness of the planarizing body 142 can be inserted in a hole which passes through the entire thickness of the planarizing body 142.


In another embodiment, a portion of the planarizing body 142 extends over an upper surface of the transmissive window 144, separating the transmissive window from contact with the workpiece. This presents a continuous, consistent planarizing surface 146, which can enhance product quality. In one particular adaptation of this embodiment, at least one component of the process indicator is included in the portion of the planarizing body that extends over an upper surface of the window. This enables the optical change in the process indicator to be detected through the window 144. It is anticipated that covering an upper surface of the window 144 would be counterproductive in a more conventional CMP machine, such as that suggested by Lustig.


The planarizing machine 100 also includes a control system 170 having a light system 160 and a computer 180. The light system 160 can include a light source 162 that generates a beam of light 164 and a sensor 166 having a photodetector to receive reflected light 168. In this embodiment, the light source 162 is configured to direct the light beam 164 upwardly through the window 144 to impinge the planarizing medium 150 during a planarizing cycle. The light source 162 can generate a series of light pulses over time or can constantly illuminate the planarizing medium. The sensor 166 is configured to receive the reflected or emitted light 168 that reflects from the planarizing medium 150 or, if the process indicator comprises a luminophor, that is emitted by the planarizing medium 150.


The nature of the light source 162 can be varied to enhance sensitivity to the optical change or changes exhibited by the selected process indicator. As noted above, many process indicators contemplated for use in the CMP machine 100 will exhibit a change in reflectance and/or absorption in the visible spectrum, generating a visible color change. In such a circumstance, the light source 162 may comprise a wide-spectrum white light source and the sensor 166 may comprise a CCD of the type commonly included in a digital camera or the like. Using a conventional light source and digital camera can reduce the costs of manufacturing and maintaining the CMP machine 100. In another embodiment, the light source 162 may comprise one or more light sources, each adapted to generate a single wavelength of light (e.g., a laser) or light having a relatively narrow wavelength range (e.g., an LED), which will generate light in a wavelength affected by the optical change in the process indicator. If the process indicator changes optical properties over a range of planarizing conditions, e.g., a liquid crystal which changes color across a range of temperatures, selecting a light source having a single wavelength or narrow band of wavelengths can facilitate detection of when the process indicator reaches a predetermined reflectance at the measured wavelength(s) that is associated with the desired planarizing condition.


The computer 180 is coupled to the light system 160 to activate the light source 162 and/or to receive a signal from the sensor 166 corresponding to the intensity and/or color of the reflected light 168. The computer 180 has a database 182 containing a plurality of reference reflectances corresponding to the status of the planarizing medium. The computer 180 also contains a computer-readable program 184 that causes the computer 180 to control a parameter of the planarizing machine 100 when the measured property or properties of the reflected light 168 corresponds to a selected reference property (e.g., reflected color) in the database 182.


The computer program 184 can be contained on a computer-readable medium stored in the computer 180. In one embodiment, the computer-readable program 184 causes the computer 180 to control a parameter of the planarizing machine 100 when the measured property of the reflected light 168 is approximately the same as the reference property stored in the database 182 corresponding to a known polishing condition. The computer 180, therefore, can indicate that the planarizing cycle is at an endpoint, the workpiece has become planar, the polishing rate has changed, the downforce is outside of acceptable limits, and/or control another aspect of planarizing of the microelectronic workpiece 12.


The computer program 184 can accordingly cause the computer 180 to control a parameter of the planarizing cycle according to the correspondence between the measured color or other optical property of the planarizing medium and the reference property stored in the database 182. In one embodiment, the computer program 184 can cause the computer 180 to adjust an operating parameter of the planarizing cycle, such as the downforce, flow rate of the planarizing solution, and/or relative velocity according to the measured reflectance spectrum of the polishing medium. In another embodiment, the computer program 184 can cause the computer 180 to terminate the planarizing cycle once the measured reflectance spectrum of the reflected light 168, for example, corresponds to the reflectance spectrum (e.g., color) in the database 182 associated with the endpoint of the workpiece 12.


The computer 180 can be one type of controller for controlling the planarizing cycle using the control system 150. The controller can alternatively be an analog system having analog circuitry and a set point corresponding to reference reflectances of a specific planarizing condition.



