MICROGLIAL GENE SILENCING USING DOUBLE-STRANDED SIRNA

Abstract
Microglia are an essential part of the immune system in the central nervous system, as well as potential sources of disease. Gene silencing employs short interfering RNA (siRNA) to selectively target genes that are the source of such diseases. By employing branched siRNA, distribution of the siRNA throughout the CNS, including to the resident microglial cells, may be enhanced as compared to unbranched siRNA. Methods and compositions for the use of branched siRNA in a therapy are contained herein.
Description
BACKGROUND OF THE INVENTION

In many species, introduction of double-stranded RNA (dsRNA) induces potent and specific gene silencing. This phenomenon occurs in both plants and animals and has roles in viral defense and transposon silencing mechanisms. Short interfering RNAs (siRNAs), which are generally much shorter than the target gene, have been shown to be effective at gene silencing.


Microglia are a type of glial cell found in the central nervous system (CNS). Microglia are an essential component of the CNS immune system; however, microglia with dysregulated genes can also be a source of disease. For example, a disease state may precipitate as a result of overactive microglial genes or genes with reduced expression and/or activity in microglia. Therefore, silencing of effector genes or pathway regulatory genes may be needed to restore normal gene network function and ameliorate the disease state. Thus, there remains a need for new and improved therapeutics capable of permeating microglial cells and silencing microglial genes in order to restore genetic and biochemical pathway activity in microglia from a disease state towards a normal healthy state.


SUMMARY OF THE INVENTION

In an aspect, the invention features a method of delivering a branched small interfering RNA (siRNA) molecule to a microglial cell in a subject in need of microglial gene silencing. The method may include administering the branched siRNA molecule to the subject (e.g., to the central nervous system of the subject).


In some embodiments, the subject has been diagnosed as having a disease associated with expression of a dysregulated microglial gene or dysregulated microglial gene pathway. In some embodiments, the subject has been diagnosed as having a disease associated with expression and/or activity of a dysregulated microglial gene (e.g., altered expression and/or activity of a wild-type or mutated microglial gene).


In some embodiments, the dysregulated microglial gene exhibits increased expression and/or activity in microglial cells of the subject as compared to the expression and/or activity of the microglial gene in microglial cells of a reference subject. In some embodiments, the dysregulated microglial gene exhibits reduced expression and/or activity in microglial cells of the subject as compared to the expression and/or activity of the microglial gene in microglial cells of a reference subject.


In some embodiments, the microglial gene is a positive regulator of a gene for which increased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.


In some embodiments, the microglial gene is a negative regulator of a gene for which decreased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.


In some embodiments, the microglial gene is a splice isoform of a gene for which overexpression of the splice isoform relative to the expression of the splice isoform in a reference subject is associated with a disease state.


In some embodiments, the disease is a neuroinflammatory disease or a neurodegenerative disease. In some embodiments, the disease is Alzheimer's disease. In some embodiments, the disease is Amyotrophic Lateral Sclerosis. In some embodiments, the disease is Parkinson's disease. In some embodiments, the disease is frontotemporal dementia. In some embodiments, the disease is Huntington's disease. In some embodiments, the disease is multiple sclerosis. In some embodiments, the disease is progressive supranuclear palsy.


In some embodiments, the dysregulated microglial gene is selected from the group consisting of ABCA7, ABI3, ADAM10, APOC1, APOE, AXL, BIN1, C1QA, C3, C9ORF72, CASS4, CCL5, CD2AP, CD33, CD68, CLPTM1, CLU, CR1, CSF1, CST7, CTSB, CTSD, CTSL, CXCL10, CXCL13, DSG2, ECHDC3, EPHA1, FABP5, FERMT2, FTH1, GNAS, GRN, HBEGF, HLA-DRB1, HLA-DRB5, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IGF1, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, ITGAX, LILRB4, LPL, MEF2C, MMP12, MS4A4A, MS4A6A, NLRP3, NME8, NOS2, PICALM, PILRA, PLCG2, PTK2B, SCIMP, SLC24A4, SORL1, SPI1, SPP1, SPPL2A, TBK1, TNF, TREM2, TREML2, TYROBP, and ZCWPW1.


In some embodiments, the subject is a mammal (e.g., a human).


In some embodiments, the branched siRNA is administered to the subject intrathecally, intracerebroventricularly, or intrastriatally.


In some embodiments, the siRNA molecule is di-branched. In some embodiments, the siRNA molecule is tri-branched. In some embodiments, the siRNA molecule is tetra-branched.


In some embodiments, the siRNA comprises (i) an antisense strand having complementarity to a portion of one or more of genes selected from the group consisting of APOE, BIN1, C1QA, C3, C9ORF72, CCL5, CD33, CLU/APOJ, CR1, CXCL10, CXCL13, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, MEF2C, MMP12, NLRP3, NOS2, PILRA, PLCG2, PTK2B, SLC24A4, TBK1, and TNF and (ii) a sense strand having complementarity to the antisense strand.


In some embodiments, the siRNA includes (i) an antisense strand having complementarity to a portion of a gene encoding a positive regulator of a gene for which increased expression and/or activity (relative, e.g., to the level of expression and/or activity observed in a reference subject) is associated with a disease state.


In some embodiments, the siRNA includes (i) an antisense strand having complementarity to a portion of a gene encoding a negative regulator of a gene for which decreased expression and/or activity (relative, e.g., to the level of expression and/or activity observed in a reference subject) is associated with a disease state.


In some embodiments, the siRNA includes (i) an antisense strand having complementarity to a splice isoform of a gene for which overexpression of the splice isoform relative to the expression of the splice isoform in a reference subject is associated with a disease state.


In any of the foregoing embodiments, the siRNA may also include (ii) a sense strand having complementarity to the antisense strand.


In some embodiment, the antisense strand has complementarity (e.g., at least 85% complementarity, such as 85% complementarity, 86% complementarity, 87% complementarity, 88% complementarity, 89% complementarity, 90% complementarity, 91% complementarity, 92% complementarity, 93% complementarity, 94% complementarity, 95% complementarity, 96% complementarity, 97% complementarity, 98% complementarity, 99% complementarity, or 100% complementarity) to a portion of at least 10 contiguous nucleotides of an mRNA molecule encoding one or more of the above genes. For example, the antisense strand may have complementarity to a portion of 10 contiguous nucleotides, 11 contiguous nucleotides, 12 contiguous nucleotides, 13 contiguous nucleotides, 14 contiguous nucleotides, 15 contiguous nucleotides, 16 contiguous nucleotides, 17 contiguous nucleotides, 18 contiguous nucleotides, 19 contiguous nucleotides, 20 contiguous nucleotides, 21 contiguous nucleotides, 22 contiguous nucleotides, 23 contiguous nucleotides, 24 contiguous nucleotides, 25 contiguous nucleotides, 26 contiguous nucleotides, 27 contiguous nucleotides, 28 contiguous nucleotides, 29 contiguous nucleotides, 30 contiguous nucleotides, 31 contiguous nucleotides, 32 contiguous nucleotides 33 contiguous nucleotides, 34 contiguous nucleotides, contiguous nucleotides, 36 contiguous nucleotides, 37 contiguous nucleotides, 38 contiguous nucleotides, 39 contiguous nucleotides, 40 contiguous nucleotides, 41 contiguous nucleotides, 42 contiguous nucleotides, 43 contiguous nucleotides, 44 contiguous nucleotides, 45 contiguous nucleotides, 46 contiguous nucleotides, 47 contiguous nucleotides, 48 contiguous nucleotides, 49 contiguous nucleotides, or 50 contiguous nucleotides, or more, of an mRNA molecule encoding one or more of the above genes.


In some embodiments, the antisense strand has complementarity (e.g., at least 85% complementarity, such as 85% complementarity, 86% complementarity, 87% complementarity, 88% complementarity, 89% complementarity, 90% complementarity, 91% complementarity, 92% complementarity, 93% complementarity, 94% complementarity, 95% complementarity, 96% complementarity, 97% complementarity, 98% complementarity, 99% complementarity, or 100% complementarity) to a portion of from 10 to 50 contiguous nucleotides of an mRNA molecule encoding one or more of the above genes. For example, the antisense strand may have complementarity to a portion of from 11 contiguous nucleotides to 45 contiguous nucleotides, from 12 contiguous nucleotides to contiguous nucleotides, from 13 contiguous nucleotides to 35 contiguous nucleotides, from 14 contiguous nucleotides to 30 contiguous nucleotides, from 15 contiguous nucleotides to 29 contiguous nucleotides, from 16 contiguous nucleotides to 28 contiguous nucleotides, from 17 contiguous nucleotides to 27 contiguous nucleotides, from 18 contiguous nucleotides to 26 contiguous nucleotides, or from 19 contiguous nucleotides to 22 contiguous nucleotides of an mRNA molecule encoding one or more of the above genes.


In some embodiments, the antisense strand comprises a region represented by the following chemical formula, in the 5′-to-3′ direction:





Z-((A-P-)n(B-P-)m)q;


wherein Z is a 5′ phosphorus stabilizing moiety; each A is, independently, a 2′-O-methyl (2′-O-Me) ribonucleoside; each B is, independently, a 2′-fluoro-ribonucleoside; each P is, independently, an internucleoside linkage selected from a phosphodiester linkage and a phosphorothioate linkage; n is an integer from 1 to 5 (e.g., 1, 2, 3, 4, or 5); m is an integer from 1 to 5 (e.g., 1, 2, 3, 4, or 5); and q is an integer between 1 and 15 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15).


In some embodiments, the antisense strand has a structure represented by Formula A-I, wherein Formula A-I is, in the 5′-to-3′ direction:





A-B-(A′)j-C-P2-D-P1-(C′-P1)k-C′   Formula A-I;

    • wherein A is represented by the formula C-P1-D-P1;
    • each A′ is represented by the formula C-P2-D-P2;
    • B is represented by the formula C-P2-D-P2-D-P2-D-P2;
    • each C is a 2′-O-methyl (2′-O-Me) ribonucleoside;
    • each C′, independently, is a 2′-O-Me ribonucleoside or a 2′-fluoro (2′-F) ribonucleoside;
    • each D is a 2′-F ribonucleoside;
    • each P1 is a phosphorothioate internucleoside linkage;
    • each P2 is a phosphodiester internucleoside linkage;
    • j is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and
    • k is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, the antisense strand has a structure represented by Formula A1, wherein Formula A1 is, in the 5′-to-3′ direction:





A-S-B-S-A-O-B-O-B-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-A-S-A-S-B-S-A   Formula A1;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the antisense strand has a structure represented by Formula A-II, wherein Formula A-II is, in the 5′-to-3′ direction:





A-B-(A′)j-C-P2-D-P1-(C-P1)k-C′   Formula A-I;

    • wherein A is represented by the formula C-P1-D-P1;
    • each A′ is represented by the formula C-P2-D-P2;
    • B is represented by the formula C-P2-D-P2-D-P2-D-P2;
    • each C is a 2′-O-methyl (2′-O-Me) ribonucleoside;
    • each C′, independently, is a 2′-O-Me ribonucleoside or a 2′-fluoro (2′-F) ribonucleoside;
    • each D is a 2′-F ribonucleoside;
    • each P1 is a phosphorothioate internucleoside linkage;
    • each P2 is a phosphodiester internucleoside linkage;
    • j is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and
    • k is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, antisense strand has a structure represented by Formula A2, wherein Formula A2 is, in the 5′-to-3′ direction:





A-S-B-S-A-O-B-O-B-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-A-S-A-S-A-S-A   Formula A2;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S-III, wherein Formula S-III is, in the 5′-to-3′ direction:





E-(A′)m-F   Formula S-III;

    • wherein E is represented by the formula (C-P1)2;
    • F is represented by the formula (C-P2)3-D-P1-C-P1-C, (C-P2)3-D-P2-C-P2-C, (C-P2)3-D-P1-C-P1-D, or (C-P2)3-D-P2-C-P2-D;
    • A′, C, D, P1, and P2 are as defined in Formula II; and
    • m is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, the sense strand has a structure represented by Formula S1, wherein Formula S1 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A-O-A-O-B-S-A-S-A   Formula S1;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S2, wherein Formula S2 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A-O-A-O-B-O-A-O-A   Formula S2;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S3, wherein Formula S3 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A-O-A-O-B-S-A-S-B   Formula S3;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S4, wherein Formula S4 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A-O-A-O-B-O-A-O-B   Formula S4;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the antisense strand has a structure represented by Formula A-IV, wherein Formula A-IV is, in the 5′-to-3′ direction:





A-(A′)j-C-P2-B-(C-P1)k-C′   Formula A-IV;

    • wherein A is represented by the formula C-P1-D-P1;
    • each A′ is represented by the formula C-P2-D-P2;
    • B is represented by the formula D-P1-C-P1-D-P1;
    • each C is a 2′-O-Me ribonucleoside;
    • each C′, independently, is a 2′-O-Me ribonucleoside or a 2′-F ribonucleoside;
    • each D is a 2′-F ribonucleoside;
    • each P1 is a phosphorothioate internucleoside linkage;
    • each P2 is a phosphodiester internucleoside linkage;
    • j is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and
    • k is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, the antisense strand has a structure represented by Formula A3, wherein Formula A3 is, in the 5′-to-3′ direction:





A-S-B-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-B-S-A-S-A-S-A   Formula A3;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S-V, wherein Formula S-V is, in the 5′-to-3′ direction:





E-(A′)m-C-P2-F Formula S-V;

    • wherein E is represented by the formula (C-P1)2;
    • F is represented by the formula D-P1-C-P1-C, D-P2-C-P2-C, D-P1-C-P1-D, or D-P2-C-P2-D;
    • A′, C, D, P1 and P2 are as defined in Formula IV; and
    • m is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, the sense strand has a structure represented by Formula S5, wherein Formula S5 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-A   Formula S5;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S6, wherein Formula S6 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A   Formula S6;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S7, wherein Formula S7 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-B   Formula S7;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S8, wherein Formula S8 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B   Formula S8;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the antisense strand has a structure represented by Formula A-VI, wherein Formula A-VI is, in the 5′-to-3′ direction:





A-Bj-E-Bk-E-F-Gl-D-P1-C′   Formula A-VI;

    • wherein A is represented by the formula C-P1-D-P1;
    • each B is represented by the formula C-P2;
    • each C is a 2′-O-Me ribonucleoside;
    • each C′, independently, is a 2′-O-Me ribonucleoside or a 2′-F ribonucleoside;
    • each D is a 2′-F ribonucleoside;
    • each E is represented by the formula D-P2-C-P2;
    • F is represented by the formula D-P1-C-P1;
    • each G is represented by the formula C-P1;
    • each P1 is a phosphorothioate internucleoside linkage;
    • each P2 is a phosphodiester internucleoside linkage;
    • j is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7);
    • k is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and
    • I is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, the antisense strand has a structure represented by Formula A4, wherein Formula A4 is, in the 5′-to-3′ direction:





A-S-B-S-A-O-A-O-A-O-B-O-A-O-A-O-A-O-A-O-A-O-A-O-A-O-B-O-A-O-B-S-A-S-A-S-A-S-B-S-A   Formula A4;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S-VII, wherein Formula S-VII is, in the 5′-to-3′ direction:





H-Bm-In-A′-Bo-H-C   Formula S-VII;

    • wherein A′ is represented by the formula C-P2-D-P2;
    • each H is represented by the formula (C-P1)2;
    • each I is represented by the formula (D-P2);
    • B, C, D, P1 and P2 are as defined in Formula VI;
    • m is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7);
    • n is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and
    • o is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, the sense strand has a structure represented by Formula S9, wherein Formula S9 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-A-O-A-O-B-O-B-O-B-O-A-O-B-O-A-O-A-O-A-O-A-S-A-S-A   Formula S9;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the antisense strand also has a 5′ phosphorus stabilizing moiety at the 5′ end of the antisense strand.


In some embodiments, the sense strand also has a 5′ phosphorus stabilizing moiety at the 5′ end of the sense strand.


In some embodiments, each 5′-phosphorus stabilizing moiety is, independently represented by any one of Formula I-VIII:




embedded image


embedded image




    • wherein Nuc represents a nucleobase, such as adenine, uracil, guanine, thymine, or cytosine, and R represents optionally substituted alkyl, optionally substituted alkenyl, or optionally substituted alkynyl (e.g., optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, or optionally substituted C2-C6 alkynyl), phenyl, benzyl, hydroxy, or hydrogen.





In some embodiments, Z is (E)-vinylphosphonate as represented in Formula III.


In some embodiments, n is from 1 to 4. In some embodiments, n is from 1 to 3. In some embodiments, n is from 1 to 2. In some embodiments, n is 1.


In some embodiments, m is from 1 to 4. In some embodiments, m is from 1 to 3. In some embodiments, m is from 1 to 2. In some embodiments, m is 1.


In some embodiments, n and m are each 1.


In some embodiments, 50% or more of the ribonucleotides in the antisense strand are 2′-O-Me ribonucleotides (e.g., 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the ribonucleotides in the antisense strand may be 2′-O-Me ribonucleotides).


In some embodiments, 60% or more of the ribonucleotides in the antisense strand are 2′-O-Me ribonucleotides (e.g., 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the ribonucleotides in the antisense strand may be 2′-O-Me ribonucleotides).


In some embodiments, 70% or more of the ribonucleotides in the antisense strand are 2′-O-Me ribonucleotides (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the ribonucleotides in the antisense strand may be 2′-O-Me ribonucleotides).


In some embodiments, 80% or more of the ribonucleotides in the antisense strand are 2′-O-Me ribonucleotides (e.g., 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the ribonucleotides in the antisense strand may be 2′-O-Me ribonucleotides).


In some embodiments, 90% or more of the ribonucleotides in the antisense strand are 2′-O-Me ribonucleotides (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the ribonucleotides in the antisense strand may be 2′-O-Me ribonucleotides).


In some embodiments, 10% or less of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages. In some embodiments, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.


In some embodiments, 100% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.


In some embodiments, 9 internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.


In some embodiments, the length of the antisense strand is between 10 and 30 nucleotides (e.g., nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, or 30 nucleotides), 15 and 25 nucleotides (e.g., 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, or 25 nucleotides), or 18 and 23 nucleotides (e.g., 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, or 23 nucleotides). In some embodiments, the length of the antisense strand is 20 nucleotides. In some embodiments, the length of the antisense strand is 21 nucleotides. In some embodiments, the length of the antisense strand is 22 nucleotides. In some embodiments, the length of the antisense strand is 23 nucleotides. In some embodiments, the length of the antisense strand is 24 nucleotides. In some embodiments, the length of the antisense strand is 25 nucleotides. In some embodiments, the length of the antisense strand is 26 nucleotides. In some embodiments, the length of the antisense strand is 27 nucleotides. In some embodiments, the length of the antisense strand is 28 nucleotides. In some embodiments, the length of the antisense strand is 29 nucleotides. In some embodiments, the length of the antisense strand is 30 nucleotides.


In some embodiments, the siRNA molecules of the branched compound are joined to one another by way of a linker (e.g., an ethylene glycol oligomer, such as tetraethylene glycol). In some embodiments, the siRNA molecules of the branched compound are joined to one another by way of a linker between the sense strand of one siRNA molecule and the sense strand of the other siRNA molecule. In some embodiments, the siRNA molecules are joined by way of linkers between the antisense strand of one siRNA molecule and the antisense strand of the other siRNA molecule. In some embodiments, the siRNA molecules of the branched compound are joined to one another by way of a linker between the sense strand of one siRNA molecule and the antisense strand of the other siRNA molecule.


In some embodiments, the length of the sense strand is between 12 and 30 nucleotides (e.g., 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, or 30 nucleotides), or 14 and 18 nucleotides (e.g., 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, or 18 nucleotides). In some embodiments, the length of the sense strand is 15 nucleotides. In some embodiments, the length of the sense strand is 16 nucleotides. In some embodiments, the length of the sense strand is 17 nucleotides. In some embodiments, the length of the sense strand is 18 nucleotides. In some embodiments, the length of the sense strand is 19 nucleotides. In some embodiments, the length of the sense strand is 20 nucleotides. In some embodiments, the length of the sense strand is 21 nucleotides. In some embodiments, the length of the sense strand is 22 nucleotides. In some embodiments, the length of the sense strand is 23 nucleotides. In some embodiments, the length of the sense strand is 24 nucleotides. In some embodiments, the length of the sense strand is 25 nucleotides. In some embodiments, the length of the sense strand is 26 nucleotides. In some embodiments, the length of the sense strand is 27 nucleotides. In some embodiments, the length of the sense strand is 28 nucleotides. In some embodiments, the length of the sense strand is 29 nucleotides.


