Methods and systems for trimming circuits

Information

  • Patent Grant
  • 8921733
  • Patent Number
    8,921,733
  • Date Filed
    Friday, April 13, 2012
    12 years ago
  • Date Issued
    Tuesday, December 30, 2014
    10 years ago
Abstract
Removing material from the surface of a first circuit comprises generating a first laser pulse using a pulse generator; targeting a spot on the first circuit using a focusing component; delivering the first laser pulse to the spot on the first circuit, the first circuit including a digital component; ablating material from the spot using the first laser pulse without changing a state of the digital component; testing performance of the first circuit, the testing being performed without reinitializing the circuit between the steps of ablating material and testing performance. Targeting the spot on the first circuit comprises generating a second laser pulse using a pulse generator; delivering a second laser pulse to a sacrificial piece of material; detecting the position of the ablation caused by the second laser pulse with a vision system that forms an image; and using this image to guide the first laser to the spot.
Description
BACKGROUND

1. Technical Field


The present invention relates in general to the field of circuit manufacturing and, more particularly, circuit manufacture using optical lasers.


2. Related Art


Circuit manufacture sometimes requires that a circuit be trimmed to meet certain specifications. Circuit trimming includes the removal of excess material from a circuit so that the circuit can perform more optimally. Trimming is sometimes accomplished using laser ablation. Laser ablation removes material from a spot by vaporizing the material at the spot using a laser beam.


Established techniques of circuit trimming include the use of q-switched lasers to produce laser pulses. A q-switched laser typically generates laser pulses having a duration of several nanoseconds and a repetition rate from a few hertz to approximately a few kilohertz.


A problem with trimming techniques of the prior art is a risk of thermal and/or photoelectric effects to material around the ablated spot. These effects may result in disturbances to the operation of the circuit being trimmed, particularly when the circuits include digital components. The possibility of these disturbances typically requires that digital circuits be reset after each ablation step to allow for accurate testing of circuit performance. Resetting of the circuit requires a time-consuming reinitialization of the circuit between each ablation step. For example, when the trimming disrupts a logic state required for testing of a digital circuit, it may be that signals must be sent to the digital circuit in order to bring it back to the required logic state. Because circuits may need to be trimmed and tested multiple times to optimize the total trimming, the times required for one or more reinitializations can significantly slow down the trimming process. Having to reinitialize the circuit may also adversely affect precision of the trimming process because there is an incentive to use fewer ablation steps, requiring fewer reinitializations, in order to complete trimming within a reasonable time. There is, therefore, a need for methods and systems of trimming circuits that allow for circuit testing without requiring that the circuit be reinitialized.


SUMMARY OF THE INVENTION

The methods and systems of the present invention remove material from a circuit by delivering laser pulses to a spot within the material to be ablated. In various embodiments, the laser pulses are of near-infrared wavelength and/or configured to ablate material from the spot with minimal temperature and/or photoelectric disturbance. This minimal disturbance may allow for trimming and testing of the circuit without reinitializing (e.g., resetting) the circuit. Various embodiments further include sensing the composition of ablated material and adjustment of the laser pulses to more optimally trim the circuit in response to this composition. Some embodiments include a targeting or focusing component configured to improve the precision of circuit trimming. The circuit trimmed may include digital and/or analog components.


Various embodiments include a method of ablating material from a plurality of circuits by delivering, in parallel, optical laser pulses of near-infrared wavelength to a plurality of circuits to be trimmed. The parallel trimming of multiple circuits includes ablating a spot on each circuit, testing each circuit, and if necessary, ablating each circuit again. Parallel trimming includes the performance of these steps concurrently on multiple circuits. In some embodiments, a train of laser pulses from a single source is divided up into several pulse trains, each of which is directed at a different member of a plurality of circuits being trimmed in parallel.


Various embodiments comprise a system for circuit trimming including a laser device, configured to produce and deliver optical laser pulses of near-infrared wavelength toward a spot on a circuit, and a testing component configured to monitor performance of the circuit. Some embodiments of the system are configured to adjust parameters of the laser pulses based on instructions received from a user directly, or based on instructions generated responsive to, for example, a composition of the material at the spot. For example, an optional composition analysis component is configured to determine the ablation threshold of the material being ablated and generate instructions to adjust the parameters of the laser pulses accordingly. The composition of the material may be inputted by a user, or the composition may be identified by a composition sensor.


Various embodiments of the invention include a method of removing material from the surface of a first circuit comprising generating a first laser pulse using a pulse generator, targeting a spot on the first circuit using a focusing component, delivering the first laser pulse to the spot on the first circuit, the first circuit including a digital component, ablating material from the spot using the first laser pulse without changing a state of the digital component, and testing performance of the first circuit following the step of ablating material, the testing being performed without reinitializing the circuit between the steps of ablating material and testing performance.


Various embodiments of the invention include a method of removing material from the surface of a plurality of circuits comprising generating laser pulses using a pulse generator, targeting at least one spot on each of the plurality of circuits using a focusing component, delivering the laser pulses to the at least one spot on each of the plurality of circuits, ablating material from the at least one spot on each of the plurality of circuits using the laser pulses, testing performance of each of the plurality of circuits by measuring an indicative property of the performance of each of the plurality of circuits without resetting each of the plurality of circuits between the steps of ablating material and testing performance, and repeating the steps of ablating material and testing performance on each of the plurality of circuits in parallel.


Various embodiments of the invention include a system for trimming a circuit, comprising a pulse generator configured to produce laser pulses having a) a wavelength greater than 1100 nanometers and a duration of less than 10 picoseconds, or b) a wavelength of greater than 1350 nanometers, a delivery component configured to deliver the laser pulses to a spot on a surface of the circuit to remove material from the circuit, a testing component configured to test an indicative property of performance of the circuit following the material removal without reinitializing the circuit between the material removal and the test.


Various embodiments of the invention include a set of digital electronic circuits trimmed to a precision of at least one part in fifty using one of the methods described herein.


In some embodiments, a method of removing material from the surface of a first circuit may comprise generating a first laser pulse using a pulse generator; targeting a spot on the first circuit using a focusing component; delivering the first laser pulse to the spot on the first circuit, the first circuit including a digital component; ablating material from the spot using the first laser pulse without changing a state of the digital component; and testing performance of the first circuit following the step of ablating material, the testing being performed without reinitializing the circuit between the steps of ablating material and testing performance. Targeting the spot on the first circuit may comprise generating a second laser pulse using a pulse generator; delivering a second laser pulse to a sacrificial piece of material; detecting the position of the ablation caused by the second laser pulse with a vision system that forms an image; and using this image to guide the first laser to the spot.


In further embodiments, a method of removing material from the surface of a first circuit comprises generating a first laser pulse using a pulse generator; targeting a spot on the first circuit using a focusing component; delivering the first laser pulse to the spot on the first circuit, the first circuit including a digital component; ablating material from the spot using the first laser pulse without changing a state of the digital component; and testing performance of the first circuit following the step of ablating material, the testing being performed without reinitializing the circuit between the steps of ablating material and testing performance. Targeting the spot on the first circuit comprises generating a second laser pulse using a pulse generator; delivering a second laser pulse to a sacrificial piece of material; aligning a visible alignment beam to identify the location of the ablation caused by the second laser pulse; and using the alignment beam to guide the first laser to the spot.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph depicting the responsivity of silicon to light of different wavelengths.



FIG. 2 is block diagram illustrating various embodiments of a circuit trimming system.



FIG. 3 is a flowchart depicting various embodiments of a method of operation of an exemplary circuit trimming system.





DETAILED DESCRIPTION OF THE INVENTION

The present invention includes methods of and systems for circuit manufacturing. Some embodiments include the use of sub-nanosecond laser pulses of near-infrared wavelength to trim a circuit by ablating material from the circuit and testing performance of the circuit after ablation without resetting (e.g., reinitializing) the circuit between the ablation and the testing. The laser pulses can be configured in terms of wavelength, power, duration, repetition rate, and/or the like, such that more optimal ablation of the material from the circuit occurs.


Circuits, analog and/or digital, may be composed of various materials, including silicon and silicon-based materials. FIG. 1 is a graph depicting the responsivity of silicon to light of different wavelengths. As illustrated, silicon is generally responsive to light with wavelengths ranging from about 100 nanometers to about 1100 nanometers. For light wavelengths falling out of this range, there is minimal absorption by silicon. Those wavelengths that experience minimal absorption by silicon and/or silicon-based material are considered “invisible” to the material. The invisible wavelengths that fall above 1100 nanometers include wavelengths within the “near-infrared” region of the electromagnetic spectrum. For example, laser pulses in the near-infrared wavelength, such as 1300 nanometers, are invisible to silicon and therefore, produce minimal thermoelectric or photoelectric effect in silicon and some silicon-based materials.


Compared to q-switched laser pulses, sub-nanosecond laser pulses can be configure to ablate material with fewer thermal effects. Because the photon energy within a laser pulse of less than approximately 10 picoseconds is delivered in a shorter period of time, the material absorbing the energy is ablated before the delivered energy can be thermally transferred to other parts of the circuit.



FIG. 2 is block diagram illustrating various embodiments of a circuit trimming system 200, according to various embodiments of the present invention. Circuit Trimming System 200 is configured to trim a circuit by generating laser pulses to ablate material from a spot on the circuit, delivering the pulses to the spot, and testing circuit performance to determine whether further ablation is required. In some embodiments, this process can be repeated without disrupting the operation of the circuit, and thus, the circuit need not be reinitialized before subsequent ablation and testing.


Circuit Trimming System 200 includes a Pulse Generator 210, an optional Input 220, an optional Controller 230, a Focus Component 240, a Delivery Component 250, Train Separation Component 255, and a Testing Component 260. The Circuit Trimming System 200 may further include a Composition Database 270, a Data Analyzer 280, and a Composition Sensor 290, configured to adjust laser ablation based on a composition of the material ablated.


Pulse Generator 210 is configured to generate optical laser pulses of near-infrared wavelength. In various embodiments, generating laser pulses using Pulse Generator 210 includes mode-locking, chirping, amplifying, compressing, and/or the like. Modelocking produces a train (e.g., pulse train or series of pulses) of laser pulses including pulse widths on the order of picoseconds, or femtoseconds. Chirping stretches a laser pulse temporally, increasing the pulse duration by several orders of magnitude. For example, a pulse can be stretched from a duration of under 1 picosecond to approximately 1 nanosecond, which is a change of three orders of magnitude (1000 times). This decreases the pulse peak power by the same factor such that the total power contained in the pulse remains approximately constant. A stretched pulse may be amplified to increase the energy of the pulse, and subsequently compressed to produce an amplified sub-nanosecond pulse. In various embodiments, Pulse Generator 210 is configured to generate laser pulses less than 1 nanosecond, 100 picoseconds, 50 picoseconds, 25 picoseconds, 10 picoseconds, 1 picosecond, or 0.5 picoseconds in width. In various embodiments, the laser pulses produced by the Pulse Generator 210 have a wavelengths of at least 1100 nanometers (nm), 1200 nm, 1300 nm, 1350 nm, 1400 nm, 1500 nm, 1550 nm, 1600 nm, or 2000 nm.


In some embodiments, Pulse Generator 210 includes one or more optical fiber configured for amplification, compression or delivery of optical pulses to the spot. For example, Pulse Generator 210 may include an optical fiber amplifier and/or a Bragg fiber compressor.


In various embodiments, the Pulse Generator 210 may be configured to produce laser pulses according to preset parameters. Examples of these preset parameters include the wavelength of the laser pulses, pulse duration, pulse repetition rate, pulse power, focal position, and/or the like. Some embodiments allow the instructions for achieving the preset parameters to be received by an optional Input 220. Input 220 may include a keyboard, keypad, a network device, a graphical user interface, a control panel, an electrical communication port, and/or the like. Input 220 may receive instructions regarding using such techniques as mode-locking, chirping, amplifying, compressing, and/or the like. In various embodiments, the repetition rate of the laser pulses generated using Pulse Generator 210 is at least 500 hertz, 1 kilohertz (kHz), 5 kHz, 10 kHz, 20 kHz, 50 kHz, 100 kHz, 200 kHz, 500 kHz, or 1000 kHz. In various embodiments, trimming a circuit includes generating at least 500, 1000, 2000, 5000, 10,000, 15,000, 20,000, or 50,000 laser pulses. These generated pulses are optionally used to trim more than one circuit in parallel.


From Input 220, the instructions are delivered to Controller 230, which is configured to adjust the operation of the Pulse Generator 210 responsive to the instructions. In various embodiments, the instructions may control which laser generation techniques, such as chirping, stretching, amplifying, and/or the like, are used and to what extent. Further, the instructions may be configured to select a pulse energy, a pulse repetition rate, a pulse duration, a pulse focus, an ablation spot on a circuit, and/or the like.


Controller 230 includes a computing device, personal computer, digital control device, processor, or the like, as well as logic configured to carry out instructions and otherwise control Circuit Trimming System 200. This logic may include hardware, firmware, and/or software embodied on a computer readable medium.


Focus Component 240 is configured to focus the laser pulses on a spot on a surface of a circuit containing material to be ablated. Some embodiments of Focus Component 240 allow for a user to manually focus laser pulses on the spot. For example, in various embodiments of the present invention, a user may place thin conformal material, such as a glass cover slip or semi-transparent plastic, on a circuit and deliver laser pulses of various sub-ablation power levels to a covered spot on the circuit until the spot begins to luminesce or fluoresce, as detected by a spectrograph, photo detector, or the like. The luminescence or fluorescence may then be used to manually guide the laser pulses into the spot having the material to be ablated. Some embodiments of Focus Component 240 are configured to automatically locate a spot including material to be ablated. In these embodiments, the circuit and focal spot are mechanically positioned relative to each other using processor controlled positioning equipment.


Delivery Component 250 is configured to deliver laser pulses to the Focus Component 240. In various embodiments, the Delivery Component 250 uses a waveguide to guide and deliver waves of laser pulses to the spot. Examples of waveguides may include optical fibers, such as Bragg fibers or the like. In various embodiments, Focus Component 240 and Delivery Component 250 may be combined in a single component. In some embodiments, Delivery Component 250 includes a plurality of optical fibers configured to deliver light pulses to a plurality of Focus Component 240 to trim a plurality of circuits in parallel. In some embodiments, Delivery Component 250 includes an optical fiber configured to compress optical pulses. As such, Delivery Component 250 may be configured to both deliver and compress laser pulses.


Optional Train Separation Component 255 is configured to generate more than one train of laser pulses from the laser pulses produced within Pulse Generator 210. In some embodiments, Train Separation Component 255 includes a pulse selector. In these embodiments, the pulse selector is configured to select individual pulses for inclusion in a first, second and/or further pulse train. For example, the pulse selector may be configured to direct every other pulse into one of two alternative pulse trains. In some embodiments, Train Separation Component 255 includes a pulse splitter, such as a partial reflector. In these embodiments, Train Separation Component 255 is configured to generate more than one pulse train by directing part of each pulse to a different pulse train.


Train Separation Component 255 may be configured to receive the output of Pulse Generator 210 or may be included within Pulse Generator 210. For example, in some embodiments, Train Separation Component 255 is disposed between an amplifier and a plurality of compressors within Pulse Generator 210. As such, Train Separation Component 225 may be configured to generate trains of laser pulses prior to pulse compression. The pulse train outputs of Train Separation Component 225 are then each separately directed into one of the plurality of compressors.


If the Pulse Generator 210 generates laser pulses on the order of 10 picosecond in width or less and of near-infrared wavelength greater than 1100 nm, the ablation will typically result in significantly fewer thermal effects than would laser pulses of a nanosecond or longer. Thus, the need to reset the circuit before testing may be diminished. Testing Component 260 is configured to monitor and test the performance of the circuit in order to determine whether the performance of the circuit meets the user's standards and/or whether further trimming is necessary. Aspects of circuit performance that may be tested include signal slew rate, sample and hold times, clock frequency, speed, power, efficiency, resistance, impedance, resonance, and/or the like. In various embodiments, Testing Component 260 can monitor circuit performance either continuously or intermittently throughout the trimming process, including before, during, and/or after each ablation step.


Various embodiments are configured to of tailor the parameters of the laser pulses for use with various compositions. For example, some embodiments are configured to generate instructions based on composition of the material to be ablated. Generating instructions may include retrieving information from a Composition Database 270 including physical properties of various compositions. For example, in some embodiments the identity of a composition is used to retrieve ablation thresholds from Composition Database 270. These ablation thresholds are optionally used by a Data Analyzer 280 to generate instructions for adjusting laser pulse parameters to achieve more optimal ablation. These instructions may be delivered to and received by Input 220, which communicates them to Controller 230. Various embodiments enable a user to enter a composition's identity into Composition Database 270.


Various embodiments optionally include a Composition Sensor 290 configured to identify the composition of a material at a targeted spot and use the composition's identity to retrieve an ablation threshold from the Composition Database 270. In some embodiments, Composition Sensor 290 includes an emission spectrometer configured to identify the composition of a material. Various embodiments include controlling ablation based on spectroscopic analysis of ablated material. This may be done by generating and delivering an initial optical pulse to a surface, causing particles of material to be emitted through ablation. These particles may be analyzed to at least partially determine the material's composition and, using the analysis of material composition, to adjust pulse energy and/or stop ablation. In some embodiments, Composition Sensor 290 includes a Laser Induced Breakdown Spectrometer (LIBS). In other embodiments, Composition Sensor 290 includes luminescence, fluorescence mass analysis, and/or atomic adsorption analysis of material being ablated.


Because different materials may be responsive to different wavelengths and may have different ablation thresholds, different wavelengths and pulse energies can be used to selectively ablate different parts of circuits composed of multiple materials. For example, ablation can be controlled by sensing a material included in a stop-indication layer or by sensing a difference in composition occurring on the surface of, or within the circuit. A stop-indication layer has a different composition than the material to be ablated. In various embodiments, a laser can be configured to ablate material at a spot until the stop-indication layer is exposed and identified. Further, knowing the ablation thresholds of the materials in a circuit can allow for adjustment of the parameters of the laser pulses so that only a targeted material is ablated from the circuit.



FIG. 3 is a flowchart depicting various embodiments of a method of operation of an exemplary circuit trimming system. In this method, laser pulses of near-infrared wavelength are generated and aimed at a spot on a circuit. The laser pulses are then delivered to the spot, to ablate material from the spot. As the material is ablated, the performance of the circuit can be monitored and tested to determine whether performance meets specifications or whether further trimming is required.


More specifically, in Generate Laser Pulses Step 310, a laser device generates optical laser pulses of near-infrared wavelength, using Pulse Generator 210. The generation of laser pulses may occur automatically according to preset parameters, or laser pulse generation may optionally follow instructions received through Input 220 and carried out by Controller 230. For example, the laser device may be programmed for trimming silicon circuits. In such a case, optimal ablation can be achieved with the laser pulses having a set of known parameters. Further, the optimal settings to produce such laser pulses may already have been preset by a manufacturer or user.


Generate Laser Pulses Step 310 optionally includes using Train Separation Component 255 to generate more than one pulse train.


In a Target Spot Step 320, the laser device is targeted to a spot on a circuit containing the material to be removed. Various embodiments include allowing a user to manually choose the spot. Some embodiments of the present invention are configured to automatically determine one or more spots including material to be ablated to achieve circuit trimming. In these embodiments, Target Spot Step 320 may be automatically performed using automated positioning equipment.


In a Deliver Step 330, the Delivery Component 250 is used to deliver an optical laser pulse to the spot targeted in Target Spot Step 320. When the power of the laser pulses rises to or above the material's ablation threshold, the material at the spot is ablated. In various embodiments, a single component can perform Target Spot Step 320 and Deliver Step 330. In some embodiments, a plurality of Delivery Components 250 are used to deliver a plurality of laser pulses to different circuits for trimming in parallel, in Deliver Step 330. For example, one embodiments includes delivering a first of at least two pulse trains to a first circuit of the plurality of circuits and delivering a second of the at least two pulse trains to a second circuit of the plurality of circuits.


In an Ablate Material Step 340, material is removed from the spot using the laser pulses delivered to the spot in Deliver Step 330. In various embodiments, Ablate Material Step 340 includes adjustment of laser parameters, either individually or in combination, to produce specific ablation effects on material at a spot on a circuit.


For example, by setting the pulse intensity so that only the brightest part of the laser pulse is above the ablation threshold, the precision of material removal can exceed that of a diffraction limited laser focus. As such, the area of the material ablated may be smaller than the diffraction limited focal spot of the laser. In various embodiments a material ablation area is smaller than ¾, ⅔, ½, ⅓, and ¼ of the diffraction limited focal spot. Trimming, optionally using sub-diffraction limited areas, may include generating at least 500, 1000, 2000, 5000, 10,000, 15,000, 20,000, or 50,000 laser pulses to trim a circuit. In various embodiments, using such numbers of laser pulses, each pulse configured to ablate a relatively small amount of material, results in trimming precision of at least 1 part in 20, 50, 100, 250, 500, 1000, and/or 5000.


In various embodiments, Circuit Trimming System 200 is configured to generate laser pulses at repetition rates above 0.5 kHz, such repetition rates allow for practical trimming of circuits in parallel. These circuits may be fabricated from a single wafer or from a plurality of wafers. Rather than trimming each circuit consecutively (e.g., one after another), parallel trimming allows for multiple circuits to be trimmed concurrently. For example, in one approach, a spot on each of a plurality of circuits is ablated in a first ablation phase, then, if needed, material is again ablated from each of the plurality of circuits in a second ablation phase. The first ablation phase and the second ablation phase being separate in time. Parallel trimming can include, but does not require, simultaneous ablation of each circuit. Various embodiments apply the method of the present invention to multiple circuits in parallel. For example, various embodiments may include trimming at least 2, 8, 16, 32, 128, 256 or more circuits in parallel. In various embodiments, 30, 40, 50, 60, 70, 80, 90, 100, and/or 200 circuits may be trimmed per minute. Circuits trimmed in parallel may be disposed together on a wafer.


Test Circuit Step 350 includes measuring an indicative property of a performance of the circuit to determine whether circuit performance meets the user's standards or whether further trimming is necessary. In various embodiments, Test Circuit Step 250 may occur continuously or intermittently at throughout the trimming process, including before, during, and/or after each ablation. In various embodiments, trimming in parallel includes testing in parallel. Like parallel ablation, parallel testing is not necessarily simultaneous across multiple circuits. In some embodiments, parallel testing allows for each circuit to be tested between ablation phases.


In some embodiments, Focus Component 240 is configured to focus the laser pulses on a spot on a surface of a circuit containing material to be ablated. Some embodiments of Focus Component 240 allow for a user to manually focus laser pulses on the spot. For example, in various embodiments of the present invention, a user may place a sacrificial piece of material of similar dimensions as the circuit in place of the circuit and deliver laser pulses of appropriate ablative power levels, in order to mark the sacrificial material. A vision system may detect the brief emission of light from the ablation event or it may detect the resulting mark on the sacrificial material. The position of this brief emission or surface mark, in the field of view of the vision system, can then be used to manually guide the laser pulses into the spot having the material to be ablated, when the sacrificial material is replaced by a circuit containing material to be ablated.


In some embodiments, the position of the surface mark can be indicated by an aiming beam of a visible wavelength. This aiming beam can then be used to manually guide the laser pulses into the spot having material to be ablated, when the sacrificial material is replaced by a circuit containing material to be ablated.


The embodiments discussed herein are illustrative of the present invention. Therefore, while near-infrared laser pulses are discussed here by way of example, alternative embodiments may include sub-nanosecond laser pulses of other wavelengths. Further, as embodiments of the present invention are described with reference to illustrations, various modifications or adaptations of the methods and or specific structures described may become apparent to those skilled in the art. All such modifications, adaptations, or variations that rely upon the teachings of the present invention, and through which these teachings have advanced the art, are considered to be within the spirit and scope of the present invention. Hence, these descriptions and drawings should not be considered in a limiting sense, as it is understood that the present invention is in no way limited to only the embodiments illustrated.

Claims
  • 1. A method of removing material from the surface of a first circuit, the method comprising: generating a first laser pulse using a pulse generator;targeting a spot on the first circuit using a focusing component;delivering the first laser pulse to the spot on the first circuit, the first circuit including a digital component;ablating material from the spot using the first laser pulse without changing a state of the digital component by using the first laser pulse having a wavelength in a near-infrared region and a duration equal or shorter than sub-nanosecond; andtesting performance of the first circuit following the step of ablating material, the testing being performed without reinitializing the circuit between the steps of ablating material and testing performance,targeting the spot on the first circuit comprises: generating a second laser pulse using a pulse generator;delivering a second laser pulse to a sacrificial piece of material;detecting the position of the ablation caused by the second laser pulse with a vision system that forms an image; andusing this image to guide the first laser to the spot.
  • 2. The method of claim 1, further comprising sensing a composition of the material ablated from the spot.
  • 3. The method of claim 1, wherein the first laser pulse has a wavelength greater than 1100 nanometers and a duration of less than 10 picoseconds.
  • 4. The method of claim 1, wherein the first laser pulse has a wavelength greater than 1350 nanometers.
  • 5. The method of claim 1, wherein the first laser pulse is delivered as a member of a train of pulses having a repetition rate of at least 1 kHz.
  • 6. The method of claim 1, wherein an area from which the material is ablated has a diameter less than a diameter of a diffraction limited focal spot of the first laser pulse.
  • 7. The method of claim 1, wherein ablating the material comprises generating at least 5000 laser pulses including the first laser pulse.
  • 8. The method of claim 1, wherein ablating the material comprises generating at least 500 laser pulses.
  • 9. The method of claim 1, further comprising ablating material from another spot in parallel with the step of ablating material from the spot.
  • 10. The method of claim 1, further including generating a second laser pulse and using the second laser pulse to trim a second circuit in parallel with the first circuit.
  • 11. The method of claim 1, further including ablating material from a second circuit using a second laser pulse and testing performance of the second circuit, in parallel with ablating material from the spot using the first laser pulse and testing performance of the first circuit.
  • 12. The method of claim 1, wherein the step of generating a first laser pulse includes compressing the first laser pulse using an optical fiber.
  • 13. The method of claim 1, wherein the step of generating a first laser pulse includes amplifying the first laser pulse using an optical fiber.
  • 14. A method of removing material from the surface of a first circuit, the method comprising: generating a first laser pulse using a pulse generator;targeting a spot on the first circuit using a focusing component;delivering the first laser pulse to the spot on the first circuit, the first circuit including a digital component;ablating material from the spot using the first laser pulse without changing a state of the digital component by using the first laser pulse having a wavelength in a near-infrared region and a duration equal or shorter than sub-nanosecond; andtesting performance of the first circuit following the step of ablating material, the testing being performed without reinitializing the circuit between the steps of ablating material and testing performance,targeting the spot on the first circuit comprises: generating a second laser pulse using a pulse generator;delivering a second laser pulse to a sacrificial piece of material;aligning a visible alignment beam to identify the location of the ablation caused by the second laser pulse; andusing the alignment beam to guide the first laser to the spot.
  • 15. The method of claim 14, further comprising sensing a composition of the material ablated from the spot.
  • 16. The method of claim 14, wherein the first laser pulse has a wavelength greater than 1100 nanometers and a duration of less than 10 picoseconds.
  • 17. The method of claim 14, wherein the first laser pulse has a wavelength greater than 1350 nanometers.
  • 18. The method of claim 14, wherein the first laser pulse is delivered as a member of a train of pulses having a repetition rate of at least 1 kHz.
  • 19. The method of claim 14, wherein an area from which the material is ablated has a diameter less than a diameter of a diffraction limited focal spot of the first laser pulse.
  • 20. The method of claim 14, wherein ablating the material comprises generating at least 5000 laser pulses including the first laser pulse.
  • 21. The method of claim 14, wherein ablating the material comprises generating at least 500 laser pulses.
  • 22. The method of claim 14, further comprising ablating material from another spot in parallel with the step of ablating material from the spot.
  • 23. The method of claim 14, further including generating a second laser pulse and using the second laser pulse to trim a second circuit in parallel with the first circuit.
  • 24. The method of claim 14, further including ablating material from a second circuit using a second laser pulse and testing performance of the second circuit, in parallel with ablating material from the spot using the first laser pulse and testing performance of the first circuit.
  • 25. The method of claim 14, wherein the step of generating a first laser pulse includes compressing the first laser pulse using an optical fiber.
  • 26. The method of claim 14, wherein the step of generating a first laser pulse includes amplifying the first laser pulse using an optical fiber.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a continuation-in-part of and claims the priority benefit of U.S. patent application Ser. No. 11/538,048, filed Oct. 2, 2006 and entitled “Methods and Systems for Trimming Circuits,” which is a continuation-in-part of and claims the priority benefit of U.S. patent application Ser. No. 10/957,271, filed on Oct. 1, 2004, entitled “Semiconductor Manufacturing Using Optical Ablation,” which, in turn, claims the benefit and priority of U.S. provisional patent application Ser. No. 60/508,136, filed Oct. 2, 2003, “Semiconductor Manufacturing Using Optical Ablation”; and is a continuation-in-part of and claims the priority benefit of U.S. patent application Ser. No. 10/916,366, filed on Aug. 11, 2004, entitled “Optical Ablation Using Material Composition Analysis,” which, in turn, claims the benefit and priority of U.S. Provisional Patent Applications: Ser. No. 60/494,102, filed Aug. 11, 2003, “Controlling Repetition Rate Of Fiber Amplifier”; Ser. No. 60/494,275, filed Aug. 11, 2003, “Controlling Pulse Energy Of A Fiber Amplifier By Controlling Pump Diode Current”; Ser. No. 60/494,274, filed Aug. 11, 2003, “Pulse Energy Adjustment For Changes In Ablation Spot Size”; Ser. No. 60/503,578, filed Sep. 17, 2003, “Controlling Optically-Pumped Optical Pulse Amplifiers”; and Ser. No. 60/512,807, filed Oct. 20, 2003, “Material Composition Analysis Using Optical Ablation.” All of the above applications are hereby incorporated herein by reference.

US Referenced Citations (493)
Number Name Date Kind
3549256 Brienza et al. Dec 1970 A
3602836 Young Aug 1971 A
3622907 Tomlinson et al. Nov 1971 A
3628179 Cuff Dec 1971 A
3631362 Almasi Dec 1971 A
3654624 Becker et al. Apr 1972 A
3696308 Duffy et al. Oct 1972 A
3735282 Gans May 1973 A
3764641 Ash Oct 1973 A
3808549 Maurer Apr 1974 A
3851267 Tanner Nov 1974 A
3942127 Fluhr et al. Mar 1976 A
3963953 Thornton, Jr. Jun 1976 A
4194813 Benjamin et al. Mar 1980 A
4389617 Kurnit Jun 1983 A
4394623 Kurnit Jul 1983 A
4449215 Reno May 1984 A
4590598 O'Harra, II May 1986 A
4622095 Grobman et al. Nov 1986 A
4655547 Heritage et al. Apr 1987 A
4673795 Ortiz, Jr. Jun 1987 A
4718418 L'Esperance, Jr. Jan 1988 A
4722591 Haffner Feb 1988 A
4743769 Schwaiger et al. May 1988 A
4750809 Kafka et al. Jun 1988 A
4815079 Snitzer et al. Mar 1989 A
4824598 Stokowski Apr 1989 A
4829529 Kafka May 1989 A
4849036 Powell et al. Jul 1989 A
4878127 Zollman et al. Oct 1989 A
4907586 Bille et al. Mar 1990 A
4913520 Kafka Apr 1990 A
4915757 Rando Apr 1990 A
4928316 Heritage et al. May 1990 A
4972423 Alfano et al. Nov 1990 A
4983034 Spillman, Jr. Jan 1991 A
4988348 Bille Jan 1991 A
4994059 Kosa et al. Feb 1991 A
5010555 Madey et al. Apr 1991 A
5014290 Moore et al. May 1991 A
5022042 Bradley Jun 1991 A
5043991 Bradley Aug 1991 A
5053171 Portney et al. Oct 1991 A
5095487 Meyerhofer et al. Mar 1992 A
5098426 Sklar et al. Mar 1992 A
5122439 Miersch et al. Jun 1992 A
5132996 Moore et al. Jul 1992 A
5146088 Kingham et al. Sep 1992 A
5162643 Currie Nov 1992 A
5166818 Chase et al. Nov 1992 A
5187759 DiGiovanni et al. Feb 1993 A
5194713 Egitto et al. Mar 1993 A
5217003 Wilk Jun 1993 A
5233182 Szabo et al. Aug 1993 A
5237576 DiGiovanni et al. Aug 1993 A
5255117 Cushman Oct 1993 A
5257273 Farries et al. Oct 1993 A
5265107 Delfyett, Jr. Nov 1993 A
5265114 Sun et al. Nov 1993 A
5267077 Blonder Nov 1993 A
5278853 Shirai et al. Jan 1994 A
5286947 Clyde et al. Feb 1994 A
5291501 Hanna Mar 1994 A
5293186 Seden et al. Mar 1994 A
5302835 Bendett et al. Apr 1994 A
5313262 Leonard May 1994 A
5315431 Masuda et al. May 1994 A
5315436 Lowenhar et al. May 1994 A
5329398 Lai et al. Jul 1994 A
5331131 Opdyke Jul 1994 A
5367143 White, Jr. Nov 1994 A
5400350 Galvanauskas Mar 1995 A
5409376 Murphy Apr 1995 A
5411918 Keible et al. May 1995 A
5414725 Fermann et al. May 1995 A
5418809 August, Jr. et al. May 1995 A
5430572 DiGiovanni et al. Jul 1995 A
5440573 Fermann Aug 1995 A
5446813 Lee et al. Aug 1995 A
5450427 Fermann et al. Sep 1995 A
5479422 Fermann et al. Dec 1995 A
5489984 Hariharan et al. Feb 1996 A
5499134 Galvanauskas et al. Mar 1996 A
5520679 Lin May 1996 A
5533139 Parker et al. Jul 1996 A
5548098 Sugawara et al. Aug 1996 A
5572358 Gabl et al. Nov 1996 A
5590142 Shan Dec 1996 A
5592327 Gabl et al. Jan 1997 A
5596668 DiGiovanni et al. Jan 1997 A
5602673 Swan Feb 1997 A
5602677 Tournois Feb 1997 A
5615043 Plaessmann et al. Mar 1997 A
5617434 Tamura et al. Apr 1997 A
5624587 Otsuki et al. Apr 1997 A
5625544 Kowshik et al. Apr 1997 A
5627848 Fermann et al. May 1997 A
5631771 Swan May 1997 A
5633885 Galvanauskas et al. May 1997 A
5642447 Pan et al. Jun 1997 A
5644424 Backus et al. Jul 1997 A
5651018 Mehuys et al. Jul 1997 A
5656186 Mourou et al. Aug 1997 A
5657153 Endriz et al. Aug 1997 A
5661829 Zheng Aug 1997 A
5666722 Tamm et al. Sep 1997 A
5670067 Koide et al. Sep 1997 A
5677769 Bendett Oct 1997 A
5681490 Chang Oct 1997 A
5689361 Damen et al. Nov 1997 A
5689519 Fermann et al. Nov 1997 A
5694501 Alavie et al. Dec 1997 A
5696782 Harter et al. Dec 1997 A
5701319 Fermann Dec 1997 A
5708669 DiGiovanni et al. Jan 1998 A
5720894 Neev et al. Feb 1998 A
5726855 Mourou et al. Mar 1998 A
5734762 Ho et al. Mar 1998 A
5736709 Neiheisel Apr 1998 A
5771253 Chang-Hasnain et al. Jun 1998 A
5778016 Sucha et al. Jul 1998 A
5781289 Sabsabi et al. Jul 1998 A
5786117 Hoshi et al. Jul 1998 A
5788688 Bauer et al. Aug 1998 A
5790574 Rieger et al. Aug 1998 A
5815519 Aoshima et al. Sep 1998 A
5818630 Fermann et al. Oct 1998 A
5822097 Tournois Oct 1998 A
5841099 Owen et al. Nov 1998 A
5844149 Akiyoshi et al. Dec 1998 A
5847825 Alexander Dec 1998 A
5847863 Galvanauskas et al. Dec 1998 A
5862287 Stock et al. Jan 1999 A
5862845 Chin et al. Jan 1999 A
5867304 Galvanauskas et al. Feb 1999 A
5875408 Bendett et al. Feb 1999 A
5880877 Fermann et al. Mar 1999 A
5898485 Nati, Jr. Apr 1999 A
5903662 DeCarlo May 1999 A
5907157 Yoshioka et al. May 1999 A
5920668 Uehara et al. Jul 1999 A
5923686 Fermann et al. Jul 1999 A
5933271 Waarts et al. Aug 1999 A
5994667 Merdan et al. Nov 1999 A
5999847 Elstrom Dec 1999 A
6014249 Fermann et al. Jan 2000 A
6016452 Kasevich Jan 2000 A
6020591 Harter et al. Feb 2000 A
6034975 Harter et al. Mar 2000 A
6061373 Brockman et al. May 2000 A
6071276 Abela Jun 2000 A
6072811 Fermann et al. Jun 2000 A
6075220 Essien et al. Jun 2000 A
6081369 Waarts et al. Jun 2000 A
6088153 Anthon et al. Jul 2000 A
6099522 Knopp et al. Aug 2000 A
6120857 Balooch et al. Sep 2000 A
6122097 Weston et al. Sep 2000 A
6130780 Joannopoulos et al. Oct 2000 A
6141140 Kim Oct 2000 A
6151338 Grubb et al. Nov 2000 A
6154310 Galvanauskas et al. Nov 2000 A
6156030 Neev Dec 2000 A
6161543 Cox et al. Dec 2000 A
6168590 Neev Jan 2001 B1
6175437 Diels et al. Jan 2001 B1
6181463 Galvanauskas et al. Jan 2001 B1
6190380 Abela Feb 2001 B1
6198568 Galvanauskas et al. Mar 2001 B1
6198766 Schuppe et al. Mar 2001 B1
6201914 Duguay et al. Mar 2001 B1
6208458 Galvanauskas et al. Mar 2001 B1
6211485 Burgess Apr 2001 B1
6228748 Anderson et al. May 2001 B1
6246816 Moore et al. Jun 2001 B1
6249630 Stock et al. Jun 2001 B1
6252892 Jiang et al. Jun 2001 B1
6256328 Delfyett et al. Jul 2001 B1
6269108 Tabirian et al. Jul 2001 B1
6275250 Sanders et al. Aug 2001 B1
6275512 Fermann Aug 2001 B1
6281471 Smart Aug 2001 B1
6314115 Delfyett et al. Nov 2001 B1
6325792 Swinger et al. Dec 2001 B1
6327074 Bass et al. Dec 2001 B1
6327282 Hammons et al. Dec 2001 B2
6330383 Cai et al. Dec 2001 B1
6334011 Galvanauskas et al. Dec 2001 B1
6334017 West Dec 2001 B1
6335821 Suzuki et al. Jan 2002 B1
6340806 Smart et al. Jan 2002 B1
6344625 Kim et al. Feb 2002 B1
RE37585 Mourou et al. Mar 2002 E
6355908 Tatah et al. Mar 2002 B1
6362454 Liu Mar 2002 B1
6365869 Swain et al. Apr 2002 B1
6370171 Horn et al. Apr 2002 B1
6370422 Richards-Kortum et al. Apr 2002 B1
6371469 Gray Apr 2002 B1
6400871 Minden Jun 2002 B1
6404944 Wa et al. Jun 2002 B1
6407363 Dunsky et al. Jun 2002 B2
6418154 Kneip et al. Jul 2002 B1
6418256 Danziger et al. Jul 2002 B1
6421169 Bonnedal et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6433301 Dunsky et al. Aug 2002 B1
6433303 Liu et al. Aug 2002 B1
6433305 Liu et al. Aug 2002 B1
6433760 Vaissie et al. Aug 2002 B1
6437283 Wiggermann et al. Aug 2002 B1
6463314 Haruna Oct 2002 B1
6482199 Neev Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6486435 Beyer et al. Nov 2002 B1
6496099 Wang et al. Dec 2002 B2
6501590 Bass et al. Dec 2002 B2
6522460 Bonnedal et al. Feb 2003 B2
6526327 Kar et al. Feb 2003 B2
6541731 Mead et al. Apr 2003 B2
6549547 Galvanauskas et al. Apr 2003 B2
6552301 Herman et al. Apr 2003 B2
6555781 Ngoi et al. Apr 2003 B2
6556733 Dy et al. Apr 2003 B2
6562698 Manor May 2003 B2
6566888 Bruce et al. May 2003 B1
6567431 Tabirian et al. May 2003 B2
6570704 Palese May 2003 B2
6573813 Joannopoulos et al. Jun 2003 B1
6574024 Liu Jun 2003 B1
6574250 Sun et al. Jun 2003 B2
6580553 Kim et al. Jun 2003 B2
6583381 Duignan Jun 2003 B1
6587488 Meissner et al. Jul 2003 B1
6592574 Shimmick et al. Jul 2003 B1
6593753 Scott et al. Jul 2003 B2
6597497 Wang et al. Jul 2003 B2
6603903 Tong et al. Aug 2003 B1
6603911 Fink et al. Aug 2003 B2
6614565 Klug et al. Sep 2003 B1
6621040 Perry et al. Sep 2003 B1
6621045 Liu et al. Sep 2003 B1
6627421 Unger et al. Sep 2003 B1
6627844 Liu et al. Sep 2003 B2
6642477 Patel et al. Nov 2003 B1
6647031 Delfyett et al. Nov 2003 B2
6654161 Bass et al. Nov 2003 B2
6661568 Hollemann et al. Dec 2003 B2
6661816 Delfyett et al. Dec 2003 B2
6671298 Delfyett et al. Dec 2003 B1
6677552 Tulloch et al. Jan 2004 B1
6681079 Maroney Jan 2004 B1
6687000 White Feb 2004 B1
6695835 Furuno et al. Feb 2004 B2
6696008 Brandinger Feb 2004 B2
6697408 Kennedy et al. Feb 2004 B2
6700094 Kuntze Mar 2004 B1
6700698 Scott Mar 2004 B1
6706036 Lai Mar 2004 B2
6710288 Liu et al. Mar 2004 B2
6710293 Liu et al. Mar 2004 B2
6711334 Szkopek et al. Mar 2004 B2
6716475 Fink et al. Apr 2004 B1
6720519 Liu et al. Apr 2004 B2
6723991 Sucha et al. Apr 2004 B1
6724508 Pierce et al. Apr 2004 B2
6727458 Smart Apr 2004 B2
6728273 Perry Apr 2004 B2
6735368 Parker et al. May 2004 B2
6738144 Dogariu May 2004 B1
6744552 Scalora et al. Jun 2004 B2
6744555 Galvanauskas et al. Jun 2004 B2
6747795 Lin et al. Jun 2004 B2
6749285 Liu et al. Jun 2004 B2
6760356 Erbert et al. Jul 2004 B2
6765724 Kramer Jul 2004 B1
6774869 Biocca et al. Aug 2004 B2
6785303 Holzwarth et al. Aug 2004 B1
6785445 Kuroda et al. Aug 2004 B2
6787733 Lubatschowski et al. Sep 2004 B2
6787734 Liu Sep 2004 B2
6788864 Ahmad et al. Sep 2004 B2
6791060 Dunsky et al. Sep 2004 B2
6791071 Woo et al. Sep 2004 B2
6795461 Blair et al. Sep 2004 B1
6801550 Snell et al. Oct 2004 B1
6801557 Liu Oct 2004 B2
6803539 Liu et al. Oct 2004 B2
6804574 Liu et al. Oct 2004 B2
6807353 Fleming et al. Oct 2004 B1
6819702 Sverdlov et al. Nov 2004 B2
6819837 Li et al. Nov 2004 B2
6822187 Hermann et al. Nov 2004 B1
6822251 Arenberg et al. Nov 2004 B1
6824540 Lin Nov 2004 B1
6829517 Cheng et al. Dec 2004 B2
6834134 Brennan, III et al. Dec 2004 B2
6836703 Wang et al. Dec 2004 B2
6878900 Corkum et al. Apr 2005 B2
6882772 Lowery et al. Apr 2005 B1
6885683 Fermann et al. Apr 2005 B1
6887804 Sun et al. May 2005 B2
6897405 Cheng et al. May 2005 B2
6902561 Kurtz et al. Jun 2005 B2
6915040 Willner et al. Jul 2005 B2
6937629 Perry et al. Aug 2005 B2
6943359 Vardeny et al. Sep 2005 B2
6956680 Morbieu et al. Oct 2005 B2
6994703 Wang et al. Feb 2006 B2
6998569 Schumacher Feb 2006 B2
7001373 Clapham et al. Feb 2006 B2
7002733 Dagenais et al. Feb 2006 B2
7006730 Doerr Feb 2006 B2
7022119 Hohla Apr 2006 B2
7031571 Mihailov et al. Apr 2006 B2
7072101 Kapteyn et al. Jul 2006 B2
7088756 Fermann et al. Aug 2006 B2
7095772 Delfyett et al. Aug 2006 B1
7097640 Wang et al. Aug 2006 B2
7099549 Scheuer et al. Aug 2006 B2
7116688 Sauter et al. Oct 2006 B2
7132289 Kobayashi et al. Nov 2006 B2
7143769 Stoltz et al. Dec 2006 B2
7171074 DiGiovanni et al. Jan 2007 B2
7217266 Anderson et al. May 2007 B2
7220255 Lai May 2007 B2
7233607 Richardson et al. Jun 2007 B2
7257302 Fermann et al. Aug 2007 B2
7283242 Thornton Oct 2007 B2
7289707 Chavez-Pirson et al. Oct 2007 B1
7321605 Albert Jan 2008 B2
7321713 Akiyama et al. Jan 2008 B2
7344671 Basque et al. Mar 2008 B2
7349452 Brennan, III et al. Mar 2008 B2
7349589 Temelkuran et al. Mar 2008 B2
7361171 Stoltz et al. Apr 2008 B2
7365859 Yun et al. Apr 2008 B2
7367969 Stoltz et al. May 2008 B2
7413565 Wang et al. Aug 2008 B2
7414780 Fermann et al. Aug 2008 B2
7444049 Kim et al. Oct 2008 B1
7518788 Fermann et al. Apr 2009 B2
7584756 Zadoyan et al. Sep 2009 B2
7674719 Li et al. Mar 2010 B2
7675674 Bullington et al. Mar 2010 B2
7751118 Di Teodoro et al. Jul 2010 B1
7759607 Chism, II Jul 2010 B2
7773216 Cheng et al. Aug 2010 B2
7773294 Brunet et al. Aug 2010 B2
7787175 Brennan, III et al. Aug 2010 B1
7792408 Varming Sep 2010 B2
7943533 Mizuno May 2011 B2
7998404 Huang et al. Aug 2011 B2
RE43605 O'Brien et al. Aug 2012 E
8338746 Sun et al. Dec 2012 B2
8373090 Gale et al. Feb 2013 B2
20010009250 Herman et al. Jul 2001 A1
20010021294 Cai et al. Sep 2001 A1
20020003130 Sun et al. Jan 2002 A1
20020051606 Takushima et al. May 2002 A1
20020071454 Lin Jun 2002 A1
20020095142 Ming Jul 2002 A1
20020097761 Sucha et al. Jul 2002 A1
20020115273 Chandra et al. Aug 2002 A1
20020118934 Danziger et al. Aug 2002 A1
20020153500 Fordahl et al. Oct 2002 A1
20020167581 Cordingley et al. Nov 2002 A1
20020167974 Kennedy et al. Nov 2002 A1
20020176676 Johnson et al. Nov 2002 A1
20020186915 Yu et al. Dec 2002 A1
20030011782 Tanno Jan 2003 A1
20030031410 Schnitzer Feb 2003 A1
20030039442 Bond et al. Feb 2003 A1
20030053508 Dane et al. Mar 2003 A1
20030055413 Altshuler et al. Mar 2003 A1
20030086647 Willner et al. May 2003 A1
20030095266 Detalle et al. May 2003 A1
20030122550 Kanamaru et al. Jul 2003 A1
20030129423 Mastromatteo et al. Jul 2003 A1
20030142705 Hackel et al. Jul 2003 A1
20030156605 Richardson et al. Aug 2003 A1
20030161378 Zhang et al. Aug 2003 A1
20030178396 Naumov et al. Sep 2003 A1
20030189959 Erbert et al. Oct 2003 A1
20030202547 Fermann et al. Oct 2003 A1
20030205561 Iso Nov 2003 A1
20030214714 Zheng Nov 2003 A1
20030223689 Koch et al. Dec 2003 A1
20040000942 Kapteyn et al. Jan 2004 A1
20040022695 Simon et al. Feb 2004 A1
20040037505 Morin Feb 2004 A1
20040042061 Islam et al. Mar 2004 A1
20040069754 Bates et al. Apr 2004 A1
20040128081 Rabitz et al. Jul 2004 A1
20040134894 Gu et al. Jul 2004 A1
20040134896 Gu et al. Jul 2004 A1
20040160995 Sauter et al. Aug 2004 A1
20040226922 Flanagan Nov 2004 A1
20040226925 Gu et al. Nov 2004 A1
20040231682 Stoltz et al. Nov 2004 A1
20040233944 Dantus et al. Nov 2004 A1
20040263950 Fermann et al. Dec 2004 A1
20050008044 Fermann et al. Jan 2005 A1
20050018986 Argyros et al. Jan 2005 A1
20050030540 Thornton Feb 2005 A1
20050035097 Stoltz Feb 2005 A1
20050061779 Blumenfeld et al. Mar 2005 A1
20050065502 Stoltz Mar 2005 A1
20050067388 Sun et al. Mar 2005 A1
20050074974 Stoltz Apr 2005 A1
20050077275 Stoltz Apr 2005 A1
20050105865 Fermann et al. May 2005 A1
20050107773 Bergt et al. May 2005 A1
20050111073 Pan et al. May 2005 A1
20050111500 Harter et al. May 2005 A1
20050127049 Woeste et al. Jun 2005 A1
20050154380 DeBenedictis et al. Jul 2005 A1
20050163426 Fermann et al. Jul 2005 A1
20050167405 Stoltz et al. Aug 2005 A1
20050171516 Stoltz et al. Aug 2005 A1
20050171518 Stoltz et al. Aug 2005 A1
20050175280 Nicholson Aug 2005 A1
20050177143 Bullington et al. Aug 2005 A1
20050195726 Bullington et al. Sep 2005 A1
20050213630 Mielke et al. Sep 2005 A1
20050215985 Mielke et al. Sep 2005 A1
20050218122 Yamamoto et al. Oct 2005 A1
20050225846 Nati et al. Oct 2005 A1
20050226278 Gu et al. Oct 2005 A1
20050226287 Shah et al. Oct 2005 A1
20050232560 Knight et al. Oct 2005 A1
20050238070 Imeshev et al. Oct 2005 A1
20050259944 Anderson et al. Nov 2005 A1
20050265407 Braun et al. Dec 2005 A1
20050271094 Miller et al. Dec 2005 A1
20050271340 Weisberg et al. Dec 2005 A1
20050274702 Deshi Dec 2005 A1
20060050750 Barty Mar 2006 A1
20060056480 Mielke et al. Mar 2006 A1
20060064079 Stoltz et al. Mar 2006 A1
20060081101 Hayashi et al. Apr 2006 A1
20060084957 Delfyett et al. Apr 2006 A1
20060093012 Singh et al. May 2006 A1
20060093265 Jia et al. May 2006 A1
20060096426 Park May 2006 A1
20060096962 Park May 2006 A1
20060120418 Harter et al. Jun 2006 A1
20060126679 Brennan, III et al. Jun 2006 A1
20060128073 Sun et al. Jun 2006 A1
20060131288 Sun et al. Jun 2006 A1
20060153254 Franjic et al. Jul 2006 A1
20060159137 Shah Jul 2006 A1
20060187974 Dantus Aug 2006 A1
20060209908 Pedersen et al. Sep 2006 A1
20060210275 Vaissie et al. Sep 2006 A1
20060221449 Glebov et al. Oct 2006 A1
20060249816 Li et al. Nov 2006 A1
20060268949 Gohle et al. Nov 2006 A1
20070025728 Nakazawa et al. Feb 2007 A1
20070047965 Liu et al. Mar 2007 A1
20070064304 Brennan, III et al. Mar 2007 A1
20070098025 Hong et al. May 2007 A1
20070121686 Vaissie et al. May 2007 A1
20070151961 Kleine et al. Jul 2007 A1
20070166965 Tanaka et al. Jul 2007 A1
20070196048 Galvanauskas et al. Aug 2007 A1
20070215581 Kato et al. Sep 2007 A1
20070229939 Brown et al. Oct 2007 A1
20070273960 Fermann et al. Nov 2007 A1
20080050078 Digonnet et al. Feb 2008 A1
20080058781 Langeweyde et al. Mar 2008 A1
20080086038 Thornton Apr 2008 A1
20080232407 Harter et al. Sep 2008 A1
20080240184 Cho et al. Oct 2008 A1
20090020511 Kommera et al. Jan 2009 A1
20090045176 Wawers et al. Feb 2009 A1
20090219610 Mourou et al. Sep 2009 A1
20090244695 Marcinkevicius et al. Oct 2009 A1
20090245302 Baird et al. Oct 2009 A1
20090257464 Dantus et al. Oct 2009 A1
20090273828 Waarts et al. Nov 2009 A1
20090290151 Agrawal et al. Nov 2009 A1
20090297155 Weiner et al. Dec 2009 A1
20100013036 Carey Jan 2010 A1
20100040095 Mielke et al. Feb 2010 A1
20100072183 Park Mar 2010 A1
20100118899 Peng et al. May 2010 A1
20100142034 Wise et al. Jun 2010 A1
20100181284 Lee et al. Jul 2010 A1
20100276405 Cho et al. Nov 2010 A1
20110049765 Li et al. Mar 2011 A1
20110287607 Osako et al. Nov 2011 A1
20120152915 Srinivas et al. Jun 2012 A1
Foreign Referenced Citations (19)
Number Date Country
WO2007000194 Apr 2007 DE
0214100 Mar 1987 EP
0691563 Jan 1996 EP
1462831 Sep 2004 EP
2331038 Dec 1999 GB
405104276 Apr 1993 JP
8171103 Jul 1996 JP
11189472 Jul 1999 JP
2003181661 Jul 2003 JP
2003344883 Dec 2003 JP
2005174993 Jun 2005 JP
WO9428972 Dec 1994 WO
WO2004105100 Dec 2004 WO
WO2004114473 Dec 2004 WO
WO2005018060 Feb 2005 WO
WO2005018061 Feb 2005 WO
WO2005018062 Feb 2005 WO
WO2005018063 Feb 2005 WO
WO2007034317 Mar 2007 WO
Non-Patent Literature Citations (71)
Entry
Siegman, “Unstable Optical Resonators”, Applied Optics, Feb. 1974, pp. 353-367, vol. 13, No. 2.
Stevenson et al., Femtosecond Optical Transfection of Cells: Viability and Efficiency, Optics Express, vol. 14, No. 16, pp. 7125-7133, Aug. 7, 2006.
Stock et al., “Chirped Pulse Amplification in an Erbium-doped fiber Oscillator/Erbium-doped Fiber Amplifier System”, Optics Communications, North-Holland Publishing Co., Amsterdam, NL, vol. 106, No. 4/5/06, Mar. 15, 1994, pp. 249-252, XP000429901, ISSN: 0030-4018.
Strickland et al., “Compression of Amplified Chirped Optical Pulses”, Optics Communications, North-Holland Publishing Co., Amersterdam, NL, vol. 56, No. 3, Dec. 1, 1985, pp. 219-221, XP024444933 ISSN: 0030-4018 (retrieved on 1985-12-011.
Temelkuran, B. et al., “Wavelength-scalable Hollow Optical Fibres with Large Photonic Bandgaps for CO2 Laser Transmission,” Nature, Dec. 12, 2002, pp. 650-653.
Thurston, R.N. et al., “Analysis of Picosecond Pulse Shape Synthesis by Spectral Masking in a Grating Pulse Compressor,” IEEE Journal of Quantum Electronics, vol. EQ-22, No. 5, pp. 682-696, May 1986.
Tirlapur et al., “Targeted Transfection by Femtosecond Laser,” Nature Publishing Group, vol. 418, pp. 290-291, Jul. 18, 2002.
Tsai et al., “Ultrashort Pulsed Laser Light,” Optics & Photonics News, pp. 25-29, Jul. 2004.
Vaissie et al., “Desktop Ultra-Short Pulse Laser at 1552 nm,”Ultrashort Pulse Laser Materials Interaction Workshop (Raydiance)—Directed Energy Professional Society (DEPS), Sep. 28, 2006.
Weiner, A.M. et al., “Synthesis of Phase-coherent, Picosecond Optical Square Pulses,” Optics Letters, vol. 11, No. 3, pp. 153-155, Mar. 1986.
Weiner, A.M., “Femtosecond Optical Pulse Shaping and Processing,” Prog. Quant. Electr. 1995, vol. 19, pp. 161-237, 1995.
Weiner, A.M., “High-resolution femtosecond Pulse Shaping,” Journal of the Optical Society of America B. vol. 5, No. 8, pp. 1563-1572, Aug. 1988.
Wells, D.J., “Gene Therapy Progress and Prospects: electroporation and Other Physical Methods,” Gene Therapy, Nature Publishing Group, vol. 11, pp. 1363-1369, Aug. 5, 2004, (http://www.nature.com/gt).
White, W.E., et al., “Compensation of Higher-order Frequency-dependent Phase Terms in Chirped-pulse Amplification Systems,” Optics Letters, vol. 18, No. 16, pp. 1343-1345, Aug. 15, 1993.
Yamakawa et al., “1 Hz, 1 ps, terawatt Nd: glass laser”, Optics Communications, North-Holland Publishing Co. Amsterdam, NL, vol. 112, No. 1-2, Nov. 1, 1994, pp. 37-42, XP024424285.
Yan et al., Ultrashort Pulse Measurement Using Interferometric Autocorrelator Based on Two-photon-absorbtion Detector at 1.55 μm Wavelength Region., 2005, Proceedings of SPIE vol. 5633, Advanced Materials and Devices for Sensing and Imaging II, pp. 424-429.
Yeh, et al. “Theory of Bragg Fiber”, Journal of the Optical Society America, Sep. 1978, pp. 1196, vol. 68, No. 9., pp. 1196-1201.
Yi, Y. et al., “Sharp Bending of On-Chip silicon Bragg Cladding Waveguide With Light Guiding on Low Index Core Materials”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, No. 6, Nov./Dec. 2006, pp. 1345-1348.
Yi, Y., et al., “On-chip Si-based Bragg Cladding Waveguide with High Index Contrast Bilayers”, Optics Express, vol. 12, No. 20, Oct. 4, 2004, pp. 4775-4780.
Yin, D. et al., “Integrated ARROW Waveguides with Hollow Cores”, Optics Express, vol. 12, No. 12, Jun. 14, 2004, pp. 2710-2715.
Zhou, S. et al., “Compensation of nonlinear Phase Shifts with Third-order Dispersion in Short-pulse Fiber Amplifiers,” Optics Express, vol. 13, No. 13, pp. 4869-2877, Jun. 27, 2005.
Agostinelli, J. et al., “Optical Pulse Shaping with a Grating Pair,” Applied Optics, vol. 18, No. 14, pp. 2500-2504, Jul. 15, 1979.
Anastassiou et al., “Photonic Bandgap Fibers Exploiting Omnidirectional Reflectivity Enable Flexible Delivery of Infrared Lasers for Tissue Cutting,” Proceedings of the SPIE—the International Society for Optical Engineering, SPIE, US, vol. 5317, No. 1, Jan. 1, 2004, pp. 29-38, XP002425586 ISSN: 0277-786X.
Benoit, G. et al., “Dynamic All-optical Tuning of Transverse Resonant Cavity Modes in Photonic Bandgap Fibers,” Optics Letters, vol. 30, No. 13, Jul. 1, 2005, pp. 1620-1622.
Chen, L. et al., “Ultrashort Optical Pulse Interaction with Fibre Gratings and Device Applications,” 1997, Canaga, located at http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29402.pfd.
Chen, X. et al., “Highly Birefringent Hollow-core Photonic Bandgap Fiber,” Optics Express, vol. 12, No. 16, Aug. 9, 2004, pp. 3888-3893.
Chen, Y. et al., “Dispersion-Managed Mode Locking”, Journal of the Optical Society of America B, Nov. 1999, pp. 1999-2004, vol. 16, No. 11, Optical Society of America.
Dasgupta, S. et al., “Design of Dispersion-Compensating Bragg Fiber with an Ultrahigh Figure of Merit,” Optics Letters, Aug. 1, 2005, vol. 30, No. 15, Optical Society of America.
De Matos et al., “Multi-kilowatt, Picosecond Pulses from an All-fiber Chirped Pulse Amplification System Using Air-core Photonic Bandgalp Fiber”, Lasers and Electro-optics, 2004, (CLEO), Conference on San Francisco, CA USA, May 20-21, 2004, Piscataway, NJ, USA, IEEE, vol. May 17, 2004, pp. 973-974, XP010745448 ISBN: 978-1-55752-777-6.
De Matos, C.J.S. et al., “All-fiber Chirped Pulse Amplification using Highly-dispersive Air-core Photonic Bandgap Fiber,” Nov. 3, 2003, Optics Express, pp. 2832-2837, vol. 11, No. 22.
Delfyett, P. et al., “Ultrafast Semiconductor Laser-Diode-Seeded Cr:LiSAF Rengerative Amplifier System”, Applied Optics, May 20, 1997, pp. 3375-3380, vol. 36, No. 15, Octoical Society of America.
Eggleton, et al., “Electrically Tunable Power Efficient Dispersion Compensating Fiber Bragg Grating,” IEEE Photonics Technology Letters, vol., 11, No. 7, pp. 854-856, Jul. 1999.
Engeness et al., “Dispersion Tailoring and Compensation by Modal Interations in Omniguide Fibers,” Optics Express, May 19, 2003, pp. 1175-1196, vol. 11, No. 10.
Fink et al., “Guiding Optical Light in Air Using an All-Dielectric Structure,” Journal of Lightwave Technology, Nov. 1999, pp. 2039-2041, vol. 17, No. 11.
Folkenberg, J.R., et al., “Broadband Single-polarization Photonic Crystal Fiber,” Optics Letters, vol. 30, No. 12, Jun. 15, 2005, pp. 1446-1448.
Folkenberg, J.R., et al., “Polarization Maintaining Large Mode Area Photonic Crystal Fiber,” Optics Express vol. 12, No. 5, Mar. 8, 2004, pp. 956-960.
Futami, F., et al., “Wideband Fibre Dispersion Equalisation up to Fourth-order for Long-distance Sub-picosecond Optical Pulse Transmission,” Electronics Letters, vol. 35, No. 25, Dec. 9, 1999.
Galvanauskas, A. et al., “Chirped-pulse-amplification Circuits for Fiber Amplifiers, Based on Chirped-period Quasi-phase, matching gratings”, Optics Letters, Nov. 1, 1998, p. 1695-1697, vol. 23, No. 21, Optical Society of America.
Hartl et al., “In-line high energy Yb Fiber Laser Based Chirped Pulse Amplifier System”, Laser and Electro-Optics, 2004, (CLEO) Conference of San Francisco, CA USA May 20-21, 2004, Piscataway, NJ, USA, IEEE, vol. 1, May 17, 2004, pp. 563-565, XP010745382, ISBN: 978-1-55752-777-6.
Hellstrom, E. et al., “Third-order Dispersion Compensation Using a Phase Modulator”, Journal of Lightwave Technology, vol. 21, No. 5, pp. 1188-1197, May 2003.
Heritage, J. P. et al., “Picosecond Pulse Shaping by Spectral Phase and Amplitude Manipulation,” Optics Letters, vol. 10, No. 12, pp. 609-611, Dec. 1985.
Heritage, J.P. et al., “Spectral Windowing of Frequency-Modulated Optical Pulses in a Grating Compressor,” Applied Physics Letters, vol. 47, No. 2, pp. 87-89, Jul. 15, 1985.
Hill, K. et al., “Fiber Bragg Grating Technology Fundamentals and Overview,” Journal of Lightwave Technology, Aug. 1997, vol. 15, No. 8, pp. 1263-1276.
Ibanescu et al., “Analysis of Mode Structure in Hollow Dielctric Waveguide Fibers,” Physical Review E 67, 2003, The American Physical Society.
Jiang, et al., “Fully Dispersion Compensated ˜500 fs Pulse Transmission Over 50 km Single Mode Fiber,” Optics Letters, vol. 30, No. 12, pp. 1449-1451, Jun. 15, 2005.
Jiang, et al., “Fully Dispersion Compensated ˜500 fs Pulse Transmission Over 50 km Single Mode Fiber,” Purdue University ECE Annual Research Summary, Jul. 1, 2004-Jun. 30, 2005.
Killey, et al., “Electronic Dispersion Compensation by Signal Predistortion Using Digital Processing and a Dual-Drive Mach-Zehnder Modulator,” IEEE Photonics Technology Letters, vol. 17, No. 3, pp. 714-716, Mar. 2005.
Kim, K. et al., “1.4kW High Peak Power Generation from an All Semiconductor Mode-locked Master Oscillator Power Amplifier System Based on eXtreme Chirped Pulse Amplification (X-CPA)”, Optics Express, Jun. 2, 2005, pp. 4600-4606, vol. 13, No. 12.
Koechner, “Solid State Laser Engineering”, Oct. 29, 1999, Section 5.5, pp. 270-277, 5th Edition, Springer.
Kwon, et al., “Tunable Dispersion Slope Compensator Using a Chirped Fiber Bragg Grating Tuned by a Fan-shaped Thin Metallic Heat Channel,” IEEE Photonics Technology Letters, vol. 18, No. 1, pp. 118-120, Jan. 1, 2006.
Kyungbum, Kim et al., “1.4kW High Peak Power Generation from an all Semiconductor Mode-locked Master Oscillator Power Amplifier System Based on eXtreme Chirped Pulse Amplification (X-CPA)”, Optics Express, Jun. 2, 2005, pp. 4600-4606, vol. 13, No. 12.
Levy et al., “Engineering Space-Variant Inhomogeneous Media for Polarization Control,” Optics Letters, Aug. 1, 2004, pp. 1718-1720, vol. 29, No. 15, Optical Society of America.
Liao, Kai-Hsiu et al., “Large-aperture Chirped Volume Bragg Grating Based Fiber CPA System,” Optics Express, Apr. 16, 2007, vol. 15, No. 8, pp. 4876-4882.
Limpert et al., “All Fiber Chiped-Pulse Amplification System Based on Compression in Air-Guiding Photonic Bandgap Fiber”, Optics Express, Dec. 1, 2003, vol. 11, No. 24, pp. 3332-3337.
Lo, S. et al., “Semiconductor Hollow Optical Waveguides Formed by Omni-directional Reflectors”, Optics Express, vol. 12, No. 26, Dec. 27, 2004, pp. 6589-6593.
Malinowski A. et al., “Short Pulse High Power Fiber Laser Systems,” Proceedings of the 2005 Conference on Lasers and Electro-Optics (CLEO), Paper No. CThG3, pp. 1647-1649, May 26, 2005.
Mehier-Humbert, S. et al., “Physical Methods for Gene Transfer: Improving the Kinetics of Gene Delivery Into Cells,” Advanced Drug Delivery Reviews, vol. 57, pp. 733-753, 2005.
Mohammed, W. et al., “Selective Excitation of the TE01 Mode in Hollow-Glass Waveguide Using a Subwavelength Grating,” IEEE Photonics Technology Letters, Jul. 2005, vol. 17, No. 7, IEEE.
Nibbering, E.T.J., et al. “Spectral Determination of the Amplitude and the Phase of Intense Ultrashort Optical Pulses,” Journal Optical Society of America B, vol. 13, No. 2, pp. 317-329, Feb. 1996.
Nicholson, J. et al., “Propagation of Femotsecond Pulses in Large-mode-area, Higher-order-mode Fiber,” Optics Letters, vol. 31, No. 21, 2005, pp. 3191-3193.
Nishimura et al., “In Vivo Manipulation of Biological Systems with Femtosecond Laser Pulses,” Proc. SPIE 6261, 62611J, pp. 1-10, 2006.
Noda, J. et al., “Polarization-maintaining Fibers and Their Applications”, Journal of Lightwave Technology, vol. Lt-4, No. 8 Aug. 1986, pp. 1071-1089.
Palfrey et al., “Generation of 16-FSEC Frequency-tunable Pulses by Optical Pulse compression” Optics Letters, OSA, Optical Society of america, Washington, DC, USA, vol. 10, No. 11, Nov. 1, 1985, pp. 562-564, XP000710358 ISSN: 0146-9592.
Pelusi, M. et al., “Electrooptic Phase Modulation of Stretched 250-fs Pulses for Suppression of Third-Order Fiber Disperson in Transmission”, IEEE Photonics Technology Letters, vol. 11, No. 11, Nov. 1999, pp. 1461-1463.
Pelusi, M. D., et al., “Phase Modulation of Stretched Optical Pulses for Suppression of Third-order Dispersion Effects in fibre Transmission,” Electronics Letters, vol. 34, No. 17, pp. 1675-1677, Aug. 20, 1998.
Price et al., “Advances in High Power, Short Pulse, Fiber Laser Systems and Technology”, Photonics West 2005, San Jose, California, Jan. 2005, pp. 5709-3720.
Price et al., “Advances in High Power, Short Pulse, Fiber Laser Systems and Technology”, Proceedings of SPIE—vol. 5709, Fiber Lasers II: Technology, Systems, and Applications, Apr. 2005, pp. 184-192.
Ramachandran, S., et al., “High-power Amplification in a 2040-μm2 Higher Order Mode,” SPIE Photonics West 2007, Post-deadline.
Resan et al., “Dispersion-Managed Semiconductor Mode-Locked Ring Laser”, Optics Letters, Aug. 1, 2003, pp. 1371-1373, vol. 28, No. 15, Optical Society of America.
Schreiber, T., et al., “Design and High Power Operation of a Stress-induced single Polarization Single-transverse Mode LMA Yb-doped Photonic Crystal Fiber,” Fiber Lasers III: Technology, Systems, and Applications, Andrew J.W. Brown, Johan Nilsson, Donald J. Harter, Andreas Tunnermann, eds., Proc. of SPIE, vol. 6102, pp. 61020C-1-61020C-9, 2006.
Schreiber, T., et al., “Stress-induced Single-polarization Single-transverse Mode Photonic Crystal Fiber with Low Nonlinearity,” Optics Express, vol. 13, No. 19, Sep. 19, 2005, pp. 7621-7630.
Related Publications (1)
Number Date Country
20120217230 A1 Aug 2012 US
Provisional Applications (6)
Number Date Country
60508136 Oct 2003 US
60494102 Aug 2003 US
60494275 Aug 2003 US
60494274 Aug 2003 US
60503578 Sep 2003 US
60512807 Oct 2003 US
Continuation in Parts (3)
Number Date Country
Parent 11538048 Oct 2006 US
Child 13446879 US
Parent 10957271 Oct 2004 US
Child 11538048 US
Parent 10916366 Aug 2004 US
Child 10957271 US