FIG. 3 is a partial schematic cross-sectional view of a stage of a planarizing cycle that uses the planarizing machine 100 to form Shallow-Trench-Isolation (STI) structures in one embodiment of a method of the invention. In the illustrated embodiment, the workpiece 12 has a substrate 13 with a plurality of trenches 14, a barrier layer 15 (e.g., silicon nitride or tantalum nitride) deposited on the substrate 13, and a metal layer 16 (e.g., copper or aluminum) deposited on the barrier layer 15. FIG. 3 shows the workpiece 12 at a stage of the planarizing cycle in which the metal layer 16 has been partially planarized.



FIG. 4 schematically illustrates a rotary planarizing machine 101 in accordance with an alternative embodiment of the invention. Many aspects of the planarizing machine 101 in FIG. 4 are similar to aspects of the planarizing machine 100 of FIG. 2; in these two drawings, the same reference numbers identify elements with the same or similar functionality for ease of understanding.


One difference between the planarizing machine 101 in FIG. 4 and the planarizing machine 100 in FIG. 2 is the location where the light beam 164 impinges on the planarizing medium (151 in FIG. 4 or 150 in FIG. 2). As noted above, the planarizing machine 100 of FIG. 2 includes a light system 160 positioned beneath the window 144 to impinge on the planarizing medium 150. In the planarizing machine 101 of FIG. 4, though, the light system 160 is adapted to direct the beam of light 164 toward the planarizing surface 146 of the planarizing pad 141. In the illustrated embodiment, the light source 162 is positioned higher than the planarizing pad 141 and directs the light beam 164 generally downwardly toward the planarizing medium 151. In one embodiment, the light beam 164 is generally perpendicular to the plane of the planarizing surface 146 and the light sensor 166 may be positioned adjacent the light source 162. Because the light system 160 is not constrained to a relatively small cavity 122 in the platen 120, though, the light beam 164 in another embodiment is directed at an oblique angle to the plane of the planarizing surface 146 and the light sensor 166 may be spaced from the light source 162. This embodiment may facilitate measurement of shear force in the planarizing solution 135 as proposed by Reda and discussed above.


In most conventional planarizing machines, a workpiece holder 132 covers part or all of an upper surface of the workpiece 12. In the illustrated embodiment, therefore, the light beam 164 is adapted to direct light against the planarizing medium 151 at a location displaced from the workpiece 12. The location where the light beam 164 impinges the planarizing medium 151 should be selected to ensure that the optical properties of the planarizing medium 151 at that location reliably correlate to the planarizing condition being measured. In one embodiment, the light system 160 is mounted on the workpiece holder 132 to travel with the workpiece 12 as it moves with respect to the planarizing medium 151.


In the embodiment of FIG. 4, the planarizing pad 141 does not include a transmissive window (144 in FIG. 2). In an alternative embodiment, the planarizing pad 141 does include such a transmissive window and the light source may comprise a first light source 160 directed to impinge the planarizing medium 151 from above at a location displaced from the workpiece 12 and a second light system (not shown in FIG. 4) positioned in a cavity (122 in FIGS. 2 and 3) in the platen 120 directed to impinge the planarizing medium from below.



FIG. 5 is a schematic isometric view of a web-format planarizing machine 200 in accordance with another embodiment of invention. The planarizing machine 200 has a support table 220 having a top panel 221 at a workstation where an operative portion of a web-format planarizing pad 240 is positioned. The top panel 221 is generally a rigid plate, and it provides a flat, solid surface to which a particular section of a web-format planarizing pad 240 may be secured during planarization.


The planarization machine 200 also has a plurality of rollers to guide, position, and hold the planarizing pad 240 over the top panel 221. The rollers can include a supply roller 224, idler rollers 225, guide rollers 222, and a take-up roller 223. The supply roller 224 carries an unused or pre-operative portion of the planarizing pad 240, and the take-up roller 223 carries a used or post-operative portion of the planarizing pad 240. Additionally, the left idler roller 225 and the upper guide roller 222 stretch the planarizing pad 240 over the top panel 221 to couple the planarizing pad 240 to the table 220. A motor (not shown) generally drives the take-up roller 223 to sequentially advance the planarizing pad 240 across the top panel 221 along a pad travel path T—T, and the motor can also drive the supply roller 224. Accordingly, a clean pre-operative section of the planarizing pad 240 may be quickly substituted for a used section to provide a consistent surface for planarizing and/or cleaning the workpiece 12.


The web-format planarizing machine 200 also includes a carrier assembly 230 that controls and protects the workpiece 12 during planarization. The carrier assembly 230 generally has a workpiece holder 232 to pick up, hold, and release the workpiece 12 at appropriate stages of a planarizing cycle. A plurality of nozzles 233 projects from the workpiece holder 232 to dispense a planarizing solution 245 onto the planarizing pad 240. This planarizing solution 245 and the planarizing pad 240 may together comprise a planarizing medium 250. The carrier assembly 230 also generally has a support gantry 234 carrying a drive assembly 235 that can translate along the gantry 234. The drive assembly 235 generally has an actuator 236, a drive shaft 237 coupled to the actuator 236, and an arm 238 projecting from the drive shaft 237. The arm 238 carries a workpiece holder 232 via a terminal shaft 239 such that the drive assembly 235 orbits substrate holder 232 about an axis B—B (arrow R1). The terminal shaft 239 may also be coupled to the actuator 236 to rotate the workpiece holder 232 about its central axis (arrow R2).


The planarizing pad 240 shown in FIG. 5 can include a planarizing body 242 having a plurality of optically transmissive windows 244 arranged in a line generally parallel to the pad travel path T—T. As noted above, these windows 244 may extend through only a portion of the planarizing body, with a thickness of the planarizing body extending over the top of the window 244. The planarizing pad 240 can also include an optically transmissive backing film 248 under the planarizing body 242. Suitable planarizing pads for web-format machines are disclosed in, for example, U.S. Pat. No. 6,213,845, the entirety of which is incorporated herein by reference.


The planarizing machine 200 can also include a control system having the light system 160 and the computer 180 described above with reference to FIGS. 2–3. In operation, the carrier assembly 230 preferably lowers the workpiece 12 against the planarizing medium 250 and orbits the substrate holder 232 about the axis B—B to rub the workpiece 12 against the planarizing medium 250. The light system 160 emits the source light 164, which passes through a window 244 aligned with an illumination site on the table 220 to optically monitor the status of the planarizing medium 250 during the planarizing cycle, as discussed above with reference to FIGS. 2–3. The web-format planarizing machine 200 with the light system 160 and the computer 180 is thus expected to provide many of the same advantages as the planarizing machine 100 described above. Systems for enhancing alignment of the light system 160 with the window 244 are discussed in co-pending U.S. patent application Ser. No. 09/651,240, filed 30 Aug. 2000, the entirety of which is incorporated herein by reference.



FIG. 6 is a schematic isometric view of a web-format planarizing machine 201 in accordance with an alternative embodiment of the invention. The web-format planarizing machine 201 in FIG. 6 includes a number of the same elements as the planarizing machine 200 of FIG. 5 and the same reference numerals are used in both drawings to indicate like elements.


One difference between the planarizing machine 201 of FIG. 6 and the planarizing machine 200 of FIG. 5 is that the light system 160 is positioned at a height above the planarizing surface 246 of the planarizing medium 251 rather than striking the planarizing medium through a window (244 in FIG. 5) in the planarizing pad 240. As with the embodiment of FIG. 4, omitting the window in the planarizing pad 241 can improve homogeneity of the planarizing surface 246, enhancing product consistency. As also noted above in connection with FIG. 4, the light system 160 in FIG. 6 may be mounted on the workpiece carrier 232, allowing the light system 160 to impinge the planarizing medium 251 at a location displaced a known distance from the workpiece 12.


Methods


As noted previously, some embodiments of the invention provide methods for planarizing a workpiece. For ease of understanding, the following discussion makes reference to the planarizing machine 100 of FIGS. 2 and 3 and its components to illustrate aspects of these methods. It should be understood, though, that methods of the invention are not limited to being carried out on this machine 100, but may be performed on any suitable apparatus, including, but not limited to, the rotary planarizing machine 101 of FIG. 4 and the web-format planarizing machines 200 and 201 of FIGS. 5 and 6.


One embodiment provides a method in which a planarizing solution 135 is delivered to the planarizing surface 146 of a planarizing pad 140. The workpiece 12 is rubbed against the planarizing medium 150. The planarizing medium 150 includes a process indicator, which may be incorporated in the planarizing solution (as best seen in FIG. 3), in the planarizing pad 140, or in both the planarizing solution 135 and the planarizing pad 140. The process indicator is optically monitored to detect a change in the optical property. This change in optical property, as noted above, may be in response to reaching a particular temperature, in response to a particular shear force or compressive force, or any other suitable process indicator.


Upon detecting the change in the optical property of the process indicator, an operating parameter of the planarizing machine 100 may be changed. For example, when a particular change in optical property of the process indicator is associated with an endpoint, rubbing of the workpiece 12 against the planarizing medium 150 may be ceased. This may occur immediately or planarizing can continue for a specified time after the optical change is detected.


In another embodiment, the operating parameter that is changed does not involve ceasing rubbing the workpiece 12 against the planarizing medium 150. The planarizing machine 100 will operate according to a number of different operating parameters, such as the downforce of the workpiece 12 against the planarizing medium 150, a flow rate of the planarizing solution 135 onto the planarizing pad 140, the relative velocity of the workpiece 12 with respect to the planarizing medium 150, etc. For example, if the downforce is too high, the temperature of at least portions of the planarizing medium 150 may exceed the temperature at which the color of a TLC in the planarizing medium reaches a predetermined threshold color. Upon detecting this threshold color in the process indicator, the computer program 184 can cause the computer 180 to reduce the downforce, bringing the planarizing operation within the predetermined specifications.


Another embodiment of the invention provides a method for conditioning a used CMP planarizing pad. Over time, a planarizing pad can become worn. To keep the planarizing pad within acceptable tolerances, the pad may be conditioned from time to time by planarizing the polishing pad, removing a portion of the planarizing pad. This process may be repeated a number of times during the useful life of the planarizing pad.


In accordance with this embodiment, the used CMP planarizing pad is positioned proximate a planarizing medium. The planarizing medium may, for example, comprise a planarizing solution and a diamond CMP conditioning disk of the type commercially available from, for example, Abrasive Technology of Lewis Center, Ohio, USA. The used CMP planarizing pad may be of the type outlined above wherein the planarizing pad incorporates the process indicator, e.g., by dispersing a TLC or leuco dye within the matrix of at least a portion of the polishing pad. In one embodiment, the process indicator will change its optical property in response to a change in temperature of or a change in the force on the used planarizing pad. The used CMP planarizing pad may be rubbed against the conditioning planarizing medium under a set of operating parameters, including a predefined downforce, flow rate of planarizing solution, and relative velocity. At least one of these operating parameters may be changed in response to detecting a change in the optical property of the process indicator. This change in the operating parameter may, for example, comprise changing the downforce of the used CMP polishing pad against the polishing medium or terminating the planarization cycle.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. The above detailed descriptions of embodiments of the invention are not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while steps are presented in a given order, alternative embodiments may perform steps in a different order. Aspects of the invention may also be useful in other applications, e.g., in polishing workpieces other than microelectronic workpieces. The various embodiments described herein can be combined to provide further embodiments.


In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above detailed description explicitly defines such terms. While certain aspects of the invention are presented below in certain claim forms, the inventors contemplate the various aspects of the invention in any number of claim forms. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the invention.

Claims
  • 1. A slurry for planarizing a microelectronic workpiece, comprising: a fluid component comprising a thermally responsive fluid adapted to change color upon reaching a first temperature;an abrasive suspended in the fluid component; andfurther comprising a second thermally responsive fluid, the second thermally responsive fluid being adapted to generate a visible color change upon reaching a second temperature, the first temperature being correlated to a first planarizing condition and the second temperature being correlated to a different second planarizing condition.
  • 2. The slurry of claim 1 wherein the first temperature is correlated to a planarizing endpoint.
  • 3. The slurry of claim 1 wherein the fluid is a microencapsulated dye.
  • 4. The slurry of claim 1 wherein the fluid is selected from a group consisting of leuco dyes, thermochromic liquid crystals, shear-sensitive liquid crystals, and luminophors.
  • 5. A slurry for planarizing a microelectronic workpiece, comprising: a fluid component comprising a thermally responsive fluid adapted to change color upon reaching a first temperature;an abrasive suspended in the fluid component; andfurther comprising a second fluid, the second fluid being adapted to generate a visible color change in response to a first shear force.
  • 6. The slurry of claim 5 wherein the first temperature is correlated to a first planarizing condition and the first shear force is correlated to a different second planarizing condition.
  • 7. A slurry for planarizing a microelectronic workpiece, comprising: a fluid component comprising a thermally responsive fluid adapted to change color upon reaching a first predetermined processing state;an abrasive suspended in the fluid component; andfurther comprising a second thermally responsive fluid, the second thermally responsive fluid being adapted to generate a visible color change upon reaching a second predetermined processing state, the first predetermined processing state being correlated to a first planarizing condition and the second predetermined processing state being correlated to a different second planarizing condition.
  • 8. The slurry of claim 7 wherein the first predetermined processing state is correlated to a planarizing endpoint.
  • 9. The slurry of claim 7 wherein the fluid is a microencapsulated dye.
  • 10. The slurry of claim 7 wherein the fluid is selected from a group consisting of leuco dyes, thermochromic liquid crystals, shear-sensitive liquid crystals, and luminophors.
  • 11. The slurry of claim 7 wherein the second thermally responsive fluid comprises a different fluid component from the first thermally responsive fluid.
  • 12. The slurry of claim 11 wherein the first and second fluids are selected form a group consisting of leuco dyes, thermochromic liquid crystals, shear-sensitive liquid crystals, and luminophors.
  • 13. The slurry of claim 7, wherein the second fluid is adapted to generate a visible color change in response to a first shear force.
  • 14. The slurry of claim 13 wherein the first predetermined processing state is correlated to a first planarizing condition and the shear force is correlated to a different second planarizing condition.
  • 15. The slurry of claim 7 wherein the second fluid is adapted to generate a visible color change in response to a first compressive force.
  • 16. The slurry of claim 15 wherein the first predetermined processing state is correlated to a first planarizing condition and the compressive force is correlated to a different second planarizing condition.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. application Ser. No. 10/199,734, entitled “METHODS AND SYSTEMS FOR PLANARIZING WORKPIECES, E.G., MICROELECTRONIC WORKPIECES,” filed Jul. 18, 2002, which is incorporated herein by reference in its entirety.

US Referenced Citations (291)
Number Name Date Kind
4145703 Blanchard et al. Mar 1979 A
4200395 Smith et al. Apr 1980 A
4203799 Sugawara et al. May 1980 A
4305760 Trudel Dec 1981 A
4358338 Downey et al. Nov 1982 A
4367044 Booth, Jr. et al. Jan 1983 A
4377028 Imahashi Mar 1983 A
4422764 Eastman Dec 1983 A
4498345 Dyer et al. Feb 1985 A
4501258 Dyer et al. Feb 1985 A
4502459 Dyer Mar 1985 A
4640002 Phillips et al. Feb 1987 A
4660980 Takabayashi et al. Apr 1987 A
4717255 Ulbers Jan 1988 A
4755058 Shaffer Jul 1988 A
4879258 Fisher Nov 1989 A
4946550 Van Laarhoven Aug 1990 A
4971021 Kubotera et al. Nov 1990 A
5020283 Tuttle Jun 1991 A
5036015 Sandhu et al. Jul 1991 A
5069002 Sandhu et al. Dec 1991 A
5081796 Schultz Jan 1992 A
5163334 Li et al. Nov 1992 A
5196353 Sandhu et al. Mar 1993 A
5220405 Barbee et al. Jun 1993 A
5222329 Yu Jun 1993 A
5232875 Tuttle et al. Aug 1993 A
5234867 Schultz et al. Aug 1993 A
5240552 Yu et al. Aug 1993 A
5244534 Yu et al. Sep 1993 A
5245790 Jerbic Sep 1993 A
5245796 Miller et al. Sep 1993 A
RE34425 Schultz Nov 1993 E
5314843 Yu et al. May 1994 A
5324381 Nishiguchi Jun 1994 A
5369488 Morokuma Nov 1994 A
5393624 Ushijima Feb 1995 A
5413941 Koos et al. May 1995 A
5421769 Schultz et al. Jun 1995 A
5433649 Nishida Jul 1995 A
5433651 Lustig et al. Jul 1995 A
5438879 Reda Aug 1995 A
5439551 Meikle et al. Aug 1995 A
5449314 Meikle et al. Sep 1995 A
5461007 Kobayashi Oct 1995 A
5465154 Levy Nov 1995 A
5486129 Sandhu et al. Jan 1996 A
5499733 Litvak Mar 1996 A
5514245 Doan et al. May 1996 A
5533924 Stroupe et al. Jul 1996 A
5540810 Sandhu et al. Jul 1996 A
5573442 Morita et al. Nov 1996 A
5609718 Meikle Mar 1997 A
5616069 Walker et al. Apr 1997 A
5618381 Doan et al. Apr 1997 A
5618447 Sandhu Apr 1997 A
5624303 Robinson Apr 1997 A
5632666 Peratello et al. May 1997 A
5643044 Lund Jul 1997 A
5643048 Iyer Jul 1997 A
5643060 Sandhu et al. Jul 1997 A
5645471 Strecker Jul 1997 A
5645682 Skrovan Jul 1997 A
5650619 Hudson Jul 1997 A
5655951 Meikle et al. Aug 1997 A
5658183 Sandhu et al. Aug 1997 A
5658190 Wright et al. Aug 1997 A
5663797 Sandhu Sep 1997 A
5664988 Stroupe et al. Sep 1997 A
5667424 Pan Sep 1997 A
5668061 Herko et al. Sep 1997 A
5679065 Henderson Oct 1997 A
5681204 Kawaguchi et al. Oct 1997 A
5681423 Sandhu et al. Oct 1997 A
5690540 Elliott et al. Nov 1997 A
5698455 Meikle et al. Dec 1997 A
5700180 Sandhu et al. Dec 1997 A
5702292 Brunelli et al. Dec 1997 A
5708506 Birang Jan 1998 A
5725417 Robinson Mar 1998 A
5730642 Sandhu et al. Mar 1998 A
5736427 Henderson Apr 1998 A
5738562 Doan et al. Apr 1998 A
5738567 Manzonie et al. Apr 1998 A
5747386 Moore May 1998 A
5777739 Sandhu et al. Jul 1998 A
5779522 Walker et al. Jul 1998 A
5782675 Southwick Jul 1998 A
5791969 Lund Aug 1998 A
5792709 Robinson et al. Aug 1998 A
5795218 Doan et al. Aug 1998 A
5795495 Meikle Aug 1998 A
5798302 Hudson et al. Aug 1998 A
5801066 Meikle Sep 1998 A
5807165 Uzoh et al. Sep 1998 A
5823855 Robinson Oct 1998 A
5830806 Hudson et al. Nov 1998 A
5842909 Sandhu et al. Dec 1998 A
5846336 Skrovan Dec 1998 A
5851135 Sandhu et al. Dec 1998 A
5855804 Walker Jan 1999 A
5865665 Yueh Feb 1999 A
5868896 Robinson et al. Feb 1999 A
5871392 Meikle et al. Feb 1999 A
5879222 Robinson Mar 1999 A
5879226 Robinson Mar 1999 A
5882244 Hiyama et al. Mar 1999 A
5882248 Wright et al. Mar 1999 A
5893754 Robinson et al. Apr 1999 A
5893796 Birang et al. Apr 1999 A
5894852 Gonzales et al. Apr 1999 A
5895550 Andreas Apr 1999 A
5899792 Yagi May 1999 A
5910043 Manzonie et al. Jun 1999 A
5930699 Bhatia Jul 1999 A
5934973 Boucher et al. Aug 1999 A
5934974 Tzeng Aug 1999 A
5934980 Koos et al. Aug 1999 A
5936733 Sandhu et al. Aug 1999 A
5938801 Robinson Aug 1999 A
5945347 Wright Aug 1999 A
5949927 Tang Sep 1999 A
5954912 Moore Sep 1999 A
5967030 Blalock Oct 1999 A
5969805 Johnson et al. Oct 1999 A
5972715 Celentano et al. Oct 1999 A
5972792 Hudson Oct 1999 A
5976000 Hudson Nov 1999 A
5980363 Meikle et al. Nov 1999 A
5981396 Robinson et al. Nov 1999 A
5989470 Doan et al. Nov 1999 A
5994224 Sandhu et al. Nov 1999 A
5997384 Blalock Dec 1999 A
6000996 Fujiwara Dec 1999 A
6006739 Akram et al. Dec 1999 A
6007408 Sandhu Dec 1999 A
6036586 Ward Mar 2000 A
6039633 Chopra Mar 2000 A
6040111 Karasawa et al. Mar 2000 A
6040245 Sandhu et al. Mar 2000 A
6045439 Birang et al. Apr 2000 A
6046111 Robinson Apr 2000 A
6054015 Brunelli et al. Apr 2000 A
6066030 Uzoh May 2000 A
6068539 Bajaj et al. May 2000 A
6074286 Ball Jun 2000 A
6075606 Doan Jun 2000 A
6077147 Yang et al. Jun 2000 A
6083085 Lankford Jul 2000 A
6102775 Ushio et al. Aug 2000 A
6104448 Doan et al. Aug 2000 A
6106351 Raina et al. Aug 2000 A
6106662 Bibby, Jr. et al. Aug 2000 A
6108091 Pecen et al. Aug 2000 A
6108092 Sandhu Aug 2000 A
6110820 Sandhu et al. Aug 2000 A
6114706 Meikle et al. Sep 2000 A
6116988 Ball Sep 2000 A
6120354 Koos et al. Sep 2000 A
6124207 Robinson et al. Sep 2000 A
6135856 Tjaden et al. Oct 2000 A
6139402 Moore Oct 2000 A
6143123 Robinson et al. Nov 2000 A
6143155 Adams et al. Nov 2000 A
6146248 Jairath et al. Nov 2000 A
6152803 Boucher et al. Nov 2000 A
6152808 Moore Nov 2000 A
6165937 Puckett et al. Dec 2000 A
6176992 Talieh Jan 2001 B1
6179709 Redeker et al. Jan 2001 B1
6180525 Morgan Jan 2001 B1
6184571 Moore Feb 2001 B1
6186870 Wright et al. Feb 2001 B1
6187681 Moore Feb 2001 B1
6190234 Swedek et al. Feb 2001 B1
6190494 Dow Feb 2001 B1
6191037 Robinson et al. Feb 2001 B1
6191864 Sandhu Feb 2001 B1
6193588 Carlson et al. Feb 2001 B1
6200901 Hudson et al. Mar 2001 B1
6203404 Joslyn et al. Mar 2001 B1
6203407 Robinson Mar 2001 B1
6203413 Skrovan Mar 2001 B1
6206679 Walker Mar 2001 B1
6206754 Moore Mar 2001 B1
6206756 Chopra et al. Mar 2001 B1
6206759 Agarwal et al. Mar 2001 B1
6206769 Walker Mar 2001 B1
6208425 Sandhu et al. Mar 2001 B1
6210257 Carlson Apr 2001 B1
6213845 Elledge Apr 2001 B1
6218316 Marsh Apr 2001 B1
6224466 Walker et al. May 2001 B1
6227955 Custer et al. May 2001 B1
6234874 Ball May 2001 B1
6234877 Koos et al. May 2001 B1
6234878 Moore May 2001 B1
6237483 Blalock May 2001 B1
6238270 Robinson May 2001 B1
6238273 Southwick May 2001 B1
6241593 Chen et al. Jun 2001 B1
6244944 Elledge Jun 2001 B1
6247998 Wiswesser et al. Jun 2001 B1
6250994 Chopra et al. Jun 2001 B1
6251785 Wright Jun 2001 B1
6254459 Bajaj et al. Jul 2001 B1
6261151 Sandhu et al. Jul 2001 B1
6261163 Walker et al. Jul 2001 B1
6264533 Kummeth et al. Jul 2001 B1
6267650 Hembree Jul 2001 B1
6271139 Alwan et al. Aug 2001 B1
6273101 Gonzales et al. Aug 2001 B1
6273786 Chopra et al. Aug 2001 B1
6273796 Moore Aug 2001 B1
6273800 Walker et al. Aug 2001 B1
6276996 Chopra Aug 2001 B1
6284660 Doan Sep 2001 B1
6287879 Gonzales et al. Sep 2001 B1
6290572 Hofmann Sep 2001 B1
6296557 Walker Oct 2001 B1
6301006 Doan Oct 2001 B1
6306008 Moore Oct 2001 B1
6306012 Sabde Oct 2001 B1
6306014 Walker et al. Oct 2001 B1
6306768 Klein Oct 2001 B1
6309282 Wright et al. Oct 2001 B1
6312558 Moore Nov 2001 B2
6313038 Chopra et al. Nov 2001 B1
6319420 Dow Nov 2001 B1
6323046 Agarwal Nov 2001 B1
6325702 Robinson Dec 2001 B2
6328632 Chopra Dec 2001 B1
6331135 Sabde et al. Dec 2001 B1
6331139 Walker et al. Dec 2001 B2
6331488 Doan et al. Dec 2001 B1
6332831 Shemo et al. Dec 2001 B1
6338667 Sandhu et al. Jan 2002 B2
6350180 Southwick Feb 2002 B2
6350691 Lankford Feb 2002 B1
6352466 Moore Mar 2002 B1
6352470 Elledge Mar 2002 B2
6354923 Lankford Mar 2002 B1
6354930 Moore Mar 2002 B1
6358122 Sabde et al. Mar 2002 B1
6358127 Carlson et al. Mar 2002 B1
6358129 Dow Mar 2002 B2
6361417 Walker et al. Mar 2002 B2
6362105 Moore Mar 2002 B1
6364746 Moore Apr 2002 B2
6364757 Moore Apr 2002 B2
6368190 Easter et al. Apr 2002 B1
6368193 Carlson et al. Apr 2002 B1
6368194 Sharples et al. Apr 2002 B1
6368197 Elledge Apr 2002 B2
6376381 Sabde Apr 2002 B1
6383934 Sabde et al. May 2002 B1
6387289 Wright May 2002 B1
6395130 Adams et al. May 2002 B1
6395620 Pan et al. May 2002 B1
6402884 Robinson et al. Jun 2002 B1
6425801 Takeishi et al. Jul 2002 B1
6426232 Litvak Jul 2002 B1
6428386 Bartlett Aug 2002 B1
6447369 Moore Sep 2002 B1
6498101 Wang Dec 2002 B1
6511576 Klein Jan 2003 B2
6520834 Marshall Feb 2003 B1
6524164 Tolles Feb 2003 B1
6533893 Sabde et al. Mar 2003 B2
6537133 Birang et al. Mar 2003 B1
6537144 Tsai et al. Mar 2003 B1
6547640 Hofmann Apr 2003 B2
6548407 Chopra et al. Apr 2003 B1
6579799 Chopra et al. Jun 2003 B2
6592443 Kramer et al. Jul 2003 B1
6609947 Moore Aug 2003 B1
6609952 Simon Aug 2003 B1
6612901 Agarwal Sep 2003 B1
6621584 Pecen et al. Sep 2003 B2
6623329 Moore Sep 2003 B1
6628410 Doan Sep 2003 B2
6629874 Halley Oct 2003 B1
6633084 Sandhu et al. Oct 2003 B1
6652764 Blalock Nov 2003 B1
6666749 Taylor Dec 2003 B2
6813824 Hasegawa et al. Nov 2004 B2
6876454 Birang et al. Apr 2005 B1
20010012539 Bernard et al. Aug 2001 A1
20040012795 Moore Jan 2004 A1
20040014396 Elledge Jan 2004 A1
20040029490 Agarwal Feb 2004 A1
Foreign Referenced Citations (4)
Number Date Country
0 623 423 Nov 1994 EP
02004363229 Dec 2004 JP
WO 0104221 Jan 2001 WO
WO 0164430 Sep 2001 WO
Related Publications (1)
Number Date Country
20050090105 A1 Apr 2005 US
Divisions (1)
Number Date Country
Parent 10199734 Jul 2002 US
Child 10978893 US