In some embodiments, the length of the sense strand is 30 nucleotides.


In some embodiments, 4 internucleoside linkages are phosphorothioate linkages.


In some embodiments, the antisense strand is 18 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 18 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 18 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 18 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 18 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 19 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 19 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 19 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 19 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 19 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 19 nucleotides in length and the sense strand is 19 nucleotides in length.


In some embodiments, the antisense strand is 20 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 20 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 20 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 20 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 20 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 20 nucleotides in length and the sense strand is 19 nucleotides in length.


In some embodiments, the antisense strand is 20 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 21 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 21 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 21 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 21 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 21 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 21 nucleotides in length and the sense strand is 19 nucleotides in length.


In some embodiments, the antisense strand is 21 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 21 nucleotides in length and the sense strand is 21 nucleotides in length.


In some embodiments, the antisense strand is 22 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 22 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 22 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 22 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 22 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 22 nucleotides in length and the sense strand is 19 nucleotides in length.


In some embodiments, the antisense strand is 22 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 22 nucleotides in length and the sense strand is 21 nucleotides in length.


In some embodiments, the antisense strand is 22 nucleotides in length and the sense strand is 22 nucleotides in length.


In some embodiments, the antisense strand is 23 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 23 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 23 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 23 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 23 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 23 nucleotides in length and the sense strand is 19 nucleotides in length.


In some embodiments, the antisense strand is 23 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 23 nucleotides in length and the sense strand is 21 nucleotides in length.


In some embodiments, the antisense strand is 23 nucleotides in length and the sense strand is 22 nucleotides in length.


In some embodiments, the antisense strand is 23 nucleotides in length and the sense strand is 23 nucleotides in length.


In some embodiments, the antisense strand is 24 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 24 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 24 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 24 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 24 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 24 nucleotides in length and the sense strand is 19 nucleotides in length.


In some embodiments, the antisense strand is 24 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 24 nucleotides in length and the sense strand is 21 nucleotides in length.


In some embodiments, the antisense strand is 24 nucleotides in length and the sense strand is 22 nucleotides in length.


In some embodiments, the antisense strand is 24 nucleotides in length and the sense strand is 23 nucleotides in length.


In some embodiments, the antisense strand is 24 nucleotides in length and the sense strand is 24 nucleotides in length.


In some embodiments, the antisense strand is 25 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 25 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 25 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 25 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 25 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 25 nucleotides in length and the sense strand is 19 nucleotides in length.


In some embodiments, the antisense strand is 25 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 25 nucleotides in length and the sense strand is 21 nucleotides in length.


In some embodiments, the antisense strand is 25 nucleotides in length and the sense strand is 22 nucleotides in length.


In some embodiments, the antisense strand is 25 nucleotides in length and the sense strand is 23 nucleotides in length.


In some embodiments, the antisense strand is 25 nucleotides in length and the sense strand is 24 nucleotides in length.


In some embodiments, the antisense strand is 25 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is 19 nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is 21 nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is 22 nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is 23 nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is 24 nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 26 nucleotides in length and the sense strand is 26 nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is 19 nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is 21 nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is 22 nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is 23 nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is 24 nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is 26 nucleotides in length.


In some embodiments, the antisense strand is 27 nucleotides in length and the sense strand is 27 nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is 19 nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is 21 nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is 22 nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is 23 nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is 24 nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is 26 nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is 27 nucleotides in length.


In some embodiments, the antisense strand is 28 nucleotides in length and the sense strand is 28 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 19 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 21 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 22 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 23 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 24 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 26 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 27 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 28 nucleotides in length.


In some embodiments, the antisense strand is 29 nucleotides in length and the sense strand is 29 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 14 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 16 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 17 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 18 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 19 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 21 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 22 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 23 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 24 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 26 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 27 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 28 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is 29 nucleotides in length.


In some embodiments, the antisense strand is 30 nucleotides in length and the sense strand is nucleotides in length.


In another aspect, the invention features a branched siRNA molecule including a sense strand and an antisense strand, wherein the antisense strand includes a region having complementarity to a segment of contiguous nucleotides within a gene selected from the group consisting of APOE, BIN1, C1QA, C3, C9ORF72, CCL5, CD33, CLU/APOJ, CR1, CXCL10, CXCL13, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, MEF2C, MMP12, NLRP3, NOS2, PILRA, PLCG2, PTK2B, SLC24A4, TBK1, and TNF.


In some embodiments, the antisense strand has complementarity to a portion of a gene encoding a positive regulator of a gene for which increased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.


In some embodiments, the antisense strand has complementarity to a portion of a gene encoding a negative regulator of a gene for which decreased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.


In some embodiments, the antisense strand has complementarity to a splice isoform of a gene for which overexpression of the splice isoform relative to the expression of the splice isoform in a reference subject is associated with a disease state.


In some embodiments, the sense strand has complementarity to the antisense strand.


In some embodiments, the siRNA molecule is di-branched. In some embodiments, the siRNA molecule is tri-branched. In some embodiments, the siRNA molecule is tetra-branched.


In some embodiments, the antisense strand of the branched siRNA has the following Formula in the 5′-to-3′ direction:





Z-((A-P-)n(B-P-)m)q;


wherein Z is a 5′ phosphorus stabilizing moiety; each A is, independently, a 2′-O-Me ribonucleoside; each B is, independently, a 2′-fluoro-ribonucleoside; each P is, independently, an internucleoside linkage selected from a phosphodiester linkage and a phosphorothioate linkage; n is an integer from 1 to 5 (e.g., 1, 2, 3, 4, or 5); m is an integer from 1 to 5 (e.g., 1, 2, 3, 4, or 5); and q is an integer between 1 and 15 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15).


In some embodiments, the antisense strand has a structure represented by Formula A-I, wherein Formula A-I is, in the 5′-to-3′ direction:





A-B-(A′)j-C-P2-D-P1-(C′-P1)k-C′   Formula A-I;

    • wherein A is represented by the formula C-P1-D-P1;
    • each A′ is represented by the formula C-P2-D-P2;
    • B is represented by the formula C-P2-D-P2-D-P2-D-P2;
    • each C is a 2′-O-methyl (2′-O-Me) ribonucleoside;
    • each C′, independently, is a 2′-O-Me ribonucleoside or a 2′-fluoro (2′-F) ribonucleoside;
    • each D is a 2′-F ribonucleoside;
    • each P1 is a phosphorothioate internucleoside linkage;
    • each P2 is a phosphodiester internucleoside linkage;
    • j is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and
    • k is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, the antisense strand has a structure represented by Formula A1, wherein Formula A1 is, in the 5′-to-3′ direction:





A-S-B-S-A-O-B-O-B-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-A-S-A-S-B-S-A   Formula A1;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the antisense strand has a structure represented by Formula A-II, wherein Formula A-II is, in the 5′-to-3′ direction:





A-B-(A′)j-C-P2-D-P1-(C-P1)k-C′   Formula A-I;

    • wherein A is represented by the formula C-P1-D-P1;
    • each A′ is represented by the formula C-P2-D-P2;
    • B is represented by the formula C-P2-D-P2-D-P2-D-P2;
    • each C is a 2′-O-methyl (2′-O-Me) ribonucleoside;
    • each C′, independently, is a 2′-O-Me ribonucleoside or a 2′-fluoro (2′-F) ribonucleoside;
    • each D is a 2′-F ribonucleoside;
    • each P1 is a phosphorothioate internucleoside linkage;
    • each P2 is a phosphodiester internucleoside linkage;
    • j is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and
    • k is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, antisense strand has a structure represented by Formula A2, wherein Formula A2 is, in the 5′-to-3′ direction:





A-S-B-S-A-O-B-O-B-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-A-S-A-S-A-S-A   Formula A2;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S-III, wherein Formula S-III is, in the 5′-to-3′ direction:





E-(A′)m-F   Formula S-III;

    • wherein E is represented by the formula (C-P1)2;
    • F is represented by the formula (C-P2)3-D-P1-C-P1-C, (C-P2)3-D-P2-C-P2-C, (C-P2)3-D-P1-C-P1-D, or (C-P2)3-D-P2-C-P2-D;
    • A′, C, D, P1, and P2 are as defined in Formula II; and
    • m is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, the sense strand has a structure represented by Formula S1, wherein Formula S1 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A-O-A-O-B-S-A-S-A   Formula S1;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S2, wherein Formula S2 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A-O-A-O-B-O-A-O-A   Formula S2;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S3, wherein Formula S3 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A-O-A-O-B-S-A-S-B   Formula S3;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S4, wherein Formula S4 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A-O-A-O-B-O-A-O-B   Formula S4;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the antisense strand has a structure represented by Formula A-IV, wherein Formula A-IV is, in the 5′-to-3′ direction:





A-(A′)j-C-P2-B-(C-P1)k-C′   Formula A-IV;

    • wherein A is represented by the formula C-P1-D-P1;
    • each A′ is represented by the formula C-P2-D-P2;
    • B is represented by the formula D-P1-C-P1-D-P1;
    • each C is a 2′-O-Me ribonucleoside;
    • each C′, independently, is a 2′-O-Me ribonucleoside or a 2′-F ribonucleoside;
    • each D is a 2′-F ribonucleoside;
    • each P1 is a phosphorothioate internucleoside linkage;
    • each P2 is a phosphodiester internucleoside linkage;
    • j is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and
    • k is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, the antisense strand has a structure represented by Formula A3, wherein Formula A3 is, in the 5′-to-3′ direction:





A-S-B-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-B-S-A-S-A-S-A   Formula A3;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S-V, wherein Formula S-V is, in the 5′-to-3′ direction:





E-(A′)m-C-P2-F   Formula S-V;

    • wherein E is represented by the formula (C-P1)2;
    • F is represented by the formula D-P1-C-P1-C, D-P2-C-P2-C, D-P1-C-P1-D, or D-P2-C-P2-D;
    • A′, C, D, P1 and P2 are as defined in Formula IV; and
    • m is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, the sense strand has a structure represented by Formula S5, wherein Formula S5 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-A   Formula S5;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S6, wherein Formula S6 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A   Formula S6;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S7, wherein Formula S7 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-B   Formula S7;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S8, wherein Formula S8 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B   Formula S8;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the antisense strand has a structure represented by Formula A-VI, wherein Formula A-VI is, in the 5′-to-3′ direction:





A-Bj-E-Bk-E-F-Gl-D-P1-C′   Formula A-VI;

    • wherein A is represented by the formula C-P1-D-P1;
    • each B is represented by the formula C-P2;
    • each C is a 2′-O-Me ribonucleoside;
    • each C′, independently, is a 2′-O-Me ribonucleoside or a 2′-F ribonucleoside;
    • each D is a 2′-F ribonucleoside;
    • each E is represented by the formula D-P2-C-P2;
    • F is represented by the formula D-P1-C-P1;
    • each G is represented by the formula C-P1;
    • each P1 is a phosphorothioate internucleoside linkage;
    • each P2 is a phosphodiester internucleoside linkage;
    • j is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7);
    • k is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and
    • I is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, the antisense strand has a structure represented by Formula A4, wherein Formula A4 is, in the 5′-to-3′ direction:





A-S-B-S-A-O-A-O-A-O-B-O-A-O-A-O-A-O-A-O-A-O-A-O-A-O-B-O-A-O-B-S-A-S-A-S-A-S-B-S-A   Formula A4;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the sense strand has a structure represented by Formula S-VII, wherein Formula S-VII is, in the 5′-to-3′ direction:





H-Bm-In-A′-Bo-H-C   Formula S-VII;

    • wherein A′ is represented by the formula C-P2-D-P2;
    • each H is represented by the formula (C-P1)2;
    • each I is represented by the formula (D-P2);
    • B, C, D, P1 and P2 are as defined in Formula VI;
    • m is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7);
    • n is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and
    • o is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7).


In some embodiments, the sense strand has a structure represented by Formula S9, wherein Formula S9 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-A-O-A-O-B-O-B-O-B-O-A-O-B-O-A-O-A-O-A-O-A-S-A-S-A   Formula S9;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments, the antisense strand also has a 5′ phosphorus stabilizing moiety at the 5′ end of the antisense strand.


In some embodiments, the sense strand also has a 5′ phosphorus stabilizing moiety at the 5′ end of the sense strand.


In some embodiments, each 5′-phosphorus stabilizing moiety is, independently, represented by any one of Formula I-VIII:




embedded image


embedded image


wherein Nuc represents a nucleobase, such as adenine, uracil, guanine, thymine, or cytosine, and R represents optionally substituted alkyl, optionally substituted alkenyl, or optionally substituted alkynyl (e.g., optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, or optionally substituted C2-C6 alkynyl), phenyl, benzyl, hydroxy, or hydrogen.


In some embodiments, Z is (E)-vinylphosphonate as represented in Formula III.


In some embodiments, each P is independently selected from phosphodiester and phosphorothioate.


In some embodiments, n is from 1 to 4 (e.g., 1, 2, 3, or 4), 1 to 3 (e.g., 1, 2, or 3), or 1 to 2. In some embodiments, n is 1.


In some embodiments, m is from 1 to 4 (e.g., 1, 2, 3, or 4), 1 to 3 (e.g., 1, 2, or 3), or 1 to 2. In some embodiments, m is 1.


In some embodiments, n and m are each 1.


In some embodiments, 50% or more of the ribonucleotides in the antisense strand are 2′-O-Me ribonucleotides (e.g., 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the ribonucleotides in the antisense strand may be 2′-O-Me ribonucleotides).


In some embodiments, 60% or more of the ribonucleotides in the antisense strand are 2′-O-Me ribonucleotides (e.g., 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the ribonucleotides in the antisense strand may be 2′-O-Me ribonucleotides).


In some embodiments, 70% or more of the ribonucleotides in the antisense strand are 2′-O-Me ribonucleotides (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the ribonucleotides in the antisense strand may be 2′-O-Me ribonucleotides).


In some embodiments, 80% or more of the ribonucleotides in the antisense strand are 2′-O-Me ribonucleotides (e.g., 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the ribonucleotides in the antisense strand may be 2′-O-Me ribonucleotides).


In some embodiments, 90% or more of the ribonucleotides in the antisense strand are 2′-O-Me ribonucleotides (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of the ribonucleotides in the antisense strand may be 2′-O-Me ribonucleotides).


In some embodiments, 10% or less of the internucleoside linkages are phosphodiester linkages or phosphorothioate. In some embodiments, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the internucleoside linkages are phosphodiester linkages or phosphorothioate. In some embodiments, 100% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.


In some embodiments, the length of the antisense strand is between 10 and 30 nucleotides (e.g., nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, or 30 nucleotides), 15 and 25 nucleotides (e.g., 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, or 25 nucleotides), or 18 and 23 nucleotides (e.g., 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, or 23 nucleotides). In some embodiments, the length of the antisense strand is 21 nucleotides. In some embodiments, the length of the antisense strand is 22 nucleotides. In some embodiments, the length of the antisense strand is 23 nucleotides. In some embodiments, the length of the antisense strand is 24 nucleotides. In some embodiments, the length of the antisense strand is 25 nucleotides. In some embodiments, the length of the antisense strand is 26 nucleotides. In some embodiments, the length of the antisense strand is 27 nucleotides. In some embodiments, the length of the antisense strand is 28 nucleotides. In some embodiments, the length of the antisense strand is 29 nucleotides. In some embodiments, the length of the antisense strand is 30 nucleotides.


In some embodiments, 9 internucleoside linkages are phosphorothioate.


In some embodiments, the sense strand of the branched siRNA has the following formula in the 5′-to-3′ direction:





Y-((A-P-)n(B-P-)m)qL-((B-P-)m(A-P-)n)q;


wherein Y is a hydrophobic moiety (e.g., cholesterol, vitamin D, or tocopherol); Lisa linker; each A is, independently, a 2′-O-Me ribonucleoside; each B is, independently, a 2′-fluoro-ribonucleoside; each P is, independently, an internucleoside linkage selected from a phosphodiester linkage and a phosphorothioate linkage; n is an integer from 1 to 5 (1, 2, 3, 4, or 5); M is an integer from 1 to 5 (1, 2, 3, 4, or 5); and q is an integer between 1 and 15 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15).


In some embodiments, Y is cholesterol.


In some embodiments, Y tocopherol.


In some embodiments, L is an ethylene glycol oligomer.


In some embodiments, L is tetraethylene glycol.


In some embodiments, each P is independently selected from phosphodiester and phosphorothioate.


In some embodiments, n is from 1 to 4 (e.g., 1, 2, 3, or 4), 1 to 3 (e.g., 1, 2, or 3), or 1 to 2. In some embodiments, n is 1.


In some embodiments, m is from 1 to 4 (e.g., 1, 2, 3, or 4), 1 to 3 (e.g., 1, 2, or 3), or 1 to 2. In some embodiments, m is 1.


In some embodiments, n and m are each 1.


In some embodiments, 10% or less of the ribonucleosides are 2′-O-Me ribonucleoside.


In some embodiments, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the ribonucleosides are 2′-O-Me ribonucleoside.


In some embodiments, 10% or less of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages. In some embodiments, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages. In some embodiments, 100% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.


In some embodiments, the length of the sense strand is between 12 and 30 nucleotides (e.g., 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21, nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, or 30 nucleotides), or 14 and 18 nucleotides (e.g., 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides). In some embodiments, the length of the sense strand is 16 nucleotides. In some embodiments, the length of the sense strand is 17 nucleotides. In some embodiments, the length of the sense strand is 18 nucleotides. In some embodiments, the length of the sense strand is 19 nucleotides. In some embodiments, the length of the sense strand is 20 nucleotides. In some embodiments, the length of the sense strand is 21 nucleotides. In some embodiments, the length of the sense strand is 22 nucleotides. In some embodiments, the length of the sense strand is 23 nucleotides. In some embodiments, the length of the sense strand is 24 nucleotides. In some embodiments, the length of the sense strand is 25 nucleotides. In some embodiments, the length of the sense strand is 26 nucleotides. In some embodiments, the length of the sense strand is 27 nucleotides. In some embodiments, the length of the sense strand is 28 nucleotides. In some embodiments, the length of the sense strand is 29 nucleotides. In some embodiments, the length of the sense strand is 30 nucleotides.


In some embodiments, 4 internucleoside linkages are phosphorothioate.


In another aspect, the invention features a method of treating a subject diagnosed as having a disease associated with expression of a dysregulated microglial gene (e.g., wild-type or mutated microglial gene), the method includes administering to the subject the branched siRNA molecule of any one of the above aspects or embodiments.


In some embodiments, the dysregulated microglial gene is selected from the group consisting of ABCA7, ABI3, ADAM10, APOC1, APOE, AXL, BIN1, C1QA, C3, C9ORF72, CASS4, CCL5, CD2AP, CD33, CD68, CLPTM1, CLU, CR1, CSF1, CST7, CTSB, CTSD, CTSL, CXCL10, CXCL13, DSG2, ECHDC3, EPHA1, FABP5, FERMT2, FTH1, GNAS, GRN, HBEGF, HLA-DRB1, HLA-DRB5, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IGF1, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, ITGAX, LILRB4, LPL, MEF2C, MMP12, MS4A4A, MS4A6A, NLRP3, NME8, NOS2, PICALM, PILRA, PLCG2, PTK2B, SCIMP, SLC24A4, SORL1, SPI1, SPP1, SPPL2A, TBK1, TNF, TREM2, TREML2, TYROBP, and ZCWPW1.


In some embodiments, the dysregulated microglial gene exhibits increased expression and/or activity in microglial cells of the subject as compared to the expression and/or activity of the same gene in microglial cells of a reference subject.


In some embodiments, the dysregulated microglial gene exhibits reduced expression and/or activity in microglial cells of the subject as compared to the expression and/or activity of the same gene in microglial cells of a reference subject.


In some embodiments, the administering of the branched siRNA molecule to the subject results in silencing of gene in the subject.


In some embodiments, the silencing of a gene comprises silencing any one of the genes selected from the group consisting of APOE, BIN1, C1QA, C3, C9ORF72, CCL5, CD33, CLU/APOJ, CR1, CXCL10, CXCL13, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, MEF2C, MMP12, NLRP3, NOS2, PILRA, PLCG2, PTK2B, SLC24A4, TBK1, and TNF.


In some embodiments, silencing of a gene comprises silencing of a positive regulator of a gene for which increased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.


In some embodiments, silencing of a gene comprises silencing of a negative regulator of a gene for which decreased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.


In some embodiments, silencing of a gene comprises silencing of a splice isoform of a gene for which overexpression of the splice isoform relative to the expression of the splice isoform in a reference subject is associated with a disease state.


In some embodiments, the subject is a human.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1D are a series of fluorescence images of brain and spinal cord tissue of cynomolgus macaques treated with a single intrathecal injection of Cy3-labeled di-siRNA of the disclosure. Fluorescence images were acquired from representative regions of the brain, including cortex (FIG. 1A), hippocampus (FIG. 1B), caudate nucleus (FIG. 1C), and of the spinal cord (FIG. 1D). Microglia cells (Iba1 channel), di-siRNAs (Cy3 channel), and cell nuclei (DAPI) were labeled. White arrows indicate colocalization of Cy3 di-siRNA signal within microglial cells labeled with the Iba1 antibody. Scale bars=20 μm.





DEFINITIONS

Unless otherwise defined herein, scientific, and technical terms used herein have the meanings that are commonly understood by those of ordinary skill in the art. In the event of any latent ambiguity, definitions provided herein take precedent over any dictionary or extrinsic definition. Unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. The use of “or” means “and/or” unless stated otherwise. The use of the term “including,” as well as other forms, such as “includes” and “included,” is not limiting.


As used herein, the term “nucleic acids” refers to RNA or DNA molecules consisting of a chain of ribonucleotides or deoxyribonucleotides, respectively. As used herein, the term “therapeutic nucleic acid” refers to a nucleic acid molecule (e.g., ribonucleic acid) that has partial or complete complementarity to, and interacts with, a disease-associated target mRNA and mediates silencing of expression of the mRNA.


As used herein, the term “carrier nucleic acid” refers to a nucleic acid molecule (e.g., ribonucleic acid) that has sequence complementarity with, and hybridizes with, a therapeutic nucleic acid. As used herein, the term “3′ end” refers to the end of the nucleic acid that contains an unmodified hydroxyl group at the 3′ carbon of the ribose ring.


As used herein, the term “nucleoside” refers to a molecule made up of a heterocyclic base and its sugar.


As used herein, the term “nucleotide” refers to a nucleoside having a phosphate group on its 3′ or 5′ sugar hydroxyl group.


As used herein, the term “siRNA” refers to small interfering RNA duplexes that induce the RNA interference (RNAi) pathway. siRNA molecules can vary in length (generally, between 18-30 base pairs) and contain varying degrees of complementarity to their target mRNA. The term “siRNA” includes duplexes of two separate strands, as well as single strands that optionally form hairpin structures comprising a duplex region.


As used herein, the term “antisense strand” refers to the strand of the siRNA duplex that contains some degree of complementarity to the target gene.


As used herein, the term “sense strand” refers to the strand of the siRNA duplex that contains complementarity to the antisense strand.


As used herein, the terms “chemically modified nucleotide” or “nucleotide analog” or “altered nucleotide” or “modified nucleotide” refer to a non-standard nucleotide, including non-naturally occurring ribonucleotides or deoxyribonucleotides. Exemplary nucleotide analogs are modified at any position so as to alter certain chemical properties of the nucleotide yet retain the ability of the nucleotide analog to perform its intended function.


As used herein, the term “metabolically stabilized” refers to RNA molecules that contain ribonucleotides that have been chemically modified from 2′-hydroxyl groups to 2′-O-methyl groups.


As used herein, the term “phosphorothioate” refers to the phosphate group of a nucleotide that is modified by substituting one or more of the oxygens of the phosphate group with sulfur.


As used herein, the term “ethylene glycol chain” refers to a carbon chain with the formula ((CH2OH)2).


As used herein, “alkyl” refers to a saturated hydrocarbon group. Alkyl groups may be acyclic or cyclic and contain only C and H when unsubstituted. When an alkyl residue having a specific number of carbons is named, all geometric isomers having that number of carbons are intended to be encompassed and described; thus, for example, “butyl” is meant to include n-butyl, sec-butyl, and iso-butyl. Examples of alkyl include ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like. In some embodiments, alkyl may be substituted. Suitable substituents that may be introduced into an alkyl group include, for example, hydroxy, alkoxy, amino, alkylamino, and halo, among others.


As used herein, “alkenyl” refers to an acyclic or cyclic unsaturated hydrocarbon group having at least one site of olefinic unsaturation (i.e., having at least one moiety of the formula C═C). Alkenyl groups contain only C and H when unsubstituted. When an alkenyl residue having a specific number of carbons is named, all geometric isomers having that number of carbons are intended to be encompassed and described; thus, for example, “butenyl” is meant to include n-butenyl, sec-butenyl, and iso-butenyl. Examples of alkenyl include —CH═CH2, —CH2—CH═CH2, and —CH2—CH═CH—CH═CH2. In some embodiments, alkenyl may be substituted. Suitable substituents that may be introduced into an alkenyl group include, for example, hydroxy, alkoxy, amino, alkylamino, and halo, among others.


As used herein, “alkynyl” refers to an acyclic or cyclic unsaturated hydrocarbon group having at least one site of acetylenic unsaturation (i.e., having at least one moiety of the formula C≡C). Alkynyl groups contain only C and H when unsubstituted. When an alkynyl residue having a specific number of carbons is named, all geometric isomers having that number of carbons are intended to be encompassed and described; thus, for example, “pentynyl” is meant to include n-pentynyl, sec-pentynyl, iso-pentynyl, and ted-pentynyl. Examples of alkynyl include —C≡CH and —C≡C—CH3. In some embodiments, alkynyl may be substituted. Suitable substituents that may be introduced into an alkynyl group include, for example, hydroxy, alkoxy, amino, alkylamino, and halo, among others.


As used herein the term “phenyl” denotes a monocyclic arene in which one hydrogen atom from a carbon atom of the ring has been removed. A phenyl group can be unsubstituted or substituted with one or more suitable substituents, wherein the substituent replaces an H of the phenyl group.


As used herein, the term “benzyl” refers to monovalent radical obtained when a hydrogen atom attached to the methyl group of toluene is removed. A benzyl generally has the formula of phenyl-CH2—. A benzyl group can be unsubstituted or substituted with one or more suitable substituents. For example, the substituent may replace an H of the phenyl component and/or an H of the methylene (—CH2—) component.


As used herein, the term “amide” refers to an alkyl or aromatic group that is attached to an amino-carbonyl functional group.


As used herein, the term “internucleoside” and “internucleotide” refer to the bonds between nucleosides and nucleotides, respectively.


As used herein, the term “triazol” refers to heterocyclic compounds with the formula (C2H3N3), having a five-membered ring of two carbons and three nitrogens, the positions of which can change resulting in multiple isomers.


As used herein, the term “terminal group” refers to the group at which a carbon chain or nucleic acid ends.


As used herein, the term “lipophilic amino acid” refers to an amino acid comprising a hydrophobic moiety (e.g., an alkyl chain or an aromatic ring).


As used herein, the term “antagomiRs” refers to nucleic acids that can function as inhibitors of miRNA activity.


As used herein, the term “gapmers” refers to chimeric antisense nucleic acids that contain a central block of deoxynucleotide monomers sufficiently long to induce RNase H cleavage. The deoxynucleotide block is flanked by ribonucleotide monomers or ribonucleotide monomers containing modifications.


As used herein, the term “mixmers” refers to nucleic acids that are comprised of a mix of locked nucleic acids (LNAs) and DNA.


As used herein, the term “guide RNAs” refers to nucleic acids that have sequence complementarity to a specific sequence in the genome immediately or 1 base pair upstream of the protospacer adjacent motif (PAM) sequence as used in CRISPR/Cas9 gene editing systems. Alternatively, “guide RNAs” may refer to nucleic acids that have sequence complementarity (e.g., are antisense) to a specific messenger RNA (mRNA) sequence. In this context, a guide RNA may also have sequence complementarity to a “passenger RNA” sequence of equal or shorter length, which is identical or substantially identical to the sequence of mRNA to which the guide RNA hybridizes.


As used herein, the term “target of delivery” refers to the organ or part of the body that is desired to deliver the branched oligonucleotide compositions to.


As used herein, the term “branched siRNA” refers to a compound containing two or more double-stranded siRNA molecules covalently bound to one another. Branched siRNA molecules may be “di-branched,” also referred to herein as “di-siRNA,” wherein the siRNA molecule comprises 2 siRNA molecules covalently bound to one another, e.g., by way of a linker. Branched siRNA molecules may be “tri-branched,” also referred to herein as “tri-siRNA,” wherein the siRNA molecule comprises 3 siRNA molecules covalently bound to one another, e.g., by way of a linker. Branched siRNA molecules may be “tetra-branched,” also referred to herein as “tetra-siRNA,” wherein the siRNA molecule comprises 4 siRNA molecules covalently bound to one another, e.g., by way of a linker.


As used herein, the term “5′ phosphorus stabilizing moiety” refers to a terminal phosphate group that includes phosphates as well as modified phosphates (e.g., phosphorothioates, phosphodiesters, phosphonates). The phosphate moiety can be located at either terminus but is preferred at the 5′-terminal nucleoside. In one aspect, the terminal phosphate is unmodified having the formula —O—P(═O)(OH)OH. In another aspect, the terminal phosphate is modified such that one or more of the O and OH groups are replaced with H, O, S, N(R′), or alkyl where R′ is H, an amino protecting group, or unsubstituted or substituted alkyl. In some embodiments, the 5′ and or 3′ terminal group can comprise from 1 to 3 phosphate moieties that are each, independently, unmodified (di- or tri-phosphates) or modified.


As used herein, the term “between X and Y” is inclusive of the values of X and Y. For example, “between X and Y” refers to the range of values between the value of X and the value of Y, as well as the value of X and the value of Y.


As used herein, an “amino acid” refers to a molecule containing amine and carboxyl functional groups and a side chain specific to the amino acid:


In some embodiments the amino acid is chosen from the group of proteinogenic amino acids. In other embodiments, the amino acid is an L-amino acid or a D-amino acid. In other embodiments, the amino acid is a synthetic amino acid (e.g., a beta-amino acid).


It is understood that certain internucleotide linkages provided herein, including, e.g., phosphodiester and phosphorothioate, comprise a formal charge of −1 at physiological pH, and that said formal charge will be balanced by a cationic moiety, e.g., an alkali metal such as sodium or potassium, an alkali earth metal such as calcium or magnesium, or an ammonium or guanidinium ion.


The phosphate group of the nucleotide may also be modified, e.g., by substituting one or more of the oxygens of the phosphate group with sulfur (e.g., phosphorothioates), or by making other substitutions which allow the nucleotide to perform its intended function such as described in, for example, Eckstein, Antisense Nucleic Acid Drug Dev. 2000 Apr. 10(2):117-21, Rusckowski et al. Antisense Nucleic Acid Drug Dev. 2000 Oct. 10(5):333-45, Stein, Antisense Nucleic Acid Drug Dev. 2001 Oct. 11(5): 317-25, Vorobjev et al. Antisense Nucleic Acid Drug Dev. 2001 Apr. 11(2):77-85, and U.S. Pat. No. 5,684,143. Certain of the above-referenced modifications (e.g., phosphate group modifications) preferably decrease the rate of hydrolysis of, for example, polynucleotides comprising said analogs in vivo or in vitro.


As used herein, the term “complementary” refers to two nucleotides that form canonical Watson-Crick base pairs. For the avoidance of doubt, Watson-Crick base pairs in the context of the present disclosure include adenine-thymine, adenine-uracil, and cytosine-guanine base pairs. A proper Watson-Crick base pair is referred to in this context as a “match,” while each unpaired nucleotide, and each incorrectly paired nucleotide, is referred to as a “mismatch.” Alignment for purposes of determining percent nucleic acid sequence complementarity can be achieved in various ways that are within the capabilities of one of skill in the art, for example, using publicly available computer software such as BLAST, BLAST-2, or Megalign software.


As used herein, the term “percent (%) sequence complementarity” with respect to a reference polynucleotide sequence is defined as the percentage of nucleic acids in a candidate sequence that are complementary to the nucleic acids in the reference polynucleotide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence complementarity. A given nucleotide is considered to be “complementary” to a reference nucleotide as described herein if the two nucleotides form canonical Watson-Crick base pairs. For the avoidance of doubt, Watson-Crick base pairs in the context of the present disclosure include adenine-thymine, adenine-uracil, and cytosine-guanine base pairs. A proper Watson-Crick base pair is referred to in this context as a “match,” while each unpaired nucleotide, and each incorrectly paired nucleotide, is referred to as a “mismatch.” Alignment for purposes of determining percent nucleic acid sequence complementarity can be achieved in various ways that are within the capabilities of one of skill in the art, for example, using publicly available computer software such as BLAST, BLAST-2, or Megalign software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal complementarity over the full length of the sequences being compared. As an illustration, the percent sequence complementarity of a given nucleic acid sequence, A, to a given nucleic acid sequence, B, (which can alternatively be phrased as a given nucleic acid sequence, A that has a certain percent complementarity to a given nucleic acid sequence, B) is calculated as follows:





100 multiplied by (the fraction X/Y)


where X is the number of complementary base pairs in an alignment (e.g., as executed by computer software, such as BLAST) in that program's alignment of A and B, and where Y is the total number of nucleic acids in B. It will be appreciated that where the length of nucleic acid sequence A is not equal to the length of nucleic acid sequence B, the percent sequence complementarity of A to B will not equal the percent sequence complementarity of B to A. As used herein, a query nucleic acid sequence is considered to be “completely complementary” to a reference nucleic acid sequence if the query nucleic acid sequence has 100% sequence complementarity to the reference nucleic acid sequence.


The term “gene silencing” refers to the suppression of gene expression, e.g., transgene, heterologous gene and/or endogenous gene expression, which may be mediated through processes that affect transcription and/or through processes that affect post-transcriptional mechanisms. In some embodiments, gene silencing occurs when an RNAi molecule initiates the inhibition or degradation of the mRNA transcribed from a gene of interest in a sequence-specific manner via RNA interference, thereby preventing translation of the gene's product.


The phrase “overactive disease driver gene,” as used herein, refers to a microglial gene having increased activity and/or expression that contributes to or causes a disease state in a subject (e.g., a human). The disease state may be caused or exacerbated by the overactive disease driver gene directly or by way of an intermediate gene(s).


The term “negative regulator,” as used herein, refers to a microglial gene that negatively regulates (e.g., reduces or inhibits) the expression and/or activity of another microglial gene or set of genes (e.g., dysregulated microglial gene or dysregulated microglial gene pathway).


The term “positive regulator,” as used herein, refers to a microglial gene that positively regulates (e.g., increases or saturates) the expression and/or activity of another microglial gene or set of microglial genes (e.g., dysregulated microglial gene or dysregulated microglial gene pathway).


The term “phosphate moiety” as used herein, refers to a terminal phosphate group that includes phosphates as well as modified phosphates. The phosphate moiety can be located at either terminus but is preferred at the 5′-terminal nucleoside. In one aspect, the terminal phosphate is unmodified having the formula —O—P(═O)(OH)OH. In another aspect, the terminal phosphate is modified such that one or more of the O and OH groups are replaced with H, O, S, N(R′) or alkyl where R′ is H, an amino protecting group or unsubstituted or substituted alkyl. In some embodiments, the 5′ and or 3′ terminal group can comprise from 1 to 3 phosphate moieties that are each, independently, unmodified (di or tri-phosphates) or modified.


In the context of this invention, the term “oligonucleotide” refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally-occurring portions that function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.


As used herein, the term “reference subject” refers to a healthy control subject of the same or similar, e.g., age, sex, geographical region, and/or education level as a subject treated with a composition of the disclosure. A healthy reference subject is one that does not suffer from a disease associated with expression of a dysregulated microglial gene or a dysregulated microglial gene pathway. Moreover, a healthy reference subject is one that does not suffer from a disease associated with altered (e.g., increased or decreased) expression and/or activity of a microglial gene.


As used herein, the terms “treat,” “treated,” or “treating” mean both therapeutic treatment and prophylactic or preventative measures wherein the object is to prevent or slow down (lessen) an undesired physiological condition, disorder, or disease, or obtain beneficial or desired clinical results. Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms; diminishment of the extent of a condition, disorder, or disease; stabilized (i.e., not worsening) state of condition, disorder, or disease; delay in onset or slowing of condition, disorder, or disease progression; amelioration of the condition, disorder, or disease state or remission (whether partial or total), whether detectable or undetectable; an amelioration of at least one measurable physical parameter, not necessarily discernible by the patient; or enhancement or improvement of condition, disorder, or disease. Treatment includes eliciting a clinically significant response without excessive levels of side effects. Treatment also includes prolonging survival as compared to expected survival if not receiving treatment.


Genes Described Herein

As used herein, the term “ABCA7” refers to the gene encoding Phospholipid-transporting ATPase ABCA7. The terms “ABCA7” and “Phospholipid-transporting ATPase ABCA7” include wild-type forms of the ABCA7 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type ABCA7. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type ABCA7 nucleic acid sequence (e.g., SEQ ID NO: 1, European Nucleotide Archive (ENA) accession number AF250238). SEQ ID NO: 1 is a wild-type gene sequence encoding ABCA7 protein, and is shown below:










(SEQ ID NO: 1)



ATGGCCTTCTGGACACAGCTGATGCTGCTGCTCTGGAAGAATTTCATGTATCGCCGGAGA






CAGCCGGTCCAGCTCCTGGTCGAATTGCTGTGGCCTCTCTTCCTCTTCTTCATCCTGGTG





GCTGTTCGCCACTCCCACCCGCCCCTGGAGCACCATGAATGCCACTTCCCAAACAAGCCA





CTGCCATCGGCGGGCACCGTGCCCTGGCTCCAGGGTCTCATCTGTAATGTGAACAACACC





TGCTTTCCGCAGCTGACACCGGGCGAGGAGCCCGGGCGCCTGAGCAACTTCAACGACTCC





CTGGTCTCCCGGCTGCTAGCCGATGCCCGCACTGTGCTGGGAGGGGCCAGTGCCCACAGG





ACGCTGGCTGGCCTAGGGAAGCTGATCGCCACGCTGAGGGCTGCACGCAGCACGGCCCAG





CCTCAACCAACCAAGCAGTCTCCACTGGAACCACCCATGCTGGATGTCGCGGAGCTGCTG





ACGTCACTGCTGCGCACGGAATCCCTGGGGTTGGCACTGGGCCAAGCCCAGGAGCCCTTG





CACAGCTTGTTGGAGGCCGCTGAGGACCTGGCCCAGGAGCTCCTGGCGCTGCGCAGCCTG





GTGGAGCTTCGGGCACTGCTGCAGAGACCCCGAGGGACCAGCGGCCCCCTGGAGTTGCTG





TCAGAGGCCCTCTGCAGTGTCAGGGGACCTAGCAGCACAGTGGGCCCCTCCCTCAACTGG





TACGAGGCTAGTGACCTGATGGAGCTGGTGGGGCAGGAGCCAGAATCCGCCCTGCCAGAC





AGCAGCCTGAGCCCCGCCTGCTCGGAGCTGATTGGAGCCCTGGACAGCCACCCGCTGTCC





CGCCTGCTCTGGAGACGCCTGAAGCCTCTGATCCTCGGGAAGCTACTCTTTGCACCAGAT





ACACCTTTTACCCGGAAGCTCATGGCCCAGGTCAACCGGACCTTCGAGGAGCTCACCCTG





CTGAGGGATGTCCGGGAGGTGTGGGAGATGCTGGGACCCCGGATCTTCACCTTCATGAAC





GACAGTTCCAATGTGGCCATGCTGCAGCGGCTCCTGCAGATGCAGGATGAAGGAAGAAGG





CAGCCCAGACCTGGAGGCCGGGACCACATGGAGGCCCTGCGATCCTTTCTGGACCCTGGG





AGCGGTGGCTACAGCTGGCAGGACGCACACGCTGATGTGGGGCACCTGGTGGGCACGCTG





GGCCGAGTGACGGAGTGCCTGTCCTTGGACAAGCTGGAGGCGGCACCCTCAGAGGCAGCC





CTGGTGTCGCGGGCCCTGCAACTGCTCGCGGAACATCGATTCTGGGCCGGCGTCGTCTTC





TTGGGACCTGAGGACTCTTCAGACCCCACAGAGCACCCAACCCCAGACCTGGGCCCCGGC





CACGTGCGCATCAAAATCCGCATGGACATTGACGTGGTCACGAGGACCAATAAGATCAGG





GACAGGTTTTGGGACCCTGGCCCAGCCGCGGACCCCCTGACCGACCTGCGCTACGTGTGG





GGCGGCTTCGTGTACCTGCAAGACCTGGTGGAGCGTGCAGCCGTCCGCGTGCTCAGCGGC





GCCAACCCCCGGGCCGGCCTCTACCTGCAGCAGATGCCCTATCCGTGCTATGTGGACGAC





GTGTTCCTGCGTGTGCTGAGCCGGTCGCTGCCGCTCTTCCTGACGCTGGCCTGGATCTAC





TCCGTGACACTGACAGTGAAGGCCGTGGTGCGGGAGAAGGAGACGCGGCTGCGGGACACC





ATGCGCGCCATGGGGCTCAGCCGCGCGGTGCTCTGGCTAGGCTGGTTCCTCAGCTGCCTC





GGGCCCTTCCTGCTCAGCGCCGCACTGCTGGTTCTGGTGCTCAAGCTGGGAGACATCCTC





CCCTACAGCCACCCGGGCGTGGTCTTCCTGTTCTTGGCAGCCTTCGCGGTGGCCACGGTG





ACCCAGAGCTTCCTGCTCAGCGCCTTCTTCTCCCGCGCCAACCTGGCTGCGGCCTGCGGC





GGCCTGGCCTACTTCTCCCTCTACCTGCCCTACGTGCTGTGTGTGGCTTGGCGGGACCGG





CTGCCCGCGGGTGGCCGCGTGGCCGCGAGCCTGCTGTCGCCCGTGGCCTTCGGCTTCGGC





TGCGAGAGCCTGGCTCTGCTGGAGGAGCAGGGCGAGGGCGCGCAGTGGCACAACGTGGGC





ACCCGGCCTACGGCAGACGTCTTCAGCCTGGCCCAGGTCTCTGGCCTTCTGCTGCTGGAC





GCGGCGCTCTACGGCCTCGCCACCTGGTACCTGGAAGCTGTGTGCCCAGGCCAGTACGGG





ATCCCTGAACCATGGAATTTTCCTTTTCGGAGGAGCTACTGGTGCGGACCTCGGCCCCCC





AAGAGTCCAGCCCCTTGCCCCACCCCGCTGGACCCAAAGGTGCTGGTAGAAGAGGCACCG





CCCGGCCTGAGTCCTGGCGTCTCCGTTCGCAGCCTGGAGAAGCGCTTTCCTGGAAGCCCG





CAGCCAGCCCTGCGGGGGCTCAGCCTGGACTTCTACCAGGGCCACATCACCGCCTTCCTG





GGCCACAACGGGGCCGGCAAGACCACCACCCTGTCCATCTTGAGTGGCCTCTTCCCACCC





AGTGGTGGCTCTGCCTTCATCCTGGGCCACGACGTCCGCTCCAGCATGGCCGCCATCCGG





CCCCACCTGGGCGTCTGTCCTCAGTACAACGTGCTGTTTGACATGCTGACCGTGGACGAG





CACGTCTGGTTCTATGGGCGGCTGAAGGGTCTGAGTGCCGCTGTAGTGGGCCCCGAGCAG





GACCGTCTGCTGCAGGATGTGGGGCTGGTCTCCAAGCAGAGTGTGCAGACTCGCCACCTC





TCTGGTGGGATGCAACGGAAGCTGTCCGTGGCCATTGCCTTTGTGGGCGGCTCCCAAGTT





GTTATCCTGGACGAGCCTACGGCTGGCGTGGATCCTGCTTCCCGCCGCGGTATTTGGGAG





CTGCTGCTCAAATACCGAGAAGGTCGCACGCTGATCCTCTCCACCCACCACCTGGATGAG





GCAGAGCTGCTGGGAGACCGTGTGGCTGTGGTGGCAGGTGGCCGCTTGTGCTGCTGTGGC





TCCCCACTCTTCCTGCGCCGTCACCTGGGCTCCGGCTACTACCTGACGCTGGTGAAGGCC





CGCCTGCCCCTGACCACCAATGAGAAGGCTGACACTGACATGGAGGGCAGTGTGGACACC





AGGCAGGAAAAGAAGAATGGCAGCCAGGGCAGCAGAGTCGGCACTCCTCAGCTGCTGGCC





CTGGTACAGCACTGGGTGCCCGGGGCACGGCTGGTGGAGGAGCTGCCACACGAGCTGGTG





CTGGTGCTGCCCTACACGGGTGCCCATGACGGCAGCTTCGCCACACTCTTCCGAGAGCTA





GACACGCGGCTGGCGGAGCTGAGGCTCACTGGCTACGGGATCTCCGACACCAGCCTCGAG





GAGATCTTCCTGAAGGTGGTGGAGGAGTGTGCTGCGGACACAGATATGGAGGATGGCAGC





TGCGGGCAGCACCTATGCACAGGCATTGCTGGCCTAGACGTAACCCTGCGGCTCAAGATG





CCGCCACAGGAGACAGCGCTGGAGAACGGGGAACCAGCTGGGTCAGCCCCAGAGACTGAC





CAGGGCTCTGGGCCAGACGCCGTGGGCCGGGTACAGGGCTGGGCACTGACCCGCCAGCAG





CTCCAGGCCCTGCTTCTCAAGCGCTTTCTGCTTGCCCGCCGCAGCCGCCGCGGCCTGTTC





GCCCAGATCGTGCTGCCTGCCCTCTTTGTGGGCCTGGCCCTCGTGTTCAGCCTCATCGTG





CCTCCTTTCGGGCACTACCCGGCTCTGCGGCTCAGTCCCACCATGTACGGTGCTCAGGTG





TCCTTCTTCAGTGAGGACGCCCCAGGGGACCCTGGACGTGCCCGGCTGCTCGAGGCGCTG





CTGCAGGAGGCAGGACTGGAGGAGCCCCCAGTGCAGCATAGCTCCCACAGGTTCTCGGCA





CCAGAAGTTCCTGCTGAAGTGGCCAAGGTCTTGGCCAGTGGCAACTGGACCCCAGAGTCT





CCATCCCCAGCCTGCCAGTGTAGCCAGCCCGGTGCCCGGCGCCTGCTGCCCGACTGCCCG





GCTGCAGCTGGTGGTCCCCCTCCGCCCCAGGCAGTGACCGGCTCTGGGGAAGTGGTTCAG





AACCTGACAGGCCGGAACCTGTCTGACTTCCTGGTCAAGACCTACCCGCGCCTGGTGCGC





CAGGGCCTGAAGACTAAGAAGTGGGTGAATGAGGTCAGGTACGGAGGCTTCTCGCTGGGG





GGCCGAGACCCAGGCCTGCCCTCGGGCCAAGAGTTGGGCCGCTCAGTGGAGGAGTTGTGG





GCGCTGCTGAGTCCCCTGCCTGGCGGGGCCCTCGACCGTGTCCTGAAAAACCTCACAGCC





TGGGCTCACAGCCTGGACGCTCAGGACAGTCTCAAGATCTGGTTCAACAACAAAGGCTGG





CACTCCATGGTGGCCTTTGTCAACCGAGCCAGCAACGCAATCCTCCGTGCTCACCTGCCC





CCAGGCCGGGCCCGCCACGCCCACAGCATCACCACACTCAACCACCCCTTGAACCTCACC





AAGGAGCAGCTGTTTGAGGCTGCATTGATGGCCTCCTCGGTGGACGTCCTCGTCTCCATC





TGTGTGGTCTTTGCCATGTCCTTTGTCCCGGCCAGCTTCACTCTTGTCCTCATTGAGGAG





CGAGTCACCCGAGCCAAGCACCTGCAGCTCATGGGGGGCCTGTCCCCCACCCTCTACTGG





CTTGGCAACTTTCTCTGGGACATGTGTAACTACTTGGTGCCAGCATGCATCGTGGTGCTC





ATCTTTCTGGCCTTCCAGCAGAGGGCATATGTGGCCCCTGCCAACCTGCCTGCTCTCCTG





CTGTTGCTACTACTGTATGGCTGGTCGATCACACCGCTCATGTACCCAGCCTCCTTCTTC





TTCTCCGTGCCCAGCACAGCCTATGTGGTGCTCACCTGCATAAACCTCTTTATTGGCATC





AATGGAAGCATGGCCACCTTTGTGCTTGAGCTCTTCTCTGATCAGAAGCTGCAGGAGGTG





AGCCGGATCTTGAAACAGGTCTTCCTTATCTTCCCCCACTTCTGCTTGGGCCGGGGGCTT





ATTGACATGGTGCGGAACCAGGCCATGGCTGATGCCTTTGAGCGCTTGGGAGACAGGCAG





TTCCAGTCACCCCTGCGCTGGGAGGTGGTCGGCAAGAACCTCTTGGCCATGGTGATACAG





GGGCCCCTCTTCCTTCTCTTCACACTACTGCTGCAGCACCGAAGCCAACTCCTGCCACAG





CCCAGGGTGAGGTCTCTGCCACTCCTGGGAGAGGAGGACGAGGATGTAGCCCGTGAACGG





GAGCGGGTGGTCCAAGGAGCCACCCAGGGGGATGTGTTGGTGCTGAGGAACTTGACCAAG





GTATACCGTGGGCAGAGGATGCCAGCTGTTGACCGCTTGTGCCTGGGGATTCCCCCTGGT





GAGTGTTTTGGGCTGCTGGGTGTGAATGGAGCAGGGAAGACGTCCACGTTTCGCATGGTG





ACGGGGGACACATTGGCCAGCAGGGGCGAGGCTGTGCTGGCAGGCCACAGCGTGGCCCGG





GAACCCAGTGCTGCGCACCTCAGCATGGGATACTGCCCTCAATCCGATGCCATCTTTGAG





CTGCTGACGGGCCGCGAGCACCTGGAGCTGCTTGCGCGCCTGCGCGGTGTCCCGGAGGCC





CAGGTTGCCCAGACCGCTGGCTCGGGCCTGGCGCGTCTGGGACTCTCATGGTACGCAGAC





CGGCCTGCAGGCACCTACAGCGGAGGGAACAAACGCAAGCTGGCGACGGCCCTGGCGCTG





GTTGGGGACCCAGCCGTGGTGTTTCTGGACGAGCCGACCACAGGCATGGACCCCAGCGCG





CGGCGCTTCCTTTGGAACAGCCTTTTGGCCGTGGTGCGGGAGGGCCGTTCAGTGATGCTC





ACCTCCCATAGCATGGAGGAGTGTGAAGCGCTCTGCTCGCGCCTAGCCATCATGGTGAAT





GGGCGGTTCCGCTGCCTGGGCAGCCCGCAACATCTCAAGGGCAGATTCGCGGCGGGTCAC





ACACTGACCCTGCGGGTGCCCGCCGCAAGGTCCCAGCCGGCAGCGGCCTTCGTGGCGGCC





GAGTTCCCTGGGTCGGAGCTGCGCGAGGCACATGGAGGCCGCCTGCGCTTCCAGCTGCCG





CCGGGAGGGCGCTGCGCCCTGGCGCGCGTCTTTGGAGAGCTGGCGGTGCACGGCGCAGAG





CACGGCGTGGAGGACTTTTCCGTGAGCCAGACGATGCTGGAGGAGGTATTCTTGTACTTC





TCCAAGGACCAGGGGAAGGACGAGGACACCGAAGAGCAGAAGGAGGCAGGAGTGGGAGTG





GACCCCGCGCCAGGCCTGCAGCACCCCAAACGCGTCAGCCAGTTCCTCGATGACCCTAGC





ACTGCCGAGACTGTGCTCTGAGCCTCCCTCCCCTGCGGGGCCGCGGGGAGGCCCTGGGAA





TGGCAAGGGCAAGGTAGAGTGCCTAGGAGCCCTGGACTCAGGCTGGCAGAGGGGCTGGTG





CCCTGGAGAAAATAAAGAGAAGGCTGGAGAGAAGCCGTGCTTGGTGAA









As used herein, the term “ABI3” refers to the gene encoding ABI gene family member 3. The terms “ABI3” and “ABI gene family member 3” include wild-type forms of the ABI3 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type ABI3. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type ABI3 nucleic acid sequence (e.g., SEQ ID NO: 2, ENA accession number AF037886). SEQ ID NO: 2 is a wild-type gene sequence encoding ABI3 protein, and is shown below:










(SEQ ID NO: 2)



TCCTATCCACCCTCCACTCCCCTGTCCCTTGGTGACTCATCCCTGAGCTTCCCAAGGAAG






CCCCCACCCTCTGCCCTTTCCTCCCGCCTTCCATGAGTGGAAAATCCACCTCCGCCCCCT





ATAGCAGGCCAGCCCCCTTCCTCCCCAGTCTCCGACCCCATCCCCCAGCCGACCAGTTTC





CTCTCCAGGACCAGGGAGCAATCACAGCTGCCCCGACCTTGGCTTCCTCTGCTGGGTGGG





ATTGGGGGCTGGGCCCCCAAATGGGCCCCTGGCTTCCCCCTTCCTCTGGGCAGGGGACAG





AGAGACACAGGCTCGGGGAGCAGGACTGACTTCCTCTTGTCCCGGAATGAGCATGCCTGC





CCTTTGCAAGCAGGTTTGGGTCTCACGCAGAGGAAACCAAAAGCAATAAGAGGGAGGGAA





GGCAGAGCAACCAATCAAGGGCAGGGTGAGACTCAAAACGAGCGGGCTCCCTGGGGAGCC





AGACAGAGGCTGGGGGTGATGGCGGAGCTACAGCAGCTGCAGGAGTTTGAGATCCCCACT





GGCCGGGAGGCTCTGAGGGGCAACCACAGTGCCCTGCTGCGGGTCGCTGACTACTGCGAG





GACAACTATGTGCAGGCCACAGACAAGCGGAAGGCGCTGGAGGAGACCATGGCCTTCACT





ACCCAGGCACTGGCCAGCGTGGCCTACCAGGTGGGCAACCTGGCCGGGCACACTCTGCGC





ATGTTGGACCTGCAGGGGGCCGCCCTGCGGCAGGTGGAAGCCCGTGTAAGCACGCTGGGC





CAGATGGTGAACATGCATATGGAGAAGGTGGCCCGAAGGGAGATCGGCACCTTAGCCACT





GTCCAGCGGCTGCCCCCCGGCCAGAAGGTCATCGCCCCAGAGAACCTACCCCCTCTCACG





CCCTACTGCAGGAGACCCCTCAACTTTGGCTGCCTGGACGACATTGGCCATGGGATCAAG





GACCTCAGCACGCAGCTGTCAAGAACAGGCACCCTGTCTCGAAAGAGCATCAAGGCCCCT





GCCACACCCGCCTCCGCCACCTTGGGGAGACCACCCCGGATTCCCGAGCCAGTGCACCTG





CCGGTGGTGCCCGACGGCAGACTCTCCGCCGCCTCCTCTGCGTCTTCCCTGGCCTCGGCC





GGCAGCGCCGAAGGTGTCGGTGGGGCCCCCACGCCCAAGGGGCAGGCAGCACCTCCAGCC





CCACCTCTCCCCAGCTCCTTGGACCCACCTCCTCCACCAGCAGCCGTCGAGGTGTTCCAG





CGGCCTCCCACGCTGGAGGAGTTGTCCCCACCCCCACCGGACGAAGAGCTGCCCCTGCCA





CTGGACCTGCCTCCTCCTCCACCCCTGGATGGAGATGAATTGGGGCTGCCTCCACCCCCA





CCAGGATTTGGGCCTGATGAGCCCAGCTGGGTGCCTGCCTCATACTTGGAGAAAGTGGTG





ACACTGTACCCATACACCAGCCAGAAGGACAATGAGCTCTCCTTCTCTGAGGGCACTGTC





ATCTGTGTCACTCGCCGCTACTCCGATGGCTGGTGCGAGGGCGTCAGCTCAGAGGGGACT





GGATTCTTCCCTGGGAACTATGTGGAGCCCAGCTGCTGACAGCCCAGGGCTCTCTGGGCA





GCTGATGTCTGCACTGAGTGGGTTTCATGAGCCCCAAGCCAAAACCAGCTCCAGTCACAG





CTGGACTGGGTCTGCCCACCTCTTGGGCTGTGAGCTGTGTTCTGTCCTTCCTCCCATCGG





AGGGAGAAGGGGTCCTGGGGAGAGAGAATTTATCCAGAGGCCTGCTGCAGATGGGGAAGA





GCTGGAAACCAAGAAGTTTGTCAACAGAGGACCCCTACTCCATGCAGGACAGGGTCTCCT





GCTGCAAGTCCCAACTTTGAATAAAACAGATGATGTCCTGTGACTGCCCCACAGAGATAA





GGGGCCAGGAGGGATTGAAAGGCATCCCAGTTCTAAGGCTGCTGCTAATTACAGCCCCCA





ACCTCCAACCCACCAGCTGACCTAGAAGCAGCATCTTCCCATTTCCTCAGTACCCACAAA





GTGCAGCCCACATTGGACCCCAGACACCCCTCTGCAGCCATTGACTGCAACTTGTTCTTT





TGCCCATTAAAAAAAAAAAAAAAAAAAAA






As used herein, the term “ADAM10” refers to the gene encoding ADAM Metallopeptidase Domain 10. The terms “ADAM10” and “ADAM Metallopeptidase Domain 10” include wild-type forms of the ADAM10 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type ADAM10. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type ADAM10 nucleic acid sequence (e.g., SEQ ID NO: 3, NCBI Reference Sequence: NM_001110.3). SEQ ID NO: 3 is a wild-type gene sequence encoding ADAM10 protein, and is shown below:










(SEQ ID NO: 3)



GCGGCGGCAGGCCTAGCAGCACGGGAACCGTCCCCCGCGCGCATGCGCGCGCCCCTGAAGCGCC






TGGGGGACGGGTAGGGGGGGGAGGTAGGGGCGCGGCTCCGCGTGCCAGTTGGGTGCCCGCGCG





TCACGTGGTGAGGAAGGAGGCGGAGGTCTGAGTTTCGAAGGAGGGGGGGAGAGAAGAGGGAACG





AGCAAGGGAAGGAAAGCGGGGAAAGGAGGAAGGAAACGAACGAGGGGGAGGGAGGTCCCTGTTTT





GGAGGAGCTAGGAGCGTTGCCGGCCCCTGAAGTGGAGCGAGAGGGAGGTGCTTCGCCGTTTCTCC





TGCCAGGGGAGGTCCCGGCTTCCCGTGGAGGCTCCGGACCAAGCCCCTTCAGCTTCTCCCTCCGG





ATCGATGTGCTGCTGTTAACCCGTGAGGAGGCGGCGGCGGCGGCAGCGGCAGCGGAAGATGGTGT





TGCTGAGAGTGTTAATTCTGCTCCTCTCCTGGGCGGGGGGATGGGAGGTCAGTATGGGAATCCTT





TAAATAAATATATCAGACATTATGAAGGATTATCTTACAATGTGGATTCATTACACCAAAAACACCAGC





GTGCCAAAAGAGCAGTCTCACATGAAGACCAATTTTTACGTCTAGATTTCCATGCCCATGGAAGACAT





TTCAACCTACGAATGAAGAGGGACACTTCCCTTTTCAGTGATGAATTTAAAGTAGAAACATCAAATAA





AGTACTTGATTATGATACCTCTCATATTTACACTGGACATATTTATGGTGAAGAAGGAAGTTTTAGCCA





TGGGTCTGTTATTGATGGAAGATTTGAAGGATTCATCCAGACTCGTGGTGGCACATTTTATGTTGAGC





CAGCAGAGAGATATATTAAAGACCGAACTCTGCCATTTCACTCTGTCATTTATCATGAAGATGATATTA





ACTATCCCCATAAATACGGTCCTCAGGGGGGCTGTGCAGATCATTCAGTATTTGAAAGAATGAGGAA





ATACCAGATGACTGGTGTAGAGGAAGTAACACAGATACCTCAAGAAGAACATGCTGCTAATGGTCCA





GAACTTCTGAGGAAAAAACGTACAACTTCAGCTGAAAAAAATACTTGTCAGCTTTATATTCAGACTGA





TCATTTGTTCTTTAAATATTACGGAACACGAGAAGCTGTGATTGCCCAGATATCCAGTCATGTTAAAG





CGATTGATACAATTTACCAGACCACAGACTTCTCCGGAATCCGTAACATCAGTTTCATGGTGAAACGC





ATAAGAATCAATACAACTGCTGATGAGAAGGACCCTACAAATCCTTTCCGTTTCCCAAATATTGGTGT





GGAGAAGTTTCTGGAATTGAATTCTGAGCAGAATCATGATGACTACTGTTTGGCCTATGTCTTCACAG





ACCGAGATTTTGATGATGGCGTACTTGGTCTGGCTTGGGTTGGAGCACCTTCAGGAAGCTCTGGAG





GAATATGTGAAAAAAGTAAACTCTATTCAGATGGTAAGAAGAAGTCCTTAAACACTGGAATTATTACT





GTTCAGAACTATGGGTCTCATGTACCTCCCAAAGTCTCTCACATTACTTTTGCTCACGAAGTTGGACA





TAACTTTGGATCCCCACATGATTCTGGAACAGAGTGCACACCAGGAGAATCTAAGAATTTGGGTCAA





AAAGAAAATGGCAATTACATCATGTATGCAAGAGCAACATCTGGGGACAAACTTAACAACAATAAATT





CTCACTCTGTAGTATTAGAAATATAAGCCAAGTTCTTGAGAAGAAGAGAAACAACTGTTTTGTTGAAT





CTGGCCAACCTATTTGTGGAAATGGAATGGTAGAACAAGGTGAAGAATGTGATTGTGGCTATAGTGA





CCAGTGTAAAGATGAATGCTGCTTCGATGCAAATCAACCAGAGGGAAGAAAATGCAAACTGAAACCT





GGGAAACAGTGCAGTCCAAGTCAAGGTCCTTGTTGTACAGCACAGTGTGCATTCAAGTCAAAGTCTG





AGAAGTGTCGGGATGATTCAGACTGTGCAAGGGAAGGAATATGTAATGGCTTCACAGCTCTCTGCCC





AGCATCTGACCCTAAACCAAACTTCACAGACTGTAATAGGCATACACAAGTGTGCATTAATGGGCAAT





GTGCAGGTTCTATCTGTGAGAAATATGGCTTAGAGGAGTGTACGTGTGCCAGTTCTGATGGCAAAGA





TGATAAAGAATTATGCCATGTATGCTGTATGAAGAAAATGGACCCATCAACTTGTGCCAGTACAGGGT





CTGTGCAGTGGAGTAGGCACTTCAGTGGTCGAACCATCACCCTGCAACCTGGATCCCCTTGCAACG





ATTTTAGAGGTTACTGTGATGTTTTCATGCGGTGCAGATTAGTAGATGCTGATGGTCCTCTAGCTAGG





CTTAAAAAAGCAATTTTTAGTCCAGAGCTCTATGAAAACATTGCTGAATGGATTGTGGCTCATTGGTG





GGCAGTATTACTTATGGGAATTGCTCTGATCATGCTAATGGCTGGATTTATTAAGATATGCAGTGTTC





ATACTCCAAGTAGTAATCCAAAGTTGCCTCCTCCTAAACCACTTCCAGGCACTTTAAAGAGGAGGAG





ACCTCCACAGCCCATTCAGCAACCCCAGCGTCAGCGGCCCCGAGAGAGTTATCAAATGGGACACAT





GAGACGCTAACTGCAGCTTTTGCCTTGGTTCTTCCTAGTGCCTACAATGGGAAAACTTCACTCCAAA





GAGAAACCTATTAAGTCATCATCTCCAAACTAAACCCTCACAAGTAACAGTTGAAGAAAAAATGGCAA





GAGATCATATCCTCAGACCAGGTGGAATTACTTAAATTTTAAAGCCTGAAAATTCCAATTTGGGGGTG





GGAGGTGGAAAAGGAACCCAATTTTCTTATGAACAGATATTTTTAACTTAATGGCACAAAGTCTTAGA





ATATTATTATGTGCCCCGTGTTCCCTGTTCTTCGTTGCTGCATTTTCTTCACTTGCAGGCAAACTTGG





CTCTCAATAAACTTTTACCACAAATTGAAATAAATATATTTTTTTCAACTGCCAATCAAGGCTAGGAGG





CTCGACCACCTCAACATTGGAGACATCACTTGCCAATGTACATACCTTGTTATATGCAGACATGTATT





TCTTACGTACACTGTACTTCTGTGTGCAATTGTAAACAGAAATTGCAATATGGATGTTTCTTTGTATTA





TAAAATTTTTCCGCTCTTAATTAAAAATTACTGTTTAATTGACATACTCAGGATAACAGAGAATGGTGG





TATTCAGTGGTCCAGGATTCTGTAATGCTTTACACAGGCAGTTTTGAAATGAAAATCAATTTACCTTTC





TGTTACGATGGAGTTGGTTTTGATACTCATTTTTTCTTTATCACATGGCTGCTACGGGCACAAGTGAC





TATACTGAAGAACACAGTTAAGTGTTGTGCAAACTGGACATAGCAGCACATACTACTTCAGAGTTCAT





GATGTAGATGTCTGGTTTCTGCTTACGTCTTTTAAACTTTCTAATTCAATTCCATTTTTCAATTAATAGG





TGAAATTTTATTCATGCTTTGATAGAAATTATGTCAATGAAATGATTCTTTTTATTTGTAGCCTACTTAT





TTGTGTTTTTCATATATCTGAAATATGCTAATTATGTTTTCTGTCTGATATGGAAAAGAAAAGCTGTGT





CTTTATCAAAATATTTAAACGGTTTTTTCAGCATATCATCACTGATCATTGGTAACCACTAAAGATGAG





TAATTTGCTTAAGTAGTAGTTAAAATTGTAGATAGGCCTTCTGACATTTTTTTTCCTAAAATTTTTAACA





GCATTGAAGGTGAAACAGCACAATGTCCCATTCCAAATTTATTTTTGAAACAGATGTAAATAATTGGC





ATTTTAAAGAGAAAGCAAAAACATTTAATGTATTAACAGGCTTATTGCTATGCAGGAAATAGAAGGGG





CATTACAAAAATTGAAGCTTGTGACATATTTATTGCTTCTGTTTTCCAACTACATCACTTCAACTAGAA





GTAAAGCTATGATTTTCCTGACTTCACATAGGAGGCAAATTTAGAGAAAGTTGTAAAGATTTCTATGTT





TTGGGTTTTTTTTTTTCCTTTTTTTTTTTAAGAGTATAAGGTTTACACAATCATTCTCATAATGTGACGC





AAGCCAGCAAGGCCAAAAATGCTAGAGAAAATAACGGGATCTCTTCCTTGTAAACTTGTACAGTATGT





GGTGACTTTTTCAAAATACAGCTTTTTGTACATGATTTAGAGACAAATTTTGTACATGAAACCCCAGAT





AGACTATAAATAATTCTAAACAAACAAGTAGGTAGATATGTATGTAATTGCTTTTAAATCATTTAAATGC





CTTTGTTTTTGGACTGTGCAAAGGTTGGAAGTGGGTTTGCATTTCTAAAATGGTGACTTTTATTCTGC





AAGAGTTCTTAGTAACTTCTTGAGTGTGGTAGACTTTGGAACATGTAAATTTTTTGCTTGTAATGTTAT





CCTGTGGTAGGATTTTGGCAGGTACACACACTGCCCTATTTTATTTTGAGTCTAAGTTAAATGTTTTCT





GAAAAGAGATACATGCACTGAACTCTTTCCACTGCGAATCAAGATGTGGTAATATAAAAGGATCAAGA





CAAATGAGATCTAATACTACTGTCAGTTTTAATGTCCACTGTGTTTTATACAGTATCTTTTTTTGTTCAC





TTTGGAAATTTTTACTAAAAATTGCAAAAAATAAAGTATTGTGCAAAGATGTAAGGTTTTTTGAAACTTG





AAATGCATTAATAAATAGACGATTAAATCAACTTGAAGGTTCTATACTCTTTGAACTCTGAGAACTATC





ACAAGAAGCTTCCCACAAGGCAGTGTTTTCTTACAGTTGTCTCTTCCTACAAAAGTATAGATTATCTTT





ATTCTTAATACTTTGGAATCCATGTAGAAAATTTCCAGTTAGATACTCTGCGTACACACAATAAACCTT





TTTAAAACACCCAAAAAAAAAAAAAAAAAA






The terms “APOC1” and “Apolipoprotein C1” include wild-type forms of the APOC1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type APOC1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type APOC1 nucleic acid sequence (e.g., SEQ ID NO: 4, NCBI Reference Sequence: NM_001645). SEQ ID NO: 4 is a wild-type gene sequence encoding APOC1 protein, and is shown below:










AACGCTCACGGGACAGGGGCAGAGGAGAAAAACGTGGGTGGACAGAGGGAGGCAGGCGGTCAGG






GGAAGGCTCAGGAGGAGGGAGATCAACATCAACCTGCCCCGCCCCCTCCCCAGCCTGATAAAGGT





CCTGCGGGCAGGACAGGACCTCCCAACCAAGCCCTCCAGCAAGGATTCAGAGTGCCCCTCCGGCC





TCGCCATGAGGCTCTTCCTGTCGCTCCCGGTCCTGGTGGTGGTTCTGTCGATCGTCTTGGAAGGCC





CAGCCCCAGCCCAGGGGACCCCAGACGTCTCCAGTGCCTTGGATAAGCTGAAGGAGTTTGGAAACA





CACTGGAGGACAAGGCTCGGGAACTCATCAGCCGCATCAAACAGAGTGAACTTTCTGCCAAGATGC





GGGAGTGGTTTTCAGAGACATTTCAGAAAGTGAAGGAGAAACTCAAGATTGACTCATGAGGACCTGA





AGGGTGACATCCCAGGAGGGGCCTCTGAAATTTCCCACACCCCAGCGCCTGTGCTGAGGACTCCCT





CCATGTGGCCCCAGGTGCCACCAATAAAAATCCTACAGAAAATTCAAAAAAAAAAAAAAAAAA






(SEQ ID NO: 4)

As used herein, the term “APOE” refers to the gene encoding Apolipoprotein E. The terms “APOE” and “Apolipoprotein E” include wild-type forms of the APOE gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type APOE. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type APOE nucleic acid sequence (e.g., SEQ ID NO: 5, ENA accession number M12529). SEQ ID NO: 5 is a wild-type gene sequence encoding APOE protein, and is shown below:










(SEQ ID NO: 5)



CCCCAGCGGAGGTGAAGGACGTCCTTCCCCAGGAGCCGACTGGCCAATCACAGGCAGGAA






GATGAAGGTTCTGTGGGCTGCGTTGCTGGTCACATTCCTGGCAGGATGCCAGGCCAAGGT





GGAGCAAGCGGTGGAGACAGAGCCGGAGCCCGAGCTGCGCCAGCAGACCGAGTGGCAGAG





CGGCCAGCGCTGGGAACTGGCACTGGGTCGCTTTTGGGATTACCTGCGCTGGGTGCAGAC





ACTGTCTGAGCAGGTGCAGGAGGAGCTGCTCAGCTCCCAAGTCACCCAAGAACTGAGGGC





GCTGATGGACGAGACCATGAAGGAGTTGAAGGCCTACAAATCGGAACTGGAGGAACAACT





GACCCCGGTAGCGGAGGAGACGCGGGCACGGCTGTCCAAGGAGCTGCAGACGGCGCAGGC





CCGGCTGGGCGCGGACATGGAGGACGTGTGCGGCCGCCTGGTGCAGTACCGCGGCGAGGT





GCAGGCCATGCTCGGCCAGAGCACCGAGGAGCTGCGGGTGCGCCTCGCCTCCCACCTGCG





CAAGCTGCGTAAGCGGCTCCTCCGCGATCCCGATGACCTGCAGAAGCGCCTGGCAGTGTA





CCAGGCCGGGGCCCGCGAGGGCGCCGAGCGCGGCCTCAGCGCCATCCGCGAGCGCCTGGG





GCCCCTGGTGGAACAGGGCCGCGTGCGGGCCGCCACTGTGGGCTCCCTGGCCGGCCAGCC





GCTACAGGAGCGGGCCCAGGCCTGGGGCGAGCGGCTGCGCGCGCGGATGGAGGAGATGGG





CAGTCGGACCCGCGACCGCCTGGACGAGGTGAAGGAGCAGGTGGCGGAGGTGCGCGCCAA





GCTGGAGGAGCAGGCCCAGCAGATACGCCTGCAGGCCGAGGCCTTCCAGGCCCGCCTCAA





GAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGCGCCAGTGGGCCGGGCTGGTGGAGAA





GGTGCAGGCTGCCGTGGGCACCAGCGCCGCCCCTGTGCCCAGCGACAATCACTGAACGCC





GAAGCCTGCAGCCATGCGACCCCACGCCACCCCGTGCCTCCTGCCTCCGCGCAGCCTGCA





GCGGGAGACCCTGTCCCCGCCCCAGCCGTCCTCCTGGGGTGGACCCTAGTTTAATAAAGA





TTCACCAAGTTTCACGC






As used herein, the term “AXL” refers to the gene encoding Tyrosine-protein kinase receptor UFO. The terms “AXL” and “Tyrosine-protein kinase receptor UFO” include wild-type forms of the AXL gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type AXL. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type AXL nucleic acid sequence (e.g., SEQ ID NO: 6, ENA accession number M76125). SEQ ID NO: 6 is a wild-type gene sequence encoding AXL protein, and is shown below:










(SEQ ID NO: 6)



GCTGGGCAAAGCCGGTGGCAAGGGCCTCCCCTGCCGCTGTGCCAGGCAGGCAGTGCCAAA






TCCGGGGAGCCTGGAGCTGGGGGGAGGGCCGGGGACAGCCCGGCCCTGCCCCCTCCCCCG





CTGGGAGCCCAGCAACTTCTGAGGAAAGTTTGGCACCCATGGCGTGGCGGTGCCCCAGGA





TGGGCAGGGTCCCGCTGGCCTGGTGCTTGGCGCTGTGCGGCTGGGCGTGCATGGCCCCCA





GGGGCACGCAGGCTGAAGAAAGTCCCTTCGTGGGCAACCCAGGGAATATCACAGGTGCCC





GGGGACTCACGGGCACCCTTCGGTGTCAGCTCCAGGTTCAGGGAGAGCCCCCCGAGGTAC





ATTGGCTTCGGGATGGACAGATCCTGGAGCTCGCGGACAGCACCCAGACCCAGGTGCCCC





TGGGTGAGGATGAACAGGATGACTGGATAGTGGTCAGCCAGCTCAGAATCACCTCCCTGC





AGCTTTCCGACACGGGACAGTACCAGTGTTTGGTGTTTCTGGGACATCAGACCTTCGTGT





CCCAGCCTGGCTATGTTGGGCTGGAGGGCTTGCCTTACTTCCTGGAGGAGCCCGAAGACA





GGACTGTGGCCGCCAACACCCCCTTCAACCTGAGCTGCCAAGCTCAGGGACCCCCAGAGC





CCGTGGACCTACTCTGGCTCCAGGATGCTGTCCCCCTGGCCACGGCTCCAGGTCACGGCC





CCCAGCGCAGCCTGCATGTTCCAGGGCTGAACAAGACATCCTCTTTCTCCTGCGAAGCCC





ATAACGCCAAGGGGGTCACCACATCCCGCACAGCCACCATCACAGTGCTCCCCCAGCAGC





CCCGTAACCTCCACCTGGTCTCCCGCCAACCCACGGAGCTGGAGGTGGCTTGGACTCCAG





GCCTGAGCGGCATCTACCCCCTGACCCACTGCACCCTGCAGGCTGTGCTGTCAGACGATG





GGATGGGCATCCAGGCGGGAGAACCAGACCCCCCAGAGGAGCCCCTCACCTCGCAAGCAT





CCGTGCCCCCCCATCAGCTTCGGCTAGGCAGCCTCCATCCTCACACCCCTTATCACATCC





GCGTGGCATGCACCAGCAGCCAGGGCCCCTCATCCTGGACCCACTGGCTTCCTGTGGAGA





CGCCGGAGGGAGTGCCCCTGGGCCCCCCTAAGAACATTAGTGCTACGCGGAATGGGAGCC





AGGCCTTCGTGCATTGGCAAGAGCCCCGGGCGCCCCTGCAGGGTACCCTGTTAGGGTACC





GGCTGGCGTATCAAGGCCAGGACACCCCAGAGGTGCTAATGGACATAGGGCTAAGGCAAG





AGGTGACCCTGGAGCTGCAGGGGGACGGGTCTGTGTCCAATCTGACAGTGTGTGTGGCAG





CCTACACTGCTGCTGGGGATGGACCCTGGAGCCTCCCAGTACCCCTGGAGGCCTGGCGCC





CAGTGAAGGAACCTTCAACTCCTGCCTTCTCGTGGCCCTGGTGGTATGTACTGCTAGGAG





CAGTCGTGGCCGCTGCCTGTGTCCTCATCTTGGCTCTCTTCCTTGTCCACCGGCGAAAGA





AGGAGACCCGTTATGGAGAAGTGTTTGAACCAACAGTGGAAAGAGGTGAACTGGTAGTCA





GGTACCGCGTGCGCAAGTCCTACAGTCGTCGGACCACTGAAGCTACCTTGAACAGCCTGG





GCATCAGTGAAGAGCTGAAGGAGAAGCTGCGGGATGTGATGGTGGACCGGCACAAGGTGG





CCCTGGGGAAGACTCTGGGAGAGGGAGAGTTTGGAGCTGTGATGGAAGGCCAGCTCAACC





AGGACGACTCCATCCTCAAGGTGGCTGTGAAGACGATGAAGATTGCCATCTGCACGAGGT





CAGAGCTGGAGGATTTCCTGAGTGAAGCGGTCTGCATGAAGGAATTTGACCATCCCAACG





TCATGAGGCTCATCGGTGTCTGTTTCCAGGGTTCTGAACGAGAGAGCTTCCCAGCACCTG





TGGTCATCTTACCTTTCATGAAACATGGAGACCTACACAGCTTCCTCCTCTATTCCCGGC





TCGGGGACCAGCCAGTGTACCTGCCCACTCAGATGCTAGTGAAGTTCATGGCAGACATCG





CCAGTGGCATGGAGTATCTGAGTACCAAGAGATTCATACACCGGGACCTGGCGGCCAGGA





ACTGCATGCTGAATGAGAACATGTCCGTGTGTGTGGCGGACTTCGGGCTCTCCAAGAAGA





TCTACAATGGGGACTACTACCGCCAGGGACGTATCGCCAAGATGCCAGTCAAGTGGATTG





CCATTGAGAGTCTAGCTGACCGTGTCTACACCAGCAAGAGCGATGTGTGGTCCTTCGGGG





TGACAATGTGGGAGATTGCCACAAGAGGCCAAACCCCATATCCGGGCGTGGAGAACAGCG





AGATTTATGACTATCTGCGCCAGGGAAATCGCCTGAAGCAGCCTGCGGACTGTCTGGATG





GACTGTATGCCTTGATGTCGCGGTGCTGGGAGCTAAATCCCCAGGACCGGCCAAGTTTTA





CAGAGCTGCGGGAAGATTTGGAGAACACACTGAAGGCCTTGCCTCCTGCCCAGGAGCCTG





ACGAAATCCTCTATGTCAACATGGATGAGGGTGGAGGTTATCCTGAACCCCCTGGAGCTG





CAGGAGGAGCTGACCCCCCAACCCAGCCAGACCCTAAGGATTCCTGTAGCTGCCTCACTG





CGGCTGAGGTCCATCCTGCTGGACGCTATGTCCTCTGCCCTTCCACAACCCCTAGCCCCG





CTCAGCCTGCTGATAGGGGCTCCCCAGCAGCCCCAGGGCAGGAGGATGGTGCCTGAGACA





ACCCTCCACCTGGTACTCCCTCTCAGGATCCAAGCTAAGCACTGCCACTGGGGAAAACTC





CACCTTCCCACTTTTCCACCCCACGCCTTATCCCCACTTGCAGCCCTGTCTTCCTACCTA





TCCCACCTCCATCCCAGACAGGTCCCTCCCCTTCTCTGTGCAGTAGCATCACCTTGAAAG





CAGTAGCATCACCATCTGTAAAAGGAAGGGGTTGGATTGCAATATCTGAAGCCCTCCCAG





GTGTTAACATTCCAAGACTCTAGAGTCCAAGGTTTAAAGAGTCTAGATTCAAAGGTTCTA





GGTTTCAAAGATGCTGTGAGTCTTTGGTTCTAAGGACCTGAAATTCCAAAGTCTCTAATT





CTATTAAAGTGCTAAGGTTCTAAGGCAAAAAAAAAAAAAAAAAAAAA






As used herein, the term “BIN1” refers to the gene encoding Myc box-dependent-interacting protein 1. The terms “BIN1” and “Myc box-dependent-interacting protein 1” include wild-type forms of the BIN1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type BIN1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type BIN1 nucleic acid sequence (e.g., SEQ ID NO: 7, ENA accession number AF004015). SEQ ID NO: 7 is a wild-type gene sequence encoding BIN1 protein, and is shown below:










(SEQ ID NO: 7)



ATGGCAGAGATGGGCAGTAAAGGGGTGACGGCGGGAAAGATCGCCAGCAACGTGCAGAAG






AAGCTCACCCGCGCGCAGGAGAAGGTTCTCCAGAAGCTGGGGAAGGCAGATGAGACCAAG





GATGAGCAGTTTGAGCAGTGCGTCCAGAATTTCAACAAGCAGCTGACGGAGGGCACCCGG





CTGCAGAAGGATCTCCGGACCTACCTGGCCTCCGTCAAAGCCATGCACGAGGCTTCCAAG





AAGCTGAATGAGTGTCTGCAGGAGGTGTATGAGCCCGATTGGCCCGGCAGGGATGAGGCA





AACAAGATCGCAGAGAACAACGACCTGCTGTGGATGGATTACCACCAGAAGCTGGTGGAC





CAGGCGCTGCTGACCATGGACACGTACCTGGGCCAGTTCCCCGACATCAAGTCACGCATT





GCCAAGCGGGGGCGCAAGCTGGTGGACTACGACAGTGCCCGGCACCACTACGAGTCCCTT





CAAACCGCCAAAAAGAAGGATGAAGCCAAAATTGCCAAGCCTGTCTCGCTGCTTGAGAAA





GCCGCCCCCCAGTGGTGCCAAGGCAAACTGCAGGCTCATCTCGTAGCTCAAACTAACCTG





CTCCGAAATCAGGCCGAGGAGGAGCTCATCAAAGCCCAGAAGGTGTTTGAGGAGATGAAT





GTGGATCTGCAGGAGGAGCTGCCGTCCCTGTGGAACAGCCGCGTAGGTTTCTACGTCAAC





ACGTTCCAGAGCATCGCGGGCCTGGAGGAAAACTTCCACAAGGAGATGAGCAAGCTCAAC





CAGAACCTCAATGATGTGCTGGTCGGCCTGGAGAAGCAACACGGGAGCAACACCTTCACG





GTCAAGGCCCAGCCCAGTGACAACGCGCCTGCAAAAGGGAACAAGAGCCCTTCGCCTCCA





GATGGCTCCCCTGCCGCCACCCCCGAGATCAGAGTCAACCACGAGCCAGAGCCGGCCGGC





GGGGCCACGCCCGGGGCCACCCTCCCCAAGTCCCCATCTCAGCTCCGGAAAGGCCCACCA





GTCCCTCCGCCTCCCAAACACACCCCGTCCAAGGAAGTCAAGCAGGAGCAGATCCTCAGC





CTGTTTGAGGACACGTTTGTCCCTGAGATCAGCGTGACCACCCCCTCCCAGTTTGAGGCC





CCGGGGCCTTTCTCGGAGCAGGCCAGTCTGCTGGACCTGGACTTTGACCCCCTCCCGCCC





GTGACGAGCCCTGTGAAGGCACCCACGCCCTCTGGTCAGTCAATTCCATGGGACCTCTGG





GAGCCCACAGAGAGTCCAGCCGGCAGCCTGCCTTCCGGGGAGCCCAGCGCTGCCGAGGGC





ACCTTTGCTGTGTCCTGGCCCAGCCAGACGGCCGAGCCGGGGCCTGCCCAACCAGCAGAG





GCCTCGGAGGTGGCGGGTGGGACCCAACCTGCGGCTGGAGCCCAGGAGCCAGGGGAGACG





GCGGCAAGTGAAGCAGCCTCCAGCTCTCTTCCTGCTGTCGTGGTGGAGACCTTCCCAGCA





ACTGTGAATGGCACCGTGGAGGGCGGCAGTGGGGCCGGGCGCTTGGACCTGCCCCCAGGT





TTCATGTTCAAGGTACAGGCCCAGCACGACTACACGGCCACTGACACAGACGAGCTGCAG





CTCAAGGCTGGTGATGTGGTGCTGGTGATCCCCTTCCAGAACCCTGAAGAGCAGGATGAA





GGCTGGCTCATGGGCGTGAAGGAGAGCGACTGGAACCAGCACAAGGAGCTGGAGAAGTGC





CGTGGCGTCTTCCCCGAGAACTTCACTGAGAGGGTCCCATGA






As used herein, the term “C1QA” refers to the gene encoding Complement C1q A Chain. The terms “C1QA” and “Complement C1q A Chain” include wild-type forms of the C1QA gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type C1QA. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type C1QA nucleic acid sequence (e.g., SEQ ID NO: 8, NCBI Reference Sequence: NM_015991.3). SEQ ID NO: 8 is a wild-type gene sequence encoding C1QA protein, and is shown below:










(SEQ ID NO: 8)



AGTCTTGCTGAAGTCTGCTTGAAATGTCCCTGGTGAGCTTCTGGCCACTGGGGAAGTTCAGGGGGC






AGGTCTGAAGAAGGGGAAGTAGGAAGGGATGTGAAACTTGGCCACAGCCTGGAGCCACTCCTGCTG





GGCAGCCCACAGGGTCCCTGGGCGGAGGGCAGGAGCATCCAGTTGGAGTTGACAACAGGAGGCA





GAGGCATCATGGAGGGTCCCCGGGGATGGCTGGTGCTCTGTGTGCTGGCCATATCGCTGGCCTCT





ATGGTGACCGAGGACTTGTGCCGAGCACCAGACGGGAAGAAAGGGGAGGCAGGAAGACCTGGCAG





ACGGGGGGGGCCAGGCCTCAAGGGGGAGCAAGGGGAGCCGGGGGCCCCTGGCATCCGGACAGG





CATCCAAGGCCTTAAAGGAGACCAGGGGGAACCTGGGCCCTCTGGAAACCCCGGCAAGGTGGGCT





ACCCAGGGCCCAGCGGCCCCCTCGGAGCCCGTGGCATCCCGGGAATTAAAGGCACCAAGGGCAGC





CCAGGAAACATCAAGGACCAGCCGAGGCCAGCCTTCTCCGCCATTCGGCGGAACCCCCCAATGGG





GGGCAACGTGGTCATCTTCGACACGGTCATCACCAACCAGGAAGAACCGTACCAGAACCACTCCGG





CCGATTCGTCTGCACTGTACCCGGCTACTACTACTTCACCTTCCAGGTGCTGTCCCAGTGGGAAATC





TGCCTGTCCATCGTCTCCTCCTCAAGGGGCCAGGTCCGACGCTCCCTGGGCTTCTGTGACACCACC





AACAAGGGGCTCTTCCAGGTGGTGTCAGGGGGCATGGTGCTTCAGCTGCAGCAGGGTGACCAGGT





CTGGGTTGAAAAAGACCCCAAAAAGGGTCACATTTACCAGGGCTCTGAGGCCGACAGCGTCTTCAG





CGGCTTCCTCATCTTCCCATCTGCCTGAGCCAGGGAAGGACCCCCTCCCCCACCCACCTCTCTGGC





TTCCATGCTCCGCCTGTAAAATGGGGGCGCTATTGCTTCAGCTGCTGAAGGGAGGGGGCTGGCTCT





GAGAGCCCCAGGACTGGCTGCCCCGTGACACATGCTCTAAGAAGCTCGTTTCTTAGACCTCTTCCTG





GAATAAACATCTGTGTCTGTGTCTGCTGAACATGAGCTTCAGTTGCTACTCGGAGCATTGAGAGGGA





GGCCTAAGAATAATAACAATCCAGTGCTTAAGAGTCAAAAAAAAAAAA






As used herein, the term “C3” refers to the gene encoding Complement C3. The terms “C3” and “Complement C3” include wild-type forms of the C3 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type C3. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type C3 nucleic acid sequence (e.g., SEQ ID NO: 9, NCBI Reference Sequence: NM_000064.3). SEQ ID NO: 9 is a wild-type gene sequence encoding C3 protein, and is shown below:










(SEQ ID NO: 9)



AGATAAAAAGCCAGCTCCAGCAGGCGCTGCTCACTCCTCCCCATCCTCTCCCTCTGTCCCTCTGTCC






CTCTGACCCTGCACTGTCCCAGCACCATGGGACCCACCTCAGGTCCCAGCCTGCTGCTCCTGCTAC





TAACCCACCTCCCCCTGGCTCTGGGGAGTCCCATGTACTCTATCATCACCCCCAACATCTTGCGGCT





GGAGAGCGAGGAGACCATGGTGCTGGAGGCCCACGACGCGCAAGGGGATGTTCCAGTCACTGTTA





CTGTCCACGACTTCCCAGGCAAAAAACTAGTGCTGTCCAGTGAGAAGACTGTGCTGACCCCTGCCA





CCAACCACATGGGCAACGTCACCTTCACGATCCCAGCCAACAGGGAGTTCAAGTCAGAAAAGGGGC





GCAACAAGTTCGTGACCGTGCAGGCCACCTTCGGGACCCAAGTGGTGGAGAAGGTGGTGCTGGTC





AGCCTGCAGAGCGGGTACCTCTTCATCCAGACAGACAAGACCATCTACACCCCTGGCTCCACAGTT





CTCTATCGGATCTTCACCGTCAACCACAAGCTGCTACCCGTGGGCCGGACGGTCATGGTCAACATT





GAGAACCCGGAAGGCATCCCGGTCAAGCAGGACTCCTTGTCTTCTCAGAACCAGCTTGGCGTCTTG





CCCTTGTCTTGGGACATTCCGGAACTCGTCAACATGGGCCAGTGGAAGATCCGAGCCTACTATGAAA





ACTCACCACAGCAGGTCTTCTCCACTGAGTTTGAGGTGAAGGAGTACGTGCTGCCCAGTTTCGAGGT





CATAGTGGAGCCTACAGAGAAATTCTACTACATCTATAACGAGAAGGGCCTGGAGGTCACCATCACC





GCCAGGTTCCTCTACGGGAAGAAAGTGGAGGGAACTGCCTTTGTCATCTTCGGGATCCAGGATGGC





GAACAGAGGATTTCCCTGCCTGAATCCCTCAAGCGCATTCCGATTGAGGATGGCTCGGGGGAGGTT





GTGCTGAGCCGGAAGGTACTGCTGGACGGGGTGCAGAACCCCCGAGCAGAAGACCTGGTGGGGAA





GTCTTTGTACGTGTCTGCCACCGTCATCTTGCACTCAGGCAGTGACATGGTGCAGGCAGAGCGCAG





CGGGATCCCCATCGTGACCTCTCCCTACCAGATCCACTTCACCAAGACACCCAAGTACTTCAAACCA





GGAATGCCCTTTGACCTCATGGTGTTCGTGACGAACCCTGATGGCTCTCCAGCCTACCGAGTCCCC





GTGGCAGTCCAGGGCGAGGACACTGTGCAGTCTCTAACCCAGGGAGATGGCGTGGCCAAACTCAG





CATCAACACACACCCCAGCCAGAAGCCCTTGAGCATCACGGTGCGCACGAAGAAGCAGGAGCTCTC





GGAGGCAGAGCAGGCTACCAGGACCATGCAGGCTCTGCCCTACAGCACCGTGGGCAACTCCAACA





ATTACCTGCATCTCTCAGTGCTACGTACAGAGCTCAGACCCGGGGAGACCCTCAACGTCAACTTCCT





CCTGCGAATGGACCGCGCCCACGAGGCCAAGATCCGCTACTACACCTACCTGATCATGAACAAGGG





CAGGCTGTTGAAGGCGGGACGCCAGGTGCGAGAGCCCGGCCAGGACCTGGTGGTGCTGCCCCTG





TCCATCACCACCGACTTCATCCCTTCCTTCCGCCTGGTGGCGTACTACACGCTGATCGGTGCCAGC





GGCCAGAGGGAGGTGGTGGCCGACTCCGTGTGGGTGGACGTCAAGGACTCCTGCGTGGGCTCGCT





GGTGGTAAAAAGCGGCCAGTCAGAAGACCGGCAGCCTGTACCTGGGCAGCAGATGACCCTGAAGA





TAGAGGGTGACCACGGGGCCCGGGTGGTACTGGTGGCCGTGGACAAGGGCGTGTTCGTGCTGAAT





AAGAAGAACAAACTGACGCAGAGTAAGATCTGGGACGTGGTGGAGAAGGCAGACATCGGCTGCACC





CCGGGCAGTGGGAAGGATTACGCCGGTGTCTTCTCCGACGCAGGGCTGACCTTCACGAGCAGCAG





TGGCCAGCAGACCGCCCAGAGGGCAGAACTTCAGTGCCCGCAGCCAGCCGCCCGCCGACGCCGTT





CCGTGCAGCTCACGGAGAAGCGAATGGACAAAGTCGGCAAGTACCCCAAGGAGCTGCGCAAGTGC





TGCGAGGACGGCATGCGGGAGAACCCCATGAGGTTCTCGTGCCAGCGCCGGACCCGTTTCATCTC





CCTGGGCGAGGCGTGCAAGAAGGTCTTCCTGGACTGCTGCAACTACATCACAGAGCTGCGGCGGC





AGCACGCGCGGGCCAGCCACCTGGGCCTGGCCAGGAGTAACCTGGATGAGGACATCATTGCAGAA





GAGAACATCGTTTCCCGAAGTGAGTTCCCAGAGAGCTGGCTGTGGAACGTTGAGGACTTGAAAGAG





CCACCGAAAAATGGAATCTCTACGAAGCTCATGAATATATTTTTGAAAGACTCCATCACCACGTGGGA





GATTCTGGCTGTGAGCATGTCGGACAAGAAAGGGATCTGTGTGGCAGACCCCTTCGAGGTCACAGT





AATGCAGGACTTCTTCATCGACCTGCGGCTACCCTACTCTGTTGTTCGAAACGAGCAGGTGGAAATC





CGAGCCGTTCTCTACAATTACCGGCAGAACCAAGAGCTCAAGGTGAGGGTGGAACTACTCCACAAT





CCAGCCTTCTGCAGCCTGGCCACCACCAAGAGGCGTCACCAGCAGACCGTAACCATCCCCCCCAAG





TCCTCGTTGTCCGTTCCATATGTCATCGTGCCGCTAAAGACCGGCCTGCAGGAAGTGGAAGTCAAG





GCTGCTGTCTACCATCATTTCATCAGTGACGGTGTCAGGAAGTCCCTGAAGGTCGTGCCGGAAGGA





ATCAGAATGAACAAAACTGTGGCTGTTCGCACCCTGGATCCAGAACGCCTGGGCCGTGAAGGAGTG





CAGAAAGAGGACATCCCACCTGCAGACCTCAGTGACCAAGTCCCGGACACCGAGTCTGAGACCAGA





ATTCTCCTGCAAGGGACCCCAGTGGCCCAGATGACAGAGGATGCCGTCGACGCGGAACGGCTGAA





GCACCTCATTGTGACCCCCTCGGGCTGCGGGGAACAGAACATGATCGGCATGACGCCCACGGTCAT





CGCTGTGCATTACCTGGATGAAACGGAGCAGTGGGAGAAGTTCGGCCTAGAGAAGCGGCAGGGGG





CCTTGGAGCTCATCAAGAAGGGGTACACCCAGCAGCTGGCCTTCAGACAACCCAGCTCTGCCTTTG





CGGCCTTCGTGAAACGGGCACCCAGCACCTGGCTGACCGCCTACGTGGTCAAGGTCTTCTCTCTGG





CTGTCAACCTCATCGCCATCGACTCCCAAGTCCTCTGCGGGGCTGTTAAATGGCTGATCCTGGAGAA





GCAGAAGCCCGACGGGGTCTTCCAGGAGGATGCGCCCGTGATACACCAAGAAATGATTGGTGGATT





ACGGAACAACAACGAGAAAGACATGGCCCTCACGGCCTTTGTTCTCATCTCGCTGCAGGAGGCTAA





AGATATTTGCGAGGAGCAGGTCAACAGCCTGCCAGGCAGCATCACTAAAGCAGGAGACTTCCTTGA





AGCCAACTACATGAACCTACAGAGATCCTACACTGTGGCCATTGCTGGCTATGCTCTGGCCCAGATG





GGCAGGCTGAAGGGGCCTCTTCTTAACAAATTTCTGACCACAGCCAAAGATAAGAACCGCTGGGAG





GACCCTGGTAAGCAGCTCTACAACGTGGAGGCCACATCCTATGCCCTCTTGGCCCTACTGCAGCTA





AAAGACTTTGACTTTGTGCCTCCCGTCGTGCGTTGGCTCAATGAACAGAGATACTACGGTGGTGGCT





ATGGCTCTACCCAGGCCACCTTCATGGTGTTCCAAGCCTTGGCTCAATACCAAAAGGACGCCCCTGA





CCACCAGGAACTGAACCTTGATGTGTCCCTCCAACTGCCCAGCCGCAGCTCCAAGATCACCCACCG





TATCCACTGGGAATCTGCCAGCCTCCTGCGATCAGAAGAGACCAAGGAAAATGAGGGTTTCACAGTC





ACAGCTGAAGGAAAAGGCCAAGGCACCTTGTCGGTGGTGACAATGTACCATGCTAAGGCCAAAGAT





CAACTCACCTGTAATAAATTCGACCTCAAGGTCACCATAAAACCAGCACCGGAAACAGAAAAGAGGC





CTCAGGATGCCAAGAACACTATGATCCTTGAGATCTGTACCAGGTACCGGGGAGACCAGGATGCCA





CTATGTCTATATTGGACATATCCATGATGACTGGCTTTGCTCCAGACACAGATGACCTGAAGCAGCT





GGCCAATGGTGTTGACAGATACATCTCCAAGTATGAGCTGGACAAAGCCTTCTCCGATAGGAACACC





CTCATCATCTACCTGGACAAGGTCTCACACTCTGAGGATGACTGTCTAGCTTTCAAAGTTCACCAATA





CTTTAATGTAGAGCTTATCCAGCCTGGAGCAGTCAAGGTCTACGCCTATTACAACCTGGAGGAAAGC





TGTACCCGGTTCTACCATCCGGAAAAGGAGGATGGAAAGCTGAACAAGCTCTGCCGTGATGAACTG





TGCCGCTGTGCTGAGGAGAATTGCTTCATACAAAAGTCGGATGACAAGGTCACCCTGGAAGAACGG





CTGGACAAGGCCTGTGAGCCAGGAGTGGACTATGTGTACAAGACCCGACTGGTCAAGGTTCAGCTG





TCCAATGACTTTGACGAGTACATCATGGCCATTGAGCAGACCATCAAGTCAGGCTCGGATGAGGTGC





AGGTTGGACAGCAGCGCACGTTCATCAGCCCCATCAAGTGCAGAGAAGCCCTGAAGCTGGAGGAGA





AGAAACACTACCTCATGTGGGGTCTCTCCTCCGATTTCTGGGGAGAGAAGCCCAACCTCAGCTACAT





CATCGGGAAGGACACTTGGGTGGAGCACTGGCCCGAGGAGGACGAATGCCAAGACGAAGAGAACC





AGAAACAATGCCAGGACCTCGGCGCCTTCACCGAGAGCATGGTTGTCTTTGGGTGCCCCAACTGAC





CACACCCCCATTCCCCCACTCCAGATAAAGCTTCAGTTATATCTCAAAAAAAAAAAAAAAAA






As used herein, the term “C9orf72” refers to the gene encoding Guanine nucleotide exchange C9orf72. The terms “C9orf72” and “Guanine nucleotide exchange C9orf72” include wild-type forms of the C9orf72 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type C9orf72. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type C9orf72 nucleic acid sequence (e.g., SEQ ID NO: 10, ENA accession number JN681271). SEQ ID NO: 10 is a wild-type gene sequence encoding C9orf72 protein, and is shown below:










(SEQ ID NO: 10)



AGGAAAGAGAGGTGCGTCAAACAGCGACAAGTTCCGCCCACGTAAAAGATGACGCTTGGT






GTGTCAGCCGTCCCTGCTGCCCGGTTGCTTCTCTTTTGGGGGCGGGGTCTAGCAAGAGCA





GGTGTGGGTTTAGGAGATATCTCCGGAGCATTTGGATAATGTGACAGTTGGAATGCAGTG





ATGTCGACTCTTTGCCCACCGCCATCTCCAGCTGTTGCCAAGACAGAGATTGCTTTAAGT





GGCAAATCACCTTTATTAGCAGCTACTTTTGCTTACTGGGACAATATTCTTGGTCCTAGA





GTAAGGCACATTTGGGCTCCAAAGACAGAACAGGTACTTCTCAGTGATGGAGAAATAACT





TTTCTTGCCAACCACACTCTAAATGGAGAAATCCTTCGAAATGCAGAGAGTGGTGCTATA





GATGTAAAGTTTTTTGTCTTGTCTGAAAAGGGAGTGATTATTGTTTCATTAATCTTTGAT





GGAAACTGGAATGGGGATCGCAGCACATATGGACTATCAATTATACTTCCACAGACAGAA





CTTAGTTTCTACCTCCCACTTCATAGAGTGTGTGTTGATAGATTAACACATATAATCCGG





AAAGGAAGAATATGGATGCATAAGGAAAGACAAGAAAATGTCCAGAAGATTATOTTAGAA





GGCACAGAGAGAATGGAAGATCAGGGTCAGAGTATTATTCCAATGCTTACTGGAGAAGTG





ATTCCTGTAATGGAACTGCTTTCATCTATGAAATCACACAGTGTTCCTGAAGAAATAGAT





ATAGCTGATACAGTACTCAATGATGATGATATTGGTGACAGCTGTCATGAAGGCTTTCTT





CTCAATGCCATCAGCTCACACTTGCAAACCTGTGGCTGTTCCGTTGTAGTAGGTAGCAGT





GCAGAGAAAGTAAATAAGATAGTCAGAACATTATGCCTTTTTCTGACTCCAGCAGAGAGA





AAATGCTCCAGGTTATGTGAAGCAGAATCATCATTTAAATATGAGTCAGGGCTCTTTGTA





CAAGGCCTGCTAAAGGATTCAACTGGAAGCTTTGTGCTGCCTTTCCGGCAAGTCATGTAT





GCTCCATATCCCACCACACACATAGATGTGGATGTCAATACTGTGAAGCAGATGCCACCC





TGTCATGAACATATTTATAATCAGCGTAGATACATGAGATCCGAGCTGACAGCCTTCTGG





AGAGCCACTTCAGAAGAAGACATGGCTCAGGATACGATCATCTACACTGACGAAAGCTTT





ACTCCTGATTTGAATATTTTTCAAGATGTCTTACACAGAGACACTCTAGTGAAAGCCTTC





CTGGATCAGGTCTTTCAGCTGAAACCTGGCTTATCTCTCAGAAGTACTTTCCTTGCACAG





TTTCTACTTGTCCTTCACAGAAAAGCCTTGACACTAATAAAATATATAGAAGACGATACG





CAGAAGGGAAAAAAGCCCTTTAAATCTCTTCGGAACCTGAAGATAGACCTTGATTTAACA





GCAGAGGGCGATCTTAACATAATAATGGCTCTGGCTGAGAAAATTAAACCAGGCCTACAC





TCTTTTATCTTTGGAAGACCTTTCTACACTAGTGTGCAAGAACGAGATGTTCTAATGACT





TTTTAAATGTGTAACTTAATAAGCCTATTCCATCACAATCATGATCGCTGGTAAAGTAGC





TCAGTGGTGTGGGGAAACGTTCCCCTGGATCATACTCCAGAATTCTGCTCTCAGCAATTG





CAGTTAAGTAAGTTACACTACAGTTCTCACAAGAGCCTGTGAGGGGATGTCAGGTGCATC





ATTACATTGGGTGTCTCTTTTCCTAGATTTATGCTTTTGGGATACAGACCTATGTTTACA





ATATAATAAATATTATTGCTATCTTTTAAAGATATAATAATAGGATGTAAACTTGACCAC





AACTACTGTTTTTTTGAAATACATGATTCATGGTTTACATGTGTCAAGGTGAAATCTGAG





TTGGCTTTTACAGATAGTTGACTTTCTATCTTTTGGCATTCTTTGGTGTGTAGAATTACT





GTAATACTTCTGCAATCAACTGAAAACTAGAGCCTTTAAATGATTTCAATTCCACAGAAA





GAAAGTGAGCTTGAACATAGGATGAGCTTTAGAAAGAAAATTGATCAAGCAGATGTTTAA





TTGGAATTGATTATTAGATCCTACTTTGTGGATTTAGTCCCTGGGATTCAGTCTGTAGAA





ATGTCTAATAGTTCTCTATAGTCCTTGTTCCTGGTGAACCACAGTTAGGGTGTTTTGTTT





ATTTTATTGTTCTTGCTATTGTTGATATTCTATGTAGTTGAGCTCTGTAAAAGGAAATTG





TATTTTATGTTTTAGTAATTGTTGCCAACTTTTTAAATTAATTTTCATTATTTTTGAGCC





AAATTGAAATGTGCACCTCCTGTGCCTTTTTTCTCCTTAGAAAATCTAATTACTTGGAAC





AAGTTCAGATTTCACTGGTCAGTCATTTTCATCTTGTTTTCTTCTTGCTAAGTCTTACCA





TGTACCTGCTTTGGCAATCATTGCAACTCTGAGATTATAAAATGCCTTAGAGAATATACT





AACTAATAAGATCTTTTTTTCAGAAACAGAAAATAGTTCCTTGAGTACTTCCTTCTTGCA





TTTCTGCCTATGTTTTTGAAGTTGTTGCTGTTTGCCTGCAATAGGCTATAAGGAATAGCA





GGAGAAATTTTACTGAAGTGCTGTTTTCCTAGGTGCTACTTTGGCAGAGCTAAGTTATCT





TTTGTTTTCTTAATGCGTTTGGACCATTTTGCTGGCTATAAAATAACTGATTAATATAAT





TCTAACACAATGTTGACATTGTAGTTACACAAACACAAATAAATATTTTATTTAAAATTC





TGGAAGTAATATAAAAGGGAAAATATATTTATAAGAAAGGGATAAAGGTAATAGAGCCCT





TCTGCCCCCCACCCACCAAATTTACACAACAAAATGACATGTTCGAATGTGAAAGGTCAT





AATAGCTTTCCCATCATGAATCAGAAAGATGTGGACAGCTTGATGTTTTAGACAACCACT





GAACTAGATGACTGTTGTACTGTAGCTCAGTCATTTAAAAAATATATAAATACTACCTTG





TAGTGTCCCATACTGTGTTTTTTACATGGTAGATTCTTATTTAAGTGCTAACTGGTTATT





TTCTTTGGCTGGTTTATTGTACTGTTATACAGAATGTAAGTTGTACAGTGAAATAAGTTA





TTAAAGCATGTGTAAACATTGTTATATATCTTTTCTCCTAAATGGAGAATTTTGAATAAA





ATATATTTGAAATTTT






As used herein, the term “CASS4” refers to the gene encoding Cas scaffolding protein family member 4. The terms “CASS4” and “Cas scaffolding protein family member 4” include wild-type forms of the CASS4 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CASS4. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CASS4 nucleic acid sequence (e.g., SEQ ID NO: 11, ENA accession number AJ276678). SEQ ID NO: 11 is a wild-type gene sequence encoding CASS4 protein, and is shown below:













GAAGAGTGGTGTTTTTTTCTTCTTCTTCTTCTTTTGTGGTTTCACATAGCAAATGAGTGA






CAGTCTCTACTTACAGACAAAGTGAGACGTCAGGCATTGAGACATAGCTCCATAGAATTC





AGTTTCTGAGAACCAGCCAGAAGCATGCAGTGACATTGCACAATCTGCCTCTGAAGCTGG





AGATACTAGCTGCAGAGCTCAGGGGAGCTGCTCCACATCACCGACATGAAGGGAACAGGC





ATCATGGACTGTGCGCCCAAGGCACTCCTGGCCAGGGCACTTTATGACAACTGCCCTGAC





TGCTCTGACGAGCTGGCTTTCAGCAGAGGGGACATCCTGACCATTCTGGAGCAACACGTG





CCAGAAAGCGAGGGTTGGTGGAAGTGTTTGCTCCATGGGAGGCAAGGCCTGGCCCCTGCC





AACCGCCTCCAAATCCTCACGGAGGTCGCTGCAGACAGGCCGTGCCCCCCATTCCTGAGA





GGCCTGGAAGAAGCTCCTGCCAGCTCAGAGGAGACCTATCAGGTGCCCACTCTACCCCGC





CCTCCCACTCCAGGCCCCGTTTATGAGCAGATGAGGAGTTGGGGGGAGGGGCCCCAGCCC





CCTACTGCCCAAGTCTATGAATTCCCCGACCCTCCCACCAGTGCCAGAATCATCTGTGAA





AAGACTCTCAGCTTTCCAAAACAGGCCATCCTCACGCTTCCCAGACCTGTCCGGGCCTCA





CTGCCGACTCTGCCTTCCCAGGTGTATGACGTGCCTACCCAGCACCGGGGCCCCGTGGTC





CTGAAGGAGCCAGAGAAGCAGCAGTTATATGACATACCAGCCAGCCCCAAGAAGGCAGGA





CTCCATCCCCCAGACAGCCAAGCAAGTGGGCAGGGTGTTCCCCTGATATCAGTGACTACC





TTAAGAAGAGGCGGTTACAGCACATTACCAAATCCTCAGAAATCGGAATGGATTTATGAC





ACTCCAGTGTCTCCAGGAAAGGCCAGCGTCAGAAACACGCCTCTCACCAGCTTTGCGGAA





GAATCAAGGCCCCACGCTCTCCCCAGTTCCAGCTCCACTTTCTACAATCCTCCAAGTGGC





AGATCCAGGTCCCTCACTCCACAACTGAATAACAATGTGCCCATGCAGAAAAAACTCAGC





CTTCCAGAAATTCCTTCTTATGGCTTTCTTGTACCCAGAGGCACATTTCCTTTGGATGAA





GATGTCAGCAACAAGGTTCCTTCAAGCTTCTCTGATTCCCCGAGTGGACAGCAGAACACC





AAGCCCAATATAGACATCCCTAAAGCAACGTCGAGTGTTTCTCAGGCTGGGAAGGAGCTG





GAGAAAGCCAAGGAGGTGTCAGAGAATTCCGCGGGCCATAATTCCTCATGGTTCTCCAGA





CGGACAACTTCCCCATCTCCTGAACCGGACAGATTATCAGGTTCCAGTTCTGACAGCAGA





GCTAGCATCGTTTCCTCGTGCTCCACCACATCCACCGACGACTCCTCCAGCTCTTCCTCG





GAGGAGTCAGCAAAGGAGCTCTCCTTGGACCTGGATGTGGCCAAGGAGACAGTGATGGCT





CTGCAGCACAAGGTGGTCAGCTCTGTCGCTGGCCTGATGCTCTTTGTCAGCAGGAAGTGG





AGATTCCGAGACTATCTGGAGGCCAACATTGATGCAATCCACAGGTCCACTGATCACATA





GAAGCCTCTGTAAGAGAATTTCTGGATTTTGCCCGAGGAGTCCATGGGACTGCCTGTAAC





CTCACTGACAGTAACCTTCAGAACAGAATTCGGGACCAGATGCAGACCATCTCCAACTCC





TACCGCATCCTGCTTGAAACAAAGGAAAGCTTGGATAATCGCAATTGGCCTCTGGAAGTT





CTTGTGACTGACAGTGTCCAGAACAGCCCAGATGACCTTGAGAGGTTTGTCATGGTGGCA





CGGATGCTTCCAGAAGACATCAAGAGGTTTGCCTCCATTGTCATTGCCAATGGAAGGCTC





CTTTTTAAGCGGAACTGTGAAAAGGAAGAGACTGTGCAGTTGACCCCAAATGCAGAATTT





AAGTGTGAAAAATACATCCAGCCTCCCCAAAGAGAAACTGAATCACACCAAAAGAGTACC





CCTTCCACTAAGCAAAGGGAAGATGAACACTCTTCTGAACTATTAAAGAAAAATAGAGCA





AATATCTGTGGACAGAATCCTGGCCCTCTTATACCTCAGCCTTCGAGTCAACAGACTCCT





GAGAGGAAACCCCGCTTATCTGAACACTGCCGGCTGTACTTTGGGGCGCTCTTCAAAGCC





ATCAGCGCATTTCACGGCAGCCTCAGCAGCAGCCAGCCCGCGGAGATCATCACTCAGAGC





AAGCTGGTCATCATGGTGGGACAGAAGCTGGTGGACACGCTGTGCATGGAGACCCAGGAG





AGGGACGTGCGCAATGAGATCCTCCGCGGCAGCAGTCACCTCTGCAGCCTGCTCAAGGAC





GTAGCGCTGGCCACTAAGAATGCCGTGCTCACATACCCCAGCCCTGCCGCGCTGGGGCAC





CTCCAGGCGGAGGCTGAGAAGCTGGAGCAACACACGCGGCAGTTCAGAGGGACACTGGGA





TGAGGACTGTCTACCTCCCTTCCTCCTCTGCTCACC






(SEQ ID NO: 11)

As used herein, the term “CCL5” refers to the gene encoding C-C motif chemokine 5. The terms “CCL5” and “C-C motif chemokine 5” include wild-type forms of the CCL5 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CCL5. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CCL5 nucleic acid sequence (e.g., SEQ ID NO: 12, ENA accession number M21121). SEQ ID NO: 12 is a wild-type gene sequence encoding CCL5 protein, and is shown below:










(SEQ ID NO: 12)



CCTCCGACAGCCTCTCCACAGGTACCATGAAGGTCTCCGCGGCACGCCTCGCTGTCATCC






TCATTGCTACTGCCCTCTGCGCTCCTGCATCTGCCTCCCCATATTCCTCGGACACCACAC





CCTGCTGCTTTGCCTACATTGCCCGCCCACTGCCCCGTGCCCACATCAAGGAGTATTTCT





ACACCAGTGGCAAGTGCTCCAACCCAGCAGTCGTCTTTGTCACCCGAAAGAACCGCCAAG





TGTGTGCCAACCCAGAGAAGAAATGGGTTCGGGAGTACATCAACTCTTTGGAGATGAGCT





AGGATGGAGAGTCCTTGAACCTGAACTTACACAAATTTGCCTGTTTCTGCTTGCTCTTGT





CCTAGCTTGGGAGGCTTCCCCTCACTATCCTACCCCACCCGCTCCTTGAAGGGCCCAGAT





TCTGACCACGACGAGCAGCAGTTACAAAAACCTTCCCCAGGCTGGACGTGGTGGCTCAGC





CTTGTAATCCCAGCACTTTGGGAGGCCAAGGTGGGTGGATCACTTGAGGTCAGGAGTTCG





AGACAGCCTGGCCAACATGATGAAACCCCATGTGTACTAAAAATACAAAAAATTAGCCGG





GCGTGGTAGCGGGCGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGCGT





GAACCCGGGAGCGGAGCTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCG





ACAGAGCGAGACTCCGTCTCAAAAAAAAAAAAAAAAAAAAAAAAAATACAAAAATTAGCC





GCGTGGTGGCCCACGCCTGTAATCCCAGCTACTCGGGAGGCTAAGGCAGGAAAATTGTTT





GAACCCAGGAGGTGGAGGCTGCAGTGAGCTGAGATTGTGCCACTTCACTCCAGCCTGGGT





GACAAAGTGAGACTCCGTCACAACAACAACAACAAAAAGCTTCCCCAACTAAAGCCTAGA





AGAGCTTCTGAGGCGCTGCTTTGTCAAAAGGAAGTCTCTAGGTTCTGAGCTCTGGCTTTG





CCTTGGCTTTGCAAGGGCTCTGTGACAAGGAAGGAAGTCAGCATGCCTCTAGAGGCAAGG





AAGGGAGGAACACTGCACTCTTAAGCTTCCGCCGTCTCAACCCCTCACAGGAGCTTACTG





GCAAACATGAAAAATCGGGG






As used herein, the term “CD2AP” refers to the gene encoding CD2-associated protein. The terms “CD2AP” and “CD2-associated protein” include wild-type forms of the CD2AP gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CD2AP. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CD2AP nucleic acid sequence (e.g., SEQ ID NO: 13, ENA accession number AF146277). SEQ ID NO: 13 is a wild-type gene sequence encoding CD2AP protein, and is shown below:










(SEQ ID NO: 13)



GGAATTCCGGGAGGAGCGGACGTCGGCTTCTCCCCGCGGGAGCCCCCAGCATGGTTGACT






ATATTGTGGAGTATGACTATGATGCTGTACATGATGATGAATTAACTATTCGAGTTGGAG





AAATCATCAGGAATGTGAAAAAGCTACAGGAGGAAGGGTGGCTGGAAGGAGAACTAAATG





GGAGAAGAGGAATGTTCCCTGACAATTTCGTTAAGGAAATTAAAAGAGAGACGGAATTCA





AGGATGACAGTTTGCCCATCAAACGGGAAAGGCATGGGAATGTAGCAAGTCTTGTACAAC





GAATAAGCACCTATGGACTTCCAGCTGGAGGAATTCAGCCACATCCACAAACCAAAAACA





TTAAGAAGAAGACCAAGAAGCGTCAGTGTAAAGTTCTTTTTGAGTACATTCCACAAAATG





AGGATGAACTGGAGCTGAAAGTGGGAGATATTATTGATATTAATGAAGAGGTAGAAGAAG





GCTGGTGGAGTGGAACCCTGAATAACAAGTTGGGACTGTTTCCCTCAAATTTTGTGAAAG





AATTAGAGGTAACAGATGATGGTGAAACTCATGAAGCCCAGGACGATTCAGAAACTGTTT





TGGCTGGGCCTACTTCACCTATACCTTCTCTGGGAAATGTGAGTGAAACTGCATCTGGAT





CAGTTACACAGCCAAAGAAAATTCGAGGAATTGGATTTGGAGACATTTTTAAAGAAGGTT





CTGTGAAACTTCGGACAAGAACATCCAGTAGTGAAACAGAAGAGAAAAAACCAGAAAAGC





CCTTAATCCTACAGTCACTGGGACCCAAAACTCAGAGTGTGGAGATAACAAAAACAGATA





CCGAAGGTAAAATTAAAGCTAAAGAATATTGTAGAACATTATTTGCCTATGAAGGTACTA





ATGAAGATGAACTTACTTTTAAAGAGGGGGAGATAATCCATTTGATAAGTAAGGAGACTG





GAGAAGCTGGCTGGTGGAGGGGCGAACTTAATGGTAAAGAAGGAGTATTTCCAGACAATT





TTGCTGTCCAGATAAATGAACTTGATAAAGACTTTCCAAAACCAAAGAAACCACCACCTC





CTGCTAAGGCTCCAGCTCCAAAGCCTGAACTGATAGCTGCAGAGAAGAAATATTTTTCTT





TAAAGCCTGAAGAAAAGGATGAAAAATCAACACTGGAACAGAAACCTTCTAAACCAGCAG





CTCCACAAGTCCCACCCAAGAAACCTACTCCACCTACCAAAGCCAGTAATTTATTGAGAT





CTTCTGGAACAGTGTACCCAAAGCGACCTGAAAAACCAGTTCCTCCACCACCTCCTATAG





CCAAGATTAATGGGGAAGTTTCTAGCATTTCATCAAAATTTGAAACTGAGCCAGTATCAA





AACTAAAGCTAGATTCTGAACAGCTGCCCCTTAGACCAAAATCAGTAGACTTTGATTCAC





TTACAGTAAGGACCTCCAAAGAAACAGATGTTGTAAATTTTGATGACATAGCTTCCTCAG





AAAACTTGCTTCATCTCACTGCAAATAGACCAAAGATGCCTGGAAGAAGGTTGCCGGGCC





GTTTCAATGGTGGACATTCTCCAACTCACAGCCCCGAAAAAATCTTGAAGTTACCAAAAG





AAGAAGACAGTGCCAACCTGAAGCCATCTGAATTAAAAAAAGATACATGCTACTCTCCAA





AGCCATCTGTGTACCTTTCAACACCTTCCAGTGCTTCTAAAGCAAATACAACTGCTTTCC





TGACTCCATTAGAAATCAAAGCTAAAGTGGAAACAGATGATGTGAAAAAAAATTCCCTGG





ATGAACTTAGAGCCCAGATTATTGAATTGTTGTGCATTGTAGAAGCACTGAAAAAGGATC





ACGGGAAAGAACTGGAAAAACTGCGAAAAGATTTGGAAGAAGAGAAGACAATGAGAAGTA





ATCTAGAGATGGAAATAGAGAAGCTGAAAAAAGCTGTCCTGTCTTCTTGAGTGGTGTGGA





CCTGGTGTTCATAATGTTCCAGGGATTCAGAAGCAACGCTATGAACTTCAGCTGACTTGT





TACTTAAAAATTGTGAATTCTGTTGTTGTGATAAATATGAGCAAATGAAGTGTAATATCT





ATAGAAAAGTAGAGTGAGGGTGAATTTATATATATATTTTGTTTTGCCAATATGAAGAAA





AAGAGGCCTTATTTCTTAACTGTGCTGGGATTGCAAACACTTTTTAAAAAATTGTTTGCT





TGAAAATACTACTGAATATAAATAAGAATGTGCTCAGTAGTTTTTTTATTGAAACTTGTA





TTATTTTTAAAGAGATCTATACTATAAATATGGTGATATATTTACAAGTAATCTGTAAGA





TATACTATTTGAGAGGGACAGATTAGCCTTTTAGTAACTATAGTCACTACTTTTTCCATA





ATGCATAAGGGATATAAACTCTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT





ATATATATATATATATTTTTACTTTTATCCTCTTACCGAAGGTTACACTGTTGTGCCTGT





TTGTCTGCAATGCTGTTTATATTTTGGGTGATGAAATAGGAGTTTCCTAGCTATATAAAC





CAGATTACTCACCCATGCATATAGTAAGAACTAATGAATAATCAAAATAATTTCATCAAC





TTTTAGAATATTTTATGTTGCTTGCACTATAGGAGTCATAAAAGGAACTTAGTTAAAATA





TGTTGGATTGTTAAACATTTGGGGAAATATGAACTGTATTTTAAATTTGTTAGGTCTGAA





AAATCTAAAACTGTTAATTTAACCCTTAACTTGTGCCTAGAAACTACAGCACATATAAAA





TATGTAAACACCAGCCTGTTGCTGTACTTTTCTGCTTATTTTACAGCCTCAAATATTTCT





CATTATCTTGTCACTTAGTTCTTCATGTTTCTCCTTCTGACTTTTAATAATGGTAATAGG





AAAACAAAACCCAAAGCTTTTCAAACTTCAGTGTGAGGTTTCCTATTTTGACAAGTTAAC





TTGTAAATACTCAGGTTTTACGATGTATAATTTACCTAATAGACCAAACTAACTCATGGA





GATATTTTGAACTATTATTTAGGTACAAACTTTATAAAGAATGTTAGTATGTCATAAAAT





ATAACATTACAGCTTATTTAAAACCAAATATATTGAACATATTTTAAAATACATTTCACA





GAATGGATGAATTAGTTGTTTCTTCAAAAGTTACTTATGAACAGTTGAATGCCTTTAAAA





TGTTCTGTCTGTAGGTACATCTAAAAACACAAGTGGGTTTATTTAAATTTTTAAAATTTG





AAATTTTTTATTTGCCAAAAATTGTTTTATGCTTTATTATATCGCAAATGAGTGTCAGAT





TTTTGAGTACCAATGATCATGCTTCCATTTTTTTTAGTTTTAAACCACCAAACCAATATT





TTTCCTTTAAATTTTAATCTTATAATATAGAAATCTTATGTTAATGAAATTTTGTCATGT





TTCAAATAAAGAAAACTGAAGTAGAAAATAGAAATGCCAGTAAACAACATAATGTTTAAT





TTACAACTTACATTAGGGGTTTGGGGGAATGCTAATTATATATTGAGAATATACATTAGA





ACTCTTCAAAATGGGCTCTTCTAATGAGGTCACTACTGAACAAAATTGTTCCCTCTTCTG





TTAAATAGAATAGGTTTAAATGACTAGTCAAATGAATTATTTTCTCCTTGTTAAATAAAT





TAAATCTTACTTTCTTTTAATGACCAACCTTAGGTAAAACAAAAATATTGTAATCCTAGA





AATTATCCTCCAGCTTTCTCACCTGAAAATCTATTGAAGTGATCCCTGGTCATCCTAATA





ATGGGATGAGGGAAGTTTCCAGCAGATTTCAGGCTGTTCTTAAAGTTTTTGTTGGTCATT





TTCTCAATAGTACATGAAATCAAGATGCTTATGAGCATGGAAATGTATTTAAAGTTTTTG





CTTGTGTCCTCCTCAGTCAGAATAGAAAAGTAACTGAAATACTCTTACCTTTCTGTCCTT





GATAAAATAGTAAAGAAAACCAAACAAACCCAGGCCTGATGGGAAAAATGATTCCTTTAT





TCTAGCAATTACTTTCTGTTGGTATGGGAAATGTTATTAATTTCTATTACTAAAGTTCAT





ATCACAAAATGATATTTAATAATAACCTTGGGGTAAATCATGAATTTTTTTTTCTACGTG





TGAGTATAAAAGACAAAAGTTGAACAGCATGGAATCTTCATTGCCAAATTATTAGTGAAT





GTATAGTTCAGGTATTCTTTGAGACACACAGTATCATTAATTTCCGAATTGTATTTCAGT





GTTATTTTTTGTTTGTGACCACTAAGCTTCTGTCTTAATACAAAGCTGTTACCTTCTACA





GAATTTAAGTCTGAAGATGTAAAGAGAGAACAGGCCTTGTGTAACAGAAGATACTCTTTT





TTATGCTCCTTACTGTGATCACAGAAAAATTAAAAATCCAAGTGCTCTCTAGATTTGTTG





ATAAACATTTTATGCTTGCATTTAAACTTGAAATGTATGAGCAGAATGAGACAATCAGTT





AAATCAGAAATGAGAAGTATTATAATGTAAAGGCCTTGTTTTGCTGTAGCAATAAAATGA





CCAAGTGCAATGACTTGATTTAATAAAATCCGGAATTC






As used herein, the term “CD33” refers to the gene encoding Myeloid cell surface antigen CD33. The terms “CD33” and “Myeloid cell surface antigen CD33” include wild-type forms of the CD33 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CD33. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CD33 nucleic acid sequence (e.g., SEQ ID NO: 14, ENA accession number M23197). SEQ ID NO: 14 is a wild-type gene sequence encoding CD33 protein, and is shown below:










(SEQ ID NO: 14)



GCTTCCTCAGACATGCCGCTGCTGCTACTGCTGCCCCTGCTGTGGGCAGGGGCCCTGGCT






ATGGATCCAAATTTCTGGCTGCAAGTGCAGGAGTCAGTGACGGTACAGGAGGGTTTGTGC





GTCCTCGTGCCCTGCACTTTCTTCCATCCCATACCCTACTACGACAAGAACTCCCCAGTT





CATGGTTACTGGTTCCGGGAAGGAGCCATTATATCCGGGGACTCTCCAGTGGCCACAAAC





AAGCTAGATCAAGAAGTACAGGAGGAGACTCAGGGCAGATTCCGCCTCCTTGGGGATCCC





AGTAGGAACAACTGCTCCCTGAGCATCGTAGACGCCAGGAGGAGGGATAATGGTTCATAC





TTCTTTCGGATGGAGAGAGGAAGTACCAAATACAGTTACAAATCTCCCCAGCTCTCTGTG





CATGTGACAGACTTGACCCACAGGCCCAAAATCCTCATCCCTGGCACTCTAGAACCCGGC





CACTCCAAAAACCTTACCTGCTCTGTGTCCTGGGCCTGTGAGCAGGGAACACCCCCGATC





TTCTCCTGGTTGTCAGCTGCCCCCACCTCCCTGGGCCCCAGGACTACTCACTCCTCGGTG





CTCATAATCACCCCACGGCCCCAGGACCACGGCACCAACCTGACCTGTCAGGTGAAGTTC





GCTGGAGCTGGTGTGACTACGGAGAGAACCATCCAGCTCAACGTCACCTATGTTCCACAG





AACCCAACAACTGGTATCTTTCCAGGAGATGGCTCAGGGAAACAAGAGACCAGAGCAGGA





CTGGTTCATGGGGCCATTGGAGGAGCTGGTGTTACAGCCCTGCTCGCTCTTTGTCTCTGC





CTCATCTTCTTCATAGTGAAGACCCACAGGAGGAAAGCAGCCAGGACAGCAGTGGGCAGC





AATGACACCCACCCTACCACAGGGTCAGCCTCCCCGAAACACCAGAAGAACTCCAAGTTA





CATGGCCCCACTGAAACCTCAAGCTGTTCAGGTGCCGCCCCTACTGTGGAGATGGATGAG





GAGCTGCATTATGCTTCCCTCAACTTTCATGGGATGAATCCTTCCAAGGACACCTCCACC





GAATACTCAGAGGTCAGGACCCAGTGAGGAACCCTCAAGAGCATCAGGCTCAGCTAGAAG





ATCCACATCCTCTACAGGTCGGGGACCAAAGGCTGATTCTTGGAGATTTAACTCCCCACA





GGCAATGGGTTTATAGACATTATGTGAGTTTCCTGCTATATTAACATCATCTTGAGACTT





TGCAAGCAGAGAGTCGTGGAATCAAATCTGTGCTCTTTCATTTGCTAAGTGTATGATGTC





ACACAAGCTCCTTAACCTTCCATGTCTCCATTTTCTTCTCTGTGAAGTAGGTATAAGAAG





TCCTATCTCATAGGGATGCTGTGAGCATTAAATAAAGGTACACATGGAAAACACCAG






As used herein, the term “CD68” refers to the gene encoding CD68 Molecule. The terms “CD68” and “CD68 molecule” include wild-type forms of the CD68 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CD68. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CD68 nucleic acid sequence (e.g., SEQ ID NO: 15, NCBI Reference Sequence: NM_001251.2). SEQ ID NO: 15 is a wild-type gene sequence encoding CD68 protein, and is shown below:










(SEQ ID NO: 15)



TTAATTACAAAAACTAATGACTAAGAGAGAGGTGGCTAGAGCTGAGGCCCCTGAGTCAGGCTGTGG






GTGGGATCATCTCCAGTACAGGAAGTGAGACTTTCATTTCCTCCTTTCCAAGAGAGGGCTGAGGGAG





CAGGGTTGAGCAACTGGTGCAGACAGCCTAGCTGGACTTTGGGTGAGGCGGTTCAGCCATGAGGCT





GGCTGTGCTTTTCTCGGGGGCCCTGCTGGGGCTACTGGCAGCCCAGGGGACAGGGAATGACTGTC





CTCACAAAAAATCAGCTACTTTGCTGCCATCCTTCACGGTGACACCCACGGTTACAGAGAGCACTGG





AACAACCAGCCACAGGACTACCAAGAGCCACAAAACCACCACTCACAGGACAACCACCACAGGCAC





CACCAGCCACGGACCCACGACTGCCACTCACAACCCCACCACCACCAGCCATGGAAACGTCACAGT





TCATCCAACAAGCAATAGCACTGCCACCAGCCAGGGACCCTCAACTGCCACTCACAGTCCTGCCAC





CACTAGTCATGGAAATGCCACGGTTCATCCAACAAGCAACAGCACTGCCACCAGCCCAGGATTCACC





AGTTCTGCCCACCCAGAACCACCTCCACCCTCTCCGAGTCCTAGCCCAACCTCCAAGGAGACCATT





GGAGACTACACGTGGACCAATGGTTCCCAGCCCTGTGTCCACCTCCAAGCCCAGATTCAGATTCGA





GTCATGTACACAACCCAGGGTGGAGGAGAGGCCTGGGGCATCTCTGTACTGAACCCCAACAAAACC





AAGGTCCAGGGAAGCTGTGAGGGTGCCCATCCCCACCTGCTTCTCTCATTCCCCTATGGACACCTC





AGCTTTGGATTCATGCAGGACCTCCAGCAGAAGGTTGTCTACCTGAGCTACATGGCGGTGGAGTAC





AATGTGTCCTTCCCCCACGCAGCACAGTGGACATTCTCGGCTCAGAATGCATCCCTTCGAGATCTCC





AAGCACCCCTGGGGCAGAGCTTCAGTTGCAGCAACTCGAGCATCATTCTTTCACCAGCTGTCCACCT





CGACCTGCTCTCCCTGAGGCTCCAGGCTGCTCAGCTGCCCCACACAGGGGTCTTTGGGCAAAGTTT





CTCCTGCCCCAGTGACCGGTCCATCTTGCTGCCTCTCATCATCGGCCTGATCCTTCTTGGCCTCCTC





GCCCTGGTGCTTATTGCTTTCTGCATCATCCGGAGACGCCCATCCGCCTACCAGGCCCTCTGAGCAT





TTGCTTCAAACCCCAGGGCACTGAGGGGGTTGGGGTGTGGTGGGGGGGTACCCTTATTTCCTCGAC





ACGCAACTGGCTCAAAGACAATGTTATTTTCCTTCCCTTTCTTGAAGAACAAAAAGAAAGCCGGGCAT





GACGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCAGGTGGATCACTGGAGGTCAGGA





GTTTGAGACCAGCCTGGCCAACATGGTGAAACCCTGTCTCTACTAAAAATACAATTAGCCAGGTGTG





GCGGCGTAATCCCAGCTGGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGCAGAACTGCTTGAACC





CAGGAGGTGGAGGTTGCAGTGAGCCGTCATCGCGCCACTAAGCCAAGATCGCGCCACTGCACTCC





AGCCTGGGCGACAGAGCCAGACTGTCTCAAATAAATAAATATGAGATAATGCAGTCGGGAGAAGGG





AGGGAGAGAATTTTATTAAATGTGACGAACTGCCCCCCCCCCCCCCCCAGCAGGAGAGCAGCAAAA





TTTATGCAAATCTTTGACGGGGTTTTCCTTGTCCTGCCAGGATTAAAAGCCATGAGTTTCTTGTCAAA





AAAAAAAAAAAAAA






As used herein, the term “CLPTM1” refers to the gene encoding CLPTM1 Regulator of GABA Type A Receptor Forward Trafficking. The terms “CLPTM1” and “CLPTM1 Regulator of GABA Type A Receptor Forward Trafficking” include wild-type forms of the CLPTM1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CLPTM1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CLPTM1 nucleic acid sequence (e.g., SEQ ID NO: 16, NCBI Reference Sequence: NM_001294.3). SEQ ID NO: 16 is a wild-type gene sequence encoding CLPTM1 protein, and is shown below:










(SEQ ID NO: 16)



AGGTTGGTCCTTCCATAGCCGGAAGTGGCCTTCCTGAGAGGCGTGGCTGCGGCACTCTTGCCGGAT






AGGGTGGCCCGGCGGGGCTAGGAAAGCGTGAAATCTCGCGCGATTGCGCTGCGAAGTCGGGGAC





GGGGCGGGGCTGGCGGCGGGGGCGGGGACCCGGAGCGGGAAGATGGCGGCGGCGCAGGAGGC





GGACGGGGCCCGCAGCGCCGTGGTGGCGGCCGGGGGAGGCAGCTCCGGTCAGGTGACCAGCAAT





GGCAGCATCGGGAGGGACCCGCCAGCGGAGACCCAGCCTCAGAACCCACCGGCCCAGCCGGCAC





CCAATGCCTGGCAGGTCATCAAAGGTGTGCTGTTTAGGATCTTCATCATCTGGGCCATCAGCAGTTG





GTTCCGCCGAGGGCCGGCCCCTCAGGACCAGGCGGGCCCCGGAGGAGCTCCACGCGTCGCCAGC





CGCAACCTGTTCCCCAAAGACACTTTAATGAACCTGCATGTGTACATCTCAGAGCACGAGCACTTTA





CAGACTTCAACGCCACGTCGGCACTCTTCTGGGAACAGCACGATCTTGTGTATGGCGACTGGACTA





GCGGCGAGAACTCAGACGGCTGCTACGAGCACTTTGCTGAGCTCGATATCCCACAGAGCGTCCAGC





AGAACGGCTCCATCTACATCCACGTTTACTTCACCAAGAGTGGCTTCCACCCAGACCCCCGGCAGAA





GGCCCTGTACCGCCGGCTTGCCACAGTCCACATGTCCCGGATGATCAACAAATACAAGCGCAGACG





ATTTCAGAAAACCAAGAACCTGCTGACAGGAGAGACAGAAGCGGACCCAGAAATGATCAAGAGGGC





TGAGGACTATGGGCCTGTGGAGGTGATCTCCCATTGGCACCCCAACATCACCATCAACATCGTGGA





CGACCACACGCCGTGGGTGAAGGGCAGTGTGCCCCCTCCCCTGGATCAATATGTGAAGTTCGACGC





CGTGAGCGGTGACTACTATCCCATCATCTACTTCAATGACTACTGGAACCTGCAGAAGGACTACTAC





CCCATCAACGAGAGCCTGGCCAGCCTGCCGCTCCGCGTCTCCTTCTGCCCACTCTCGCTTTGGCGC





TGGCAGCTCTATGCTGCCCAGAGCACCAAGTCGCCCTGGAACTTCCTGGGTGATGAGTTGTACGAG





CAGTCAGATGAGGAGCAGGACTCGGTGAAGGTGGCCCTGCTGGAGACCAACCCCTACCTGCTGGC





GCTCACCATCATCGTGTCTATCGTTCACAGTGTCTTCGAGTTCCTGGCCTTCAAGAATGATATCCAGT





TCTGGAACAGCCGGCAGTCCCTGGAGGGCCTGTCCGTGCGCTCCGTCTTCTTCGGCGTTTTCCAGT





CATTCGTGGTCCTCCTCTACATCCTGGACAACGAGACCAACTTCGTGGTCCAGGTCAGCGTCTTCAT





TGGGGTCCTCATCGACCTCTGGAAGATCACCAAGGTCATGGACGTCCGGCTGGACCGAGAGCACAG





GGTGGCAGGAATCTTCCCCCGCCTATCCTTCAAGGACAAGTCCACGTATATCGAGTCCTCGACCAAA





GTGTATGATGATATGGCATTCCGGTACCTGTCCTGGATCCTCTTCCCGCTCCTGGGCTGCTATGCCG





TCTACAGTCTTCTGTACCTGGAGCACAAGGGCTGGTACTCCTGGGTGCTCAGCATGCTCTACGGCTT





CCTGCTGACCTTCGGCTTCATCACCATGACGCCCCAGCTCTTCATCAACTACAAGCTCAAGTCTGTG





GCCCACCTTCCCTGGCGCATGCTCACCTACAAGGCCCTCAACACATTCATCGACGACