Methods for stripping photoresist and/or cleaning metal regions

Information

  • Patent Grant
  • 8435895
  • Patent Number
    8,435,895
  • Date Filed
    Wednesday, April 4, 2007
    17 years ago
  • Date Issued
    Tuesday, May 7, 2013
    11 years ago
Abstract
Methods are provided for cleaning metal regions overlying semiconductor substrates. A method for removing material from a metal region comprises heating the metal region, forming a plasma from a gas comprising hydrogen and carbon dioxide, and exposing the metal region to the plasma.
Description
FIELD OF THE INVENTION

The present invention generally relates to semiconductor fabrication, and more particularly relates to methods for stripping photoresist and/or cleaning metal or metal silicide regions of semiconductor structures.


BACKGROUND OF THE INVENTION

Electrical interconnect techniques typically require electrical connection between metal or other conductive layers, or regions, which are present at different elevations within or overlying a semiconductor substrate. Such interconnecting typically is conducted, in part, by etching a trench and/or a contact opening through insulating material to a lower elevation metal layer or metallized region. For example, contact openings commonly are fabricated to make conductive contact to a metal silicide region of a metal-oxide-semiconductor field effect transistor (MOSFET). Trenches and contact openings also are conventionally fabricated to various metal layers to ultimately connect one semiconductor device element on one elevation to another semiconductor device element on another elevation.


Typically, as part of the process for fabricating a contact opening, a photoresist layer is deposited on the insulating material. The photoresist is patterned and etched to expose portions of the insulating layer and transfer the pattern to the insulating layer. The insulating layer is etched to the lower metal layer or region (hereinafter referred to collectively as “metal region”), forming a contact opening within the insulating layer to the metal region. The photoresist then is stripped from the insulating layer and a conductive material is deposited within the contact opening.


During the etching of the contact opening and the subsequent stripping of the photoresist, however, etching residue such as polymer from the photoresist can settle onto the exposed lower metal region. In addition, the metal region can be oxidized by exposure to oxygen in the environment. Some small resistance is associated with each contact between a conductor formed within the contact opening and a metal region. However, etching residue and metal oxide on the metal region increase that resistance, thereby decreasing device performance. Various methods have been used and suggested for cleaning the metal region after formation of the contact opening and before deposition of the conductive material within the contact opening. For example, ionized argon typically has been used to clean the metal region. However, ionized argon can result in sputtering of the metal region. Oxygen-based plasma also has been used, but oxygen-based plasma results in oxidation of the metal region. To reduce contact resistance and enhance device performance, the semiconductor industry is transitioning from cobalt silicide (CoSi2) to nickel silicide (NiSi) for MOSFET contacts. However, NiSi is quickly oxidized by oxygen plasma to form nickel oxide, which greatly increases the resistivity of the contact. The use of hydrogen-containing plasma has been suggested to clean the metal region. However, the use of hydrogen-containing plasma can be slower and less efficient than desired.


Accordingly, it is desirable to provide improved methods for stripping photoresist and/or cleaning metal regions of semiconductor structures. It is also desirable to provide stripping and/or cleaning methods that do not result in sputtering or oxidation of the metal regions. In addition, it is desirable to provide methods for stripping photoresist and/or cleaning metal regions at enhanced stripping and cleaning rates. It also is desirable to provide methods for fabricating semiconductor structures utilizing such stripping and cleaning methods. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description of the invention and the appended claims, taken in conjunction with the accompanying drawings and this background of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:



FIG. 1 is a flowchart of a method for stripping a photoresist and/or cleaning a metal region in accordance with an exemplary embodiment of the present invention;



FIG. 2 is a cross-sectional view of a remote plasma reaction chamber suitable for use with the method illustrated in FIG. 1;



FIG. 3 is a flowchart of a method for stripping a photoresist and/or cleaning a metal region in accordance with another exemplary embodiment of the present invention;



FIG. 4 is a cross-sectional view of a remote plasma reaction chamber suitable for use with the method illustrated in FIG. 3;



FIGS. 5-10 illustrate, in cross-section, a method for fabricating a semiconductor structure in accordance with an exemplary embodiment of the present invention; and



FIGS. 11-16 illustrate, in cross-section, a method for fabricating a semiconductor structure in accordance with another exemplary embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention.


In accordance with an exemplary embodiment of the present invention, a method 100 for stripping a photoresist and/or cleaning a metal layer or a metal region is illustrated in FIG. 1. It will be understood that the method can be used to clean a metal layer, such as a metal wire or interconnect, upon which has formed an undesirable oxide layer or other contaminants. In addition, the method can be used to clean a metal layer or metal region, such as a metal silicide region, to which a contact opening is made through an overlying material layer, such as an insulating layer, with the use of a patterned photoresist. During the etching of the overlying material layer, polymer from the photoresist and other contaminants may deposit on the subsequently exposed metal layer or region. In addition, with the exposure to the ambient, the metal layer or region may be oxidized. Method 100 is used to remove metal oxide and other residue and contaminants from the metal layer or region without the simultaneous oxidizing or sputtering of the metal layer or region. While method 100 can be used solely to clean the metal layer or region, it can also be used to simultaneously remove the overlying photoresist. Alternatively, method 100 can be used solely to remove the overlying photoresist. For the sake of brevity, the term “metal regions” will be used hereinafter to refer collectively to metal layers, metal wires, metal interconnects, and other metal regions, such as metal silicide regions.


The method 100 begins by positioning the metal region in a plasma reaction chamber apparatus (step 102). Preferably, the plasma reaction chamber apparatus is a remote (down-stream) plasma reaction chamber apparatus. FIG. 2 is a simplified cross-sectional illustration of a conventional apparatus 200 used for remote plasma exposure. However, it will be appreciated by those skilled in the art that other forms of plasma chambers may be used to practice the various embodiments of the present invention, including direct (in situ plasma) plasma reaction chamber apparatuses. Examples of suitable apparatuses are the Novellus Gamma® 2100 and Gamma® 2130 systems, which are multi-station sequential processing systems that include photoresist stripping stations and plasma reaction chambers in one apparatus, the Novellus Inova® NexT integrated metal deposition system, which is a single wafer multi-chamber system, and the Novellus Sequel® and Vector® dielectric deposition systems, which also are multi-station sequential processing systems. In apparatus 200, a plasma 204 is created by direct excitation of molecular gas, indicated by arrows 202, flowing through a quartz tube 206 with an inductive coil 208 encircling it. RF power is applied to the coil 208 creating atomic, ionized, and excited gas species. The plasma is essentially confined to the quartz tube. A metal region 210, typically formed overlying a substrate 212, such as a semiconductor substrate, is positioned in a processing chamber 214 downstream from the center of the coil 208 such that the metal region 210 is not exposed directly to the plasma. The processing chamber 214 may be separated from the quartz tube by a gas distribution plate 216, otherwise known as a showerhead, that is configured to distribute the plasma evenly over substrate 212. The processing chamber 214 includes a substrate support pedestal 220 and low pressure is maintained within the processing chamber by a vacuum pump via conduit 218.


As noted above, the metal region typically is formed overlying a substrate 212, such as a semiconductor substrate. The semiconductor substrate is preferably a silicon substrate wherein the term “silicon substrate” is used herein to encompass the relatively pure silicon materials typically used in the semiconductor industry as well as silicon admixed with other elements such as germanium, carbon, and the like. Alternatively, the semiconductor substrate can be germanium, gallium arsenide, or other semiconductor material. The substrate may be a bulk silicon wafer, or may be a thin layer of silicon on an insulating layer (commonly know as silicon-on-insulator or SOI) that, in turn, is supported by a carrier wafer. The metal region may be disposed on or within the semiconductor substrate or may overlie the semiconductor substrate with various insulating, metal, and semiconductor layers disposed therebetween. A photoresist 224 may overlie an insulating layer disposed on the semiconductor substrate and exposing the metal region.


The substrate 212 is placed on the substrate support pedestal 220 and gas 202 is supplied to the quartz tube 206 through one or more entry ports 222. The gas 202 comprises hydrogen and carbon dioxide (CO2). In this regard, gas 202 comprises CO2 in an amount sufficient to increase the cleaning rate of plasma 204 but less than an amount that would result in substantial oxidation of the metal region 210. While CO2 comprises oxygen, the formation of metal oxide occurs at a much slower rate than if O2 is a component of gas 202. In one embodiment of the invention, CO2 is present in an amount no less than 0.1% by volume and no greater than 10% by volume of gas 202. In a preferred embodiment of the invention, CO2 is present in an amount of no less than 0.1% by volume and no greater than 5% by volume. In a more preferred embodiment of the invention, CO2 is present in an amount no less than 0.1% by volume and no greater than 1% by volume.


Method 100 may be implemented for any size substrate or semiconductor wafer. Most modern wafer fabrication facilities use either 200 mm or 300 mm wafers. Process conditions of method 100 may vary depending on the wafer size. Referring to FIGS. 1 and 2, during the plasma process, the substrate 212 is heated by a resistive heater (not shown) within the pedestal 220 to a steady state temperature (step 104), thereby heating metal region 210. In an exemplary embodiment, the substrate 212 is heated or adjusted to and maintained at a temperature in the range of about 200° C. and 450° C. In another exemplary embodiment, the temperature of the substrate 212 is heated or otherwise adjusted to and maintained at a temperature in the range of about 270° C. to about 350° C. The pressure within processing chamber 214 may range, for example, from 1 mTorr to 5 Torr. Preferably, the pressure ranges from 0.9 Torr to 1.1 Torr. Before, during or after heating of the substrate 212, RF power is supplied to the coil 208 to form plasma 204 from the gas 202 (step 106). The RF power supplied to the coil is sufficient to maintain a stable plasma within the quartz tube for the duration of the plasma process. In an exemplary embodiment, the RF power is in the range of about 100 Watts to about 5000 Watts. The gas 202 (or the components thereof) flow through entry port(s) 222 at a rate sufficient to provide a substantially constant supply of gas from which to form the plasma. In an exemplary embodiment, if a 300 mm wafer is used, the flow rate of the gas 202 is in the range of about 100 standard cubic centimeters per minute (seem) to about 100,000 seem. The flow rate of carbon dioxide will be in the range of 1 seem and about 5000 sccm.


The metal region 210 then is exposed to the plasma (step 108). If present, the photoresist 224 also is exposed to the plasma. Substrate 212 may be temperature controlled and/or an RF bias may be applied. Upon production of the plasma, atomic, ionized, and excited H, H2, CO, and CO2 species flow from the plasma and interact with photoresist 224 and with the residue and oxide on the metal region 210. Showerhead 216, which is grounded, terminates the flow of some ions due to recombination and allows the flow of neutral species into processing chamber 214. The photoresist is converted to volatile hydrocarbon compounds that are desorbed from the insulating layer upon which it is disposed. The residue and any oxide on the surface of the metal region also are converted by the plasma to volatile species that are desorbed from the surface with minimal or no sputtering of the metal region and minimal or no oxidation of the metal region.


In accordance with another exemplary embodiment of the present invention, a method 250 for stripping a photoresist and/or cleaning a metal region is illustrated in FIG. 3. As with method 100, method 250 can be used to clean a metal layer, such as a metal wire or interconnect, upon which has formed an undesirable oxide layer or other contaminants. In addition, the method can be used to clean a metal layer or metal region, such as a conductive via or a metal silicide region to which a contact opening is made through an overlying material layer, such as an insulating layer, with the use of a patterned photoresist. While method 250 can be used solely to clean the metal region, it also can be used to simultaneously remove an overlying photoresist. Alternatively, method 250 can be used solely to remove the overlying photoresist. Method 250 is similar to method 100 but, as described below, method 250 includes the step of introducing an inert gas to a remote plasma reaction chamber apparatus. The inert gas is introduced upstream from the metal region but downstream from the region of the apparatus where the plasma is formed. In this regard, the required hydrogen flow rate can be reduced while the photoresist strip rate and the metal region clean rate are maintained.


The method 250 begins as does method 100 with the step of positioning the metal region in a remote plasma reaction chamber apparatus (step 102). FIG. 4 is a simplified cross-sectional illustration of a remote plasma reaction chamber apparatus 270 suitable to practice method 250. Plasma reaction chamber apparatus 270 is similar to plasma reaction chamber apparatus 200; however, apparatus 270 comprises at least one inert gas inlet 272. Inert gas inlet 272 is downstream of the area of the apparatus where the plasma is formed, i.e., quartz tube 206, and is upstream from showerhead 216 and substrate support pedestal 220.


As described above with reference to method 100, the substrate 212 having metal region 210, and optionally photoresist 224, is placed on the substrate support pedestal 220 and gas 202 is supplied to the quartz tube 206 through entry port 222. The gas 202 comprises hydrogen and carbon dioxide. As described above, gas 202 comprises CO2 in an amount sufficient to increase the cleaning rate of plasma 204 but less than an amount that would result in substantial oxidation of the metal region 210. While CO2 comprises oxygen, the formation of metal oxide occurs at a much slower rate than if O2 is a component of gas 202. In one embodiment of the invention, CO2 is present in an amount no less than 0.1% and no greater than 10% of the total gas in the chamber, that is, H2, CO2, and the inert gas, described below. In a preferred embodiment of the invention, CO2 is present in an amount no less than 0.1% and no greater than 5%. In more preferred embodiment of the invention, CO2 is present in an amount no less than 0.1% and no greater than 1%.


Method 250 may be implemented for any size substrate or semiconductor wafer and process conditions of method 250 may vary depending on the wafer size. Referring to FIGS. 3 and 4, during the plasma process, the substrate 212 is heated by a resistive heater (not shown) within the pedestal 220 to a steady state temperature (step 104), thereby heating metal region 210. In an exemplary embodiment, the substrate 212 is heated or adjusted to and maintained at a temperature in the range of about 200° C. and 450° C. In another exemplary embodiment, the temperature of the substrate 212 is heated or otherwise adjusted to and maintained at a temperature in the range of about 270° C. to about 350° C. The pressure within processing chamber 214 may range, for example, from 1 mTorr to 5 Torr. Preferably, the pressure ranges from 0.9 Torr to 1.1 Torr. Before, during or after heating of the substrate 212, RF power is supplied to the coil 208 to form plasma 204 from the gas 202 (step 106). The RF power supplied to the coil is sufficient to maintain a stable plasma within the quartz tube for the duration of the plasma process. In an exemplary embodiment, the RF power is in the range of about 100 Watts to about 5000 Watts. The gas 202 (or the components thereof) flow through entry port 222 at a rate sufficient to provide a substantially constant supply of gas from which to form the plasma. In an exemplary embodiment, if a 300 mm wafer is used, the flow rate of the gas 202 is in the range of about 100 sccm to about 100,000 sccm. The flow rate of carbon dioxide will be in the range of 1 sccm and about 5000 sccm.


An inert gas, illustrated by arrows 274, is introduced via gas inlet 272 upstream of the showerhead 216 and downstream from where plasma 204 is formed (step 252). Gas inlet 272 may be any type of gas inlet and may include multiple ports or jets to optimize mixing the inert gas with the plasma. The inert gas 274 may comprise, for example, argon (Ar) or helium (He). In a preferred embodiment, the inert gas comprises argon. The inert gas flow rate into processing chamber 214 is in the range of about 1 to about 20 times the hydrogen flow rate. In a preferred embodiment, the inert gas flow rate is in the range of about 19 to about 20 times the hydrogen flow rate. The inert gas mixes with the plasma 204. Showerhead 216 directs the plasma/inert gas mixture into processing chamber 214. Showerhead 216, which is grounded, terminates the flow of some ions by recombination and allows the flow of neutral species into processing chamber 214. Substrate 212 may be temperature controlled and/or an RF bias may be applied.


The metal region 210 then is exposed to the plasma/inert gas mixture (step 254). If present, the photoresist 224 also is exposed to the plasma/inert gas mixture. Atomic, ionized, and excited H, H2, CO, and CO2 species flow from the plasma and interact with the photoresist and the residue and oxide on the metal region 210. The photoresist is converted to volatile hydrocarbons that are desorbed from the insulating layer upon which it is disposed. The residue and oxide also are converted by the plasma to volatile species that are desorbed from the metal region with minimal or no sputtering of the metal region and minimal or no oxidation of the metal region.


In some embodiments of the present invention, the apparatus does not include showerhead 216. In these embodiments, the inert gas inlets 272 introduce the inert gas directly into the processing chamber 214 where it mixes with the plasma upstream of substrate 212.



FIGS. 5-10 illustrate a method for fabricating a semiconductor structure 300 using cleaning method 100 or cleaning method 250 in accordance with exemplary embodiments of the present invention. For purposes of illustration, semiconductor structure 300 is a MOSFET device to be formed on and within a silicon substrate. However, it will be appreciated that the various embodiments of cleaning method 100 and cleaning method 250 are not limited to the fabrication of MOSFET devices but can be used for the fabrication of any semiconductor structure having metal regions from which oxides, polymer residues, and/or other contaminants are to be removed. Various steps in the manufacture of MOSFETs are well known and so, in the interest of brevity, many conventional steps will only be mentioned briefly herein or will be omitted entirely without providing the well known process details.


Referring to FIG. 5, a MOSFET gate electrode 302 is disposed overlying a silicon substrate 322, similar to semiconductor substrate 212 illustrated in FIGS. 2 and 4, with a gate insulator 330 disposed therebetween. Those of skill in the art will appreciate that semiconductor structure 300 may include a large number of such gate electrodes 302 as required to implement a desired circuit function. The initial steps in the fabrication of gate electrode 302 are conventional so the structure resulting from these steps is illustrated in FIG. 5, but the initial steps themselves are not shown. Although the term “MOSFET” properly refers to a device having a metal gate electrode and an oxide gate insulator, that term will be used throughout to refer to any semiconductor device that includes a conductive gate electrode (whether metal or other conductive material) that is positioned over a gate insulator (whether oxide or other insulator) which, in turn, is positioned over a semiconductor substrate.


A surface portion 304 of the substrate 322 is doped with P-type conductivity determining impurities for the fabrication of an n-channel MOSFET or with N-type conductivity determining impurities for the fabrication of P-channel MOSFET. Portion 304 can be impurity doped, for example, by the implantation and subsequent thermal annealing of dopant ions such as boron and arsenic.


In accordance with an exemplary embodiment of the invention, a layer 306 of a silicide-forming metal is deposited over the structure and in contact with the exposed portion 304. The silicide-forming metal typically comprises cobalt, nickel, rhenium, ruthenium, palladium or any other suitable metal and is deposited to a thickness in the range of about 5 nm to about 20 nm. The silicide-forming metal can be deposited, for example, by plasma vapor deposition (PVD) or electrochemical deposition.


Referring to FIG. 6, the method continues with the heating of the structure, for example by rapid thermal annealing (RTA), to cause the silicide-forming metal 306 to react with the silicon to form a metal silicide 308 at the surface of the exposed portion 304. Silicide forms only in those areas where there is exposed silicon in contact with the silicide-forming metal. Silicide does not form, and the silicide-forming metals remain unreacted, in those areas where there is no exposed silicon such as on the sidewalls of metal gate electrode 302. The unreacted silicide-forming metal can be removed by wet etching in a H2O2/H2SO4, HNO3/HCl, or aqua regia (H2O, HCl, and HNO3) solution. A blanket layer of insulating material 310 is deposited overlying the semiconductor structure 300, as illustrated in FIG. 7. The insulating material can be, for example, a silicon oxide-based material or a polymer and can be deposited by chemical vapor deposition (CVD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), or the like.


In accordance with an exemplary embodiment of the present invention, the method continues with photolithographically patterning and etching the insulating material layer 310 to expose a portion of metal silicide 308. In this regard, a photoresist 312 is formed overlying the insulating material layer 310 and is patterned by conventional photolithography processing to form an opening 314, as illustrated in FIG. 8. The photoresist 312 can be any photoresist polymer utilized in semiconductor technology and can be patterned using conventional lithography methods such as, for example, I-line or deep UV lithography. The insulating material layer 310 then is etched to form a contact opening 316 that extends through the insulating material layer to expose a portion 318 of metal silicide 308. The insulating layer 310 can be etched by, for example, reactive ion etching (RIE) using a fluorine-based chemistry.


Referring to FIG. 9, after forming the contact opening 316, the photoresist 312 is stripped and the exposed portion 318 of metal silicide 308 is cleaned using method 100 or method 250 described above to remove any polymer deposited during removal of the photoresist and any other oxides and contaminants that may have formed or deposited on portion 318 during etching of insulating layer 310 and removal of photoresist 312. The photoresist may be stripped simultaneously with the cleaning of the exposed portion 318 or may be stripped prior to cleaning of exposed portion 318. The semiconductor structure 300 is disposed within a plasma reaction chamber and the semiconductor substrate 322 is heated or adjusted to and maintained at a temperature, for example, in the range of about 200° C. and 450° C., preferably at a temperature in the range of about 270° C. and 350° C. As described above, a plasma is created from a gas comprising hydrogen and CO2. The exposed portion 318 of metal silicide 308 is subjected to the plasma, indicated by arrows 320 and, if using cleaning method 250, to inert gas to remove the polymer residue, oxides, and contaminants from the metal silicide 308. Any of the processing parameters described above for cleaning methods 100 and 250 can be used to clean exposed portion 318 using the respective method.


A thin layer of a first conductive material, such as a barrier layer, typically is deposited within contact opening 316 followed by deposition of a second conductive material, such as tungsten or copper or an alloy thereof, to form a conductive contact to metal silicide 308. Accordingly, semiconductor structure 300 can be moved to another processing chamber, such as a PVD or CVD chamber, within which the conductive material can be deposited. However, during transition of semiconductor structure 300 between processing apparatuses, such as during the transition from a photoresist stripping tool to a PVD system, semiconductor structure 300 may be exposed to an ambient environment. Exposure to the ambient environment may result in re-oxidation of the exposed metal silicide portion along with the deposition of other contaminants. In addition, semiconductor structure 300 may be stored for a period of time, during which oxides may form and other contaminants may deposit. To remove such contamination before deposition of the conductive material, structure 300 again can be cleaned using cleaning method 100 or cleaning method 250 as described above. The cleaning method can be performed in a stand-alone plasma clean chamber and the semiconductor structure 300 can be protected from the environment during transition to a deposition chamber, or the method can be performed in a multi-chamber apparatus having a deposition chamber and a plasma clean chamber. Thus, cleaning method 100 or cleaning method 250 can be performed as a “post-clean” after formation of contact opening 316 and as a “pre-clean” before deposition of conductive material within contact opening 316. Referring to FIG. 10, after cleaning of portion 318 of metal silicide 308, conductive material layer(s) can be deposited within contact opening 316 to form a conductive contact 324 to metal silicide 308. Any excess conductive material formed on insulating material layer 310 can be removed by an etching process or more typically by chemical mechanical planarization (CMP).



FIGS. 11-16 illustrate a method for fabricating a semiconductor structure 350 using cleaning method 100 or cleaning method 250 in accordance with exemplary embodiments of the present invention. For purposes of illustration, semiconductor structure 350 is a metal interconnect structure. However, it will be appreciated that the various embodiments of cleaning method 100 and cleaning method 250 are not limited to the fabrication of metal interconnect structures but can be used for the fabrication of any semiconductor structure having metal regions from which oxides, polymer residues, and/or other contaminants are to be removed. Various steps in the manufacture of metal interconnect structures are well known and so, in the interest of brevity, many conventional steps will only be mentioned briefly herein or will be omitted entirely without providing the well known process details.


Referring to FIG. 11, the method begins by providing a semiconductor structure 350 with a first metal interconnect 352, such as a metal wire or contact trace, that is disposed within a first insulating layer 354. First metal interconnect 352 may comprise any suitable metal such as, for example, aluminum, copper, gold, tungsten, titanium, or alloys thereof, or a combination of metal layers. First insulating layer 354 may be formed of any suitable dielectric material such as, for example, silicon dioxide, spin-on glass, carbon-doped silicon oxide, silicon carbide, or the like. Metal interconnect 352 may be electrically coupled to a semiconductor device, another metal interconnect or wire, or the like by, for example, a first conductive via 356. First conductive via 358 may comprise any suitable metal, such as aluminum, copper, gold, tungsten, titanium or alloys thereof or a combination of metal layers. A second insulating layer 358 is disposed on first metal interconnect 352 and first insulating layer 354. Second insulating layer 358 may comprise any of the insulating materials of which first insulating layer 354 is formed.


Referring to FIG. 12, a partial via or opening 360 is etched by conventional photolithography within second insulating layer 358 and overlying first metal interconnect 352, leaving a barrier layer or portion 362 of second insulating layer 358 between partial via 360 and first metal interconnect 352. As described above, partial via 360 may be etched by first depositing a first photoresist (not shown) and then patterning the first photoresist by conventional lithography methods. Second insulating layer 358 can be etched by, for example, RIE using a fluorine-based chemistry. The first photoresist then can be removed by, for example, using any of the embodiments of method 100 or method 250 described above or by conventional ashing methods. As illustrated in FIG. 13, after etching of partial via 360, a trench 364 is etched within second insulating layer 358 and above via 360. During etching of trench 364, the portion 362 between partial via 360 and first interconnect 352 also may be etched, exposing a region 366 of first interconnect 352. Trench 364 may be etched by depositing a second photoresist (not shown) and patterning the second photoresist by conventional lithography methods. Second insulating layer 358 can be etched by, for example, RIE using a fluorine-based chemistry. If portion 362 is not removed during etching of trench 364, it can be subsequently removed by further etching. The second photoresist is then removed.


Simultaneously with the removal of the second photoresist or, alternatively, after the second photoresist is removed, the exposed region 366 of first metal interconnect 352 can be cleaned as described above using any of the embodiments described above for method 100 or method 250 to remove any photoresist residue, oxides or other contaminants that may have formed or deposited on exposed region 366. In this regard, the semiconductor structure 350 is disposed within a plasma clean chamber on the support pedestal of the plasma reaction chamber and the pedestal is heated or adjusted to and maintained at a temperature in the range of about 200° C. and 450° C., preferably at a temperature in the range of about 270° C. and 350° C. As described above, a plasma is created from a gas comprising hydrogen and CO2. The exposed region 366 of first metal interconnect 352 is subjected to the plasma, indicated by arrows 368 and, if using cleaning method 250, to inert gas to remove oxides and contaminants from region 366. Any of the processing parameters described above for cleaning methods 100 and 250 can be used to clean region 366 using the respective method.


The semiconductor structure 350 then can be positioned within a deposition apparatus such as, for example, the Novellus INOVA® XT apparatus, for deposition of a conductive material within trench 364 and via 360. However, prior to deposition of the conductive material, exposed region 366 again may be cleaned using any of the embodiments described above for method 100 or method 250 to remove any oxides or other contaminates that may have formed or deposited on exposed region 366 during transfer of semiconductor structure 350 and storage thereof. A blanket layer of conductive material 370 then is deposited within via 360 and trench 364 in electrical contact with first metal interconnect 352 and overlying second insulating layer 358, as illustrated in FIG. 14. Conductive layer 370 may be formed of any suitable conductive material such as, for example, aluminum, copper, gold, tungsten, titanium or alloys thereof or a combination of metal layers. For example, conductive layer 370 may be formed of a tantalum or tantalum/tantalum nitride barrier layer and a copper seed layer, both formed by PVD, and a copper fill layer deposited by electroplating. Referring to FIG. 15, excess conductive material of conductive layer 370 disposed outside of via 360 and trench 364 then may be removed by, for example, dry or wet etching or CMP to form second interconnect 372.


The method continues, in accordance with an exemplary embodiment of the invention, with a cleaning of a surface 374 of second interconnect 372 using any of the above-described embodiments of method 100 or method 250 to remove any oxides or other contaminants that may have formed or deposited on surface 374. The semiconductor structure 350 is disposed within a plasma clean chamber on the support pedestal of the plasma clean chamber and the pedestal is heated or adjusted to and maintained at a temperature in the range of about 200° C. and 450° C., preferably at a temperature in the range of about 270° C. and 350° C. As described above, a plasma is created from a gas comprising hydrogen and CO2. The exposed surface 374 of second interconnect 374 is subjected to the plasma, indicated by arrows 376 and, if using cleaning method 250, to inert gas to remove oxides and contaminants from surface 374. Any of the processing parameters described above for cleaning methods 100 and 250 can be used to clean surface 374 using the respective method.


Referring to FIG. 16, after cleaning of surface 374 of second interconnect 372, a third insulating layer 380 is formed overlying second interconnect 372 and second insulating layer 358. Third insulating layer 380 typically comprises a dielectric diffusion barrier/etch stop layer such as, for example, silicon carbide (SiC) or silicon nitride (SiN) and an overlying interlevel dielectric layer such as silicon dioxide, carbon-doped silicon oxide, and the like. Suitable systems for performing the above-described cleaning methods 100 and 250 followed by the formation of insulating layer 380 are the Novellus Sequel® and Vector® systems. The process may continue with the formation and cleaning of a third interconnect or with the formation of any other suitable device.


Accordingly, methods for stripping photoresist and/or cleaning a metal region have been provided. The methods utilize a plasma formed from a gas comprising hydrogen and CO2. The presence of the CO2 increases the cleaning speed of the plasma without oxidizing the metal region or damaging the metal region by sputtering. An inert gas may be mixed with the plasma to reduce the required hydrogen flow rate while maintaining the photoresist strip rate and the metal region clean rate. While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims and their legal equivalents.

Claims
  • 1. A method for removing material from a metal region overlying a semiconductor substrate, the method comprising the steps of: heating the metal region of the semiconductor substrate;forming a plasma from a gas comprising hydrogen and about 0.1% by volume to about 10% by volume carbon dioxide; andexposing the metal region of the semiconductor substrate to the plasma to thereby remove material from the metal region of the semiconductor substrate.
  • 2. The method of claim 1, wherein the step of heating the metal region comprises the steps of positioning the metal region overlying a pedestal and heating the pedestal to a temperature in a range of about 200° C. to about 450° C.
  • 3. The method of claim 2, wherein the step of heating the pedestal comprises the step of heating the pedestal to a temperature in a range of about 270° C. and 350° C.
  • 4. The method of claim 1, wherein the step of forming a plasma comprises the step of forming the plasma from the gas comprising hydrogen and about 0.1% by volume to about 1% by volume carbon dioxide.
  • 5. The method of claim 1, further comprising the step of positioning the metal region in a remote plasma reaction chamber apparatus, the step of positioning performed before the step of heating.
  • 6. The method of claim 1, further comprising the step of positioning the metal region in an in situ plasma reaction chamber apparatus, the step of positioning performed before the step of heating.
  • 7. The method of claim 1, wherein the step of heating the metal region comprises the step of heating a metal silicide region.
  • 8. The method of claim 7, wherein the step of heating a metal silicide region comprises the step of heating a nickel silicide region.
  • 9. The method of claim 1, wherein the step of heating a metal region comprises the step of heating a metal interconnect.
  • 10. The method of claim 1, wherein the step of exposing comprises the step of exposing the metal region to the plasma and an inert gas.
  • 11. The method of claim 10, wherein the step of exposing comprises the step of exposing the metal region to the plasma and to argon.
  • 12. The method of claim 10, further comprising the step of introducing the inert gas upstream from the metal region, wherein the inert gas has a flow rate in a range of about 0.15 and 25 times a flow rate of the hydrogen.
  • 13. The method of claim 1, wherein a polymeric material is removed.
  • 14. A method for cleaning a metal region overlying a semiconductor substrate, the method comprising the steps of: heating the semiconductor substrate;exciting a gas to form a plasma, wherein the gas comprises hydrogen and about 0.1% by volume to about 10% by volume carbon dioxide; andsubjecting the metal region to the plasma to thereby clean the metal region of the semiconductor substrate.
  • 15. The method of claim 14, wherein the step of heating the semiconductor substrate comprises the step of heating the semiconductor substrate to a temperature in a range of about 200° C. to about 450° C.
  • 16. The method of claim 15, wherein the step of heating the semiconductor substrate comprises the step of heating the semiconductor substrate to a temperature in a range of about 270° C. and 350° C.
  • 17. The method of claim 14, wherein the metal region is a metal silicide region and the step of heating the semiconductor substrate comprises the step of heating a silicon-comprising substrate.
  • 18. The method of claim 14, wherein the step of exciting a gas to form a plasma comprises the step of exciting the gas upstream from the semiconductor substrate and further comprising the steps of introducing an inert gas upstream from the semiconductor substrate, and wherein the step of subjecting comprises the step of subjecting the metal region to the plasma and the inert gas.
  • 19. A method for fabricating a semiconductor structure, the method comprising the steps of: forming an insulating layer overlying a metal region overlying a semiconductor substrate;etching the insulating layer to the metal region to form a contact opening exposing a portion of the metal region;heating the metal region to a first temperature in a range of about 200° C. to about 450° C.;exciting a gas to form a first plasma, wherein the gas comprises hydrogen and about 0.1% by volume to about 10% by volume carbon dioxide; andsubjecting the exposed portion of the metal region to the first plasma.
  • 20. The method of claim 19, further comprising the step of forming a photoresist overlying the insulating layer and patterning the photoresist, the steps of forming and patterning performed after the step of forming the insulating layer and before the step of etching the insulating layer.
  • 21. The method of claim 20, further comprising the step of subjecting the photoresist to the first plasma to at least substantially remove the photoresist.
  • 22. The method of claim 19, further comprising the step of introducing an inert gas and wherein the step of subjecting comprises the step of subjecting the portion of the metal region to the first plasma and the inert gas.
  • 23. The method of claim 19, wherein the step of exciting a gas to form a first plasma comprises the step of exciting the gas comprising hydrogen and about 0.1% by volume to about 1% by volume carbon dioxide.
  • 24. The method of claim 19, further comprising the step of depositing a conductive material within the contact opening, the step of depositing performed after the step of subjecting the portion of the metal region to the first plasma.
  • 25. The method of claim 19, further comprising the step of positioning the metal region in a remote plasma reaction chamber, the step of positioning performed before the step of heating.
  • 26. The method of claim 19, further comprising the step of positioning the metal region in an in situ plasma reaction chamber, the step of positioning performed before the step of heating.
  • 27. The method of claim 19, further comprising: heating the metal region to a second temperature in a range of about 200° C. to about 450° C.;exciting a gas to form a second plasma, wherein the gas comprises hydrogen and carbon dioxide; andsubjecting the portion of the metal region to the second plasma.
  • 28. The method of claim 27, further comprising the step of introducing an inert gas and wherein the step of subjecting comprises the step of subjecting the portion of the metal region to the second plasma and the inert gas.
  • 29. The method of claim 19, wherein the step of etching comprises the step of etching the insulating layer to form a trench overlying the contact opening.
  • 30. The method of claim 29, further comprising: depositing conductive material within the trench and contact opening to form a metal interconnect and a conductive via;heating the metal interconnect to a second temperature in a range of about 200° C. to about 450° C.;exciting a gas to form a second plasma, wherein the gas comprises hydrogen and carbon dioxide; andsubjecting a surface of the metal interconnect to the second plasma.
  • 31. The method of claim 30, further comprising the step of introducing an inert gas and wherein the step of subjecting a surface of the metal interconnect comprises the step of subjecting the surface of the metal interconnect to the second plasma and the inert gas.
  • 32. A method for fabricating a semiconductor structure, the method comprising the steps of: heating a metal region overlying a semiconductor substrate to a first temperature in the range of about 200° C. to about 450° C.;exciting a gas to form a plasma, wherein the gas comprises hydrogen and about 0.1% by volume to about 10% by volume carbon dioxide;subjecting the metal region to a plasma; andforming an insulating layer overlying the metal region.
  • 33. The method of claim 32, wherein the step of subjecting the metal region to a plasma comprises the step of subjecting the metal region to a plasma and an inert gas.
  • 34. The method of claim 32, wherein the step of exciting a gas to form a plasma comprises the step of exciting the gas comprising hydrogen and about 0.1% by volume to about 1% by volume carbon dioxide.
US Referenced Citations (177)
Number Name Date Kind
4201579 Robinson et al. May 1980 A
4357203 Zelez Nov 1982 A
4699689 Bersin Oct 1987 A
5122225 Douglas Jun 1992 A
5158644 Cheung et al. Oct 1992 A
5292393 Maydan et al. Mar 1994 A
5354386 Cheung et al. Oct 1994 A
5593541 Wong et al. Jan 1997 A
5626678 Sahin et al. May 1997 A
5633073 Cheung et al. May 1997 A
5660682 Zhao et al. Aug 1997 A
5707485 Rolfson et al. Jan 1998 A
5767021 Imai et al. Jun 1998 A
5792269 Deacon et al. Aug 1998 A
5811358 Tseng et al. Sep 1998 A
5814155 Solis et al. Sep 1998 A
5817406 Cheung et al. Oct 1998 A
5820685 Kurihara et al. Oct 1998 A
5830775 Maa et al. Nov 1998 A
5844195 Fairbairn et al. Dec 1998 A
5900351 Lutsic et al. May 1999 A
5908672 Ryu et al. Jun 1999 A
5911834 Fairbairn et al. Jun 1999 A
5968324 Cheung et al. Oct 1999 A
5980770 Ramachandran et al. Nov 1999 A
6039834 Tanaka et al. Mar 2000 A
6045618 Raoux et al. Apr 2000 A
6054379 Yau et al. Apr 2000 A
6072227 Yau et al. Jun 2000 A
6077764 Sugiarto et al. Jun 2000 A
6083852 Cheung et al. Jul 2000 A
6086952 Lang et al. Jul 2000 A
6098568 Raoux et al. Aug 2000 A
6107184 Mandal et al. Aug 2000 A
6125788 Hills et al. Oct 2000 A
6127262 Huang et al. Oct 2000 A
6129091 Lee et al. Oct 2000 A
6130166 Yeh Oct 2000 A
6156149 Cheung et al. Dec 2000 A
6171945 Mandal et al. Jan 2001 B1
6184134 Chaudhary et al. Feb 2001 B1
6187072 Cheung et al. Feb 2001 B1
6193802 Pang et al. Feb 2001 B1
6194628 Pang et al. Feb 2001 B1
6203657 Collison et al. Mar 2001 B1
6204192 Zhao et al. Mar 2001 B1
6209484 Huang et al. Apr 2001 B1
6230652 Tanaka et al. May 2001 B1
6245690 Yau et al. Jun 2001 B1
6277733 Smith Aug 2001 B1
6281135 Han et al. Aug 2001 B1
6287990 Cheung et al. Sep 2001 B1
6303523 Cheung et al. Oct 2001 B2
6306564 Mullee Oct 2001 B1
6319842 Khosla et al. Nov 2001 B1
6324439 Cheung et al. Nov 2001 B1
6340435 Bjorkman et al. Jan 2002 B1
6342446 Smith et al. Jan 2002 B1
6348725 Cheung et al. Feb 2002 B2
6350701 Yamazaki Feb 2002 B1
6358573 Raoux et al. Mar 2002 B1
6361707 Tanaka et al. Mar 2002 B1
6365516 Frenkel et al. Apr 2002 B1
6395092 Sugiarto et al. May 2002 B1
6413583 Moghadam et al. Jul 2002 B1
6426304 Chien et al. Jul 2002 B1
6448187 Yau et al. Sep 2002 B2
6465964 Taguchi et al. Oct 2002 B1
6511903 Yau et al. Jan 2003 B1
6511909 Yau et al. Jan 2003 B1
6517913 Cheung et al. Feb 2003 B1
6537422 Sakuma et al. Mar 2003 B2
6537929 Cheung et al. Mar 2003 B1
6541282 Cheung et al. Apr 2003 B1
6555472 Aminpur Apr 2003 B2
6562544 Cheung et al. May 2003 B1
6562690 Cheung et al. May 2003 B1
6569257 Nguyen et al. May 2003 B1
6593247 Huang et al. Jul 2003 B1
6596655 Cheung et al. Jul 2003 B1
6632735 Yau et al. Oct 2003 B2
6638875 Han et al. Oct 2003 B2
6660656 Cheung et al. Dec 2003 B2
6660663 Cheung et al. Dec 2003 B1
6663715 Yuda et al. Dec 2003 B1
6669858 Bjorkman et al. Dec 2003 B2
6680164 Nguyen et al. Jan 2004 B2
6680420 Pang et al. Jan 2004 B2
6689930 Pang et al. Feb 2004 B1
6693043 Li et al. Feb 2004 B1
6709715 Lang et al. Mar 2004 B1
6720132 Tsai et al. Apr 2004 B2
6730593 Yau et al. May 2004 B2
6734115 Cheung et al. May 2004 B2
6743737 Yau et al. Jun 2004 B2
6764940 Rozbicki et al. Jul 2004 B1
6770556 Yau et al. Aug 2004 B2
6787452 Sudijono et al. Sep 2004 B2
6800571 Cheung et al. Oct 2004 B2
6806207 Huang et al. Oct 2004 B2
6837967 Berman et al. Jan 2005 B1
6848455 Shrinivasan et al. Feb 2005 B1
6858153 Bjorkman et al. Feb 2005 B2
6869896 Cheung et al. Mar 2005 B2
6900135 Somekh et al. May 2005 B2
6902682 Shang et al. Jun 2005 B2
6930061 Cheung et al. Aug 2005 B2
7023092 Yau et al. Apr 2006 B2
7070657 Cheung et al. Jul 2006 B1
7074298 Gondhalekar et al. Jul 2006 B2
7160821 Huang et al. Jan 2007 B2
7186648 Rozbicki et al. Mar 2007 B1
7202176 Goto et al. Apr 2007 B1
7205249 Cheung et al. Apr 2007 B2
7227244 Bjorkman et al. Jun 2007 B2
7288484 Goto et al. Oct 2007 B1
7297635 Toda et al. Nov 2007 B2
7344993 Balasubramaniam et al. Mar 2008 B2
7390755 Chen et al. Jun 2008 B1
7432209 Delgadino et al. Oct 2008 B2
7465680 Chen et al. Dec 2008 B2
7468326 Chen et al. Dec 2008 B2
7556712 Yi et al. Jul 2009 B2
7560377 Cheung et al. Jul 2009 B2
7569492 Chen et al. Aug 2009 B1
7585777 Goto et al. Sep 2009 B1
7595005 Balasubramaniam Sep 2009 B2
7597816 Chang et al. Oct 2009 B2
7601272 Nguyen et al. Oct 2009 B2
7628864 Moriya et al. Dec 2009 B2
7651949 Jo Jan 2010 B2
7740768 Goto et al. Jun 2010 B1
8058178 Goto et al. Nov 2011 B1
8058181 Chen et al. Nov 2011 B1
8129281 Cheung et al. Mar 2012 B1
20010014529 Chen et al. Aug 2001 A1
20020000202 Yuda et al. Jan 2002 A1
20020045331 Aminpur Apr 2002 A1
20020078976 Nguyen Jun 2002 A1
20020090827 Yokoshima Jul 2002 A1
20020111041 Annapragada et al. Aug 2002 A1
20020132486 Williams et al. Sep 2002 A1
20020139775 Chang et al. Oct 2002 A1
20020185151 Qingyuan et al. Dec 2002 A1
20020187643 Gu et al. Dec 2002 A1
20020197870 Johnson Dec 2002 A1
20030045115 Fang Mar 2003 A1
20030045131 Verbeke et al. Mar 2003 A1
20040084412 Waldfried et al. May 2004 A1
20040248414 Tsai et al. Dec 2004 A1
20050079723 Niimi et al. Apr 2005 A1
20050106888 Chiu et al. May 2005 A1
20050158667 Nguyen et al. Jul 2005 A1
20050196967 Savas et al. Sep 2005 A1
20060046482 Verhaverbeke Mar 2006 A1
20060102197 Chiang et al. May 2006 A1
20060138399 Itano et al. Jun 2006 A1
20060154471 Minami Jul 2006 A1
20060163202 Shimizu et al. Jul 2006 A1
20060191478 Gondhalekar et al. Aug 2006 A1
20060201623 Yoo Sep 2006 A1
20060289384 Pavel et al. Dec 2006 A1
20070068900 Kim et al. Mar 2007 A1
20070144673 Yeom Jun 2007 A1
20070178698 Okita et al. Aug 2007 A1
20070224826 Delgadino et al. Sep 2007 A1
20070281491 Kamp Dec 2007 A1
20080026589 Hubacek et al. Jan 2008 A1
20080102646 Kawaguchi et al. May 2008 A1
20090053901 Goto et al. Feb 2009 A1
20090056875 Goto et al. Mar 2009 A1
20090200268 Tappan et al. Aug 2009 A1
20090221148 Uda et al. Sep 2009 A1
20100015812 Nishikawa Jan 2010 A1
20110139175 Cheung et al. Jun 2011 A1
20110139176 Cheung et al. Jun 2011 A1
20110143548 Cheung et al. Jun 2011 A1
Foreign Referenced Citations (2)
Number Date Country
1081754 Jul 2001 EP
2007019367 Jan 2007 JP
Non-Patent Literature Citations (72)
Entry
S.Wolf et al. Silicon Processing for the VLSI Era, (1986), Lattice Press, pp. 166-173.
Kikuchi et al., Native Oxide Removal on Si Surfaces by NF3-Added Hydrogen and Water Vapor Plasma Downstream Treatment, Jpn J. Appl. Phys. vol. 33 (1994), pp. 2207-2211, Part 1, No. 4B, Apr. 1994.
Woody K. Chung, “Downstream Plasma Removal of Mobile Ion Impurity From SIO2”, Published Proceedings of the 8th International Plasma Processing Symposium, Fall 1990, 7 pages.
Woody K, Chung, “Low Damage, Downstream RF Plasma Ashing of High Energy, Heavily Doped Implanted Resists,” Semicon Korea, Dec. 1989.
A. Kalnitsky and W. K. Chung, “Characterization and Optimization of a Single Wafer Downstream Plasma Stripper,” Journal of the Electrochemical Society, vol. 135, No. 9, Sep. 1988, pp. 2338-2341.
Goto et al., “Enhanced Stripping of Low-K Films Using Downstream Gas Mixing,” Novellus Systems, Inc., U.S. Appl. No. 10/890,653, filed Jul. 13, 2004.
U.S. Office Action for U.S. Appl. No. 10/890,653 mailed Jul. 27, 2005.
U.S. Final Office Action for U.S. Appl. No. 10/890,653 mailed Jan. 10, 2006.
U.S. Office Action for U.S. Appl. No. 10/890,653 mailed Jun. 26, 2006.
U.S. Office Action for U.S. Appl. No. 10/890,653 mailed Oct. 11, 2006.
U.S. Office Action for U.S. Appl. No. 10/890,653 mailed Apr. 5, 2007.
Notice of Allowance for U.S. Appl. No. 10/890,653 mailed Jun. 15, 2007.
Allowed Claims for U.S. Appl. No. 10/890,653.
Supplemental Notice of Allowance for U.S. Appl. No. 10/890,653 mailed Jul. 23, 2007.
Goto et al., “Enhanced Stripping of Low-K Films Using Downstream Gas Mixing,” Novellus Systems, Inc., U.S. Appl. No. 11/011,273, filed Dec. 13, 2004.
Notice of Allowance for U.S. Appl. No. 11/011,273 mailed Nov. 28, 2006.
Allowed Claims for U.S. Appl. No. 11/011,273.
Goto et al., “Enhanced Stripping of Low-K Films Using Downstream Gas Mixing,” Novellus Systems, Inc., U.S. Appl. No. 11/712,253, filed Feb. 27, 2007, pp. 1-28.
U.S. Office Action for U.S. Appl. No. 11/712,253 mailed Dec. 23, 2008.
Goto, et al., “Photoresist Strip Method For Low-K Dielectrics,” U.S. Appl. No. 11/859,727, filed Sep. 21, 2007.
U.S. Office Action for U.S. Appl. No. 11/859,727 mailed Oct. 6, 2008.
Notice of Allowance for U.S. Appl. No. 11/859,727 mailed May 1, 2009.
Allowed Claims for U.S. Appl. No. 11/859,727.
Goto, et al., “High Dose Implantation Strip (HDIS) In H2 Base Chemistry,” Novellus Systems, Inc., U.S. Appl. No. 12/251,305, filed Oct. 14, 2008.
Goto, et al., “Photoresist Strip Method For Low-K Dielectrics,” U.S. Appl. No. 12/533,461, filed Jul. 31, 2009.
U.S. Office Action for U.S. Appl. No. 11/712,253 mailed Jul. 17, 2009.
Chen, et al., “Method For Post-Etch Cleans,” U.S. Appl. No. 10/137,096, May 1, 2002.
U.S. Office Action for U.S. Appl. No. 10/137,096 mailed Jul. 11, 2003.
U.S. Final Office Action for U.S. Appl. No. 10/137,096 mailed Jul. 27, 2007.
Notice of Allowance for U.S. Appl. No. 10/137,096 mailed Jan. 15, 2008.
Allowed Claims for U.S. Appl. No. 10/137,096.
Chen, et al., “Method for Post-Etch Cleans,” U.S. Appl. No. 12/111,095, filed Aug. 28, 2008.
U.S. Office Action for U.S. Appl. No. 12/111,095 mailed Aug. 25, 2008.
Notice of Allowance for U.S. Appl. No. 12/111,095 mailed Apr. 3, 2009.
Allowed Claims for U.S. Appl. No. No. 12/111,095.
Chen, et al., “Method for Post-Etch Cleans,” U.S. Appl. No. 12/502,130, filed Jul. 31, 2009.
U.S. Office Action for U.S. Appl. No. 11/712,253 mailed Jan. 29, 2010.
Notice of Allowance for U.S. Appl. No. 11/548,801 mailed Feb. 17, 2010.
Cheung, et al., “Plasma Based Photoresist Removal System for Cleaning Post Ash Residue,” U.S. Appl. No. 11/128,930, filed May 12, 2005.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Sep. 13, 2006.
U.S. Final Office Action for U.S. Appl. No. 11/128,930 mailed Mar. 8, 2007.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Mar. 19, 2007.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Jun. 29, 2007.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Dec. 10, 2007.
U.S. Final Office Action for U.S. Appl. No. 11/128,930 mailed Jul. 21, 2008.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Mar. 20, 2009.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Sep. 17, 2009.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Feb. 26, 2010.
U.S. Final Office Action for U.S. Appl. No. 11/128,930 mailed Sep. 9, 2010.
U.S. Office Action for U.S. Appl. No. 12/533,461 mailed Nov. 5, 2010.
U.S. Office Action for U.S. Appl. No. 12/502,130 mailed Dec. 8, 2010.
Cheung, et al. “Ultra Low Silicon Loss High Dose Implant Strip,” U.S. Appl. No. 12/636,582, filed Dec. 11, 2009.
Cheung, et al. “Low Damage Photoresist Strip Method for Low-K Dielectrics,” U.S. Appl. No. 12/636,601, filed Dec. 11, 2009.
Cheung, et al. “Enhanced Passivation Process to Protect Silicon Prior to High Dose Implant Strip,” U.S. Appl. No. 12/963,503, filed Dec. 8, 2009.
U.S. Office Action for U.S. Appl. No. 11/712,253 mailed Mar. 1, 2011.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed May 10, 2011.
U.S. Final Office Action for U.S. Appl. No. 12/533,461 mailed May 26, 2011.
International Search Report and Written Opinion for Application No. PCT/US2010/059388 mailed Jun. 27, 2011.
International Search Report and Written Opinion for Application No. PCT/US2010/059547 mailed Jul. 13, 2011.
International Search Report and Written Opinion for Application No. PCT/US2010/059517 mailed Jul. 14, 2011.
Notice of Allowance for U.S. Appl. No. 12/533,461 mailed Aug. 12, 2011.
Allowed Claims as of Aug. 12, 2011 for U.S. Appl. No. 12/533,461.
Notice of Allowance for U.S. Appl. No. 12/502,130 mailed Aug. 12, 2011.
Allowed Claims as of Aug. 12, 2011 for U.S. Appl. No. 12/502,130.
U.S. Office Action for U.S. Appl. No. 12/251,305 mailed Nov. 2, 2011.
U.S. Office Action for U.S. Appl. No. 12/786,230 mailed Nov. 10, 2011.
Notice of Allowance for U.S. Appl. No. 11/128,930 mailed Oct. 28, 2011.
Allowed Claims as of Oct. 28, 2011, for U.S. Appl. No. 11/128,930.
Notice of Allowance for U.S. Appl. No. 12/251,305 mailed Feb. 17, 2012.
Allowed Claims as of Feb. 17, 2012 for U.S. Appl. No. 12/251,305.
U.S. Final Office Action for U.S. Appl. No. 12/786,230 mailed Apr. 26, 2012.
Singapore Written Opinion and Search Report mailed Feb. 2, 2012, for Application No. 201104086-2.
Related Publications (1)
Number Date Country
20080248656 A1 Oct 2008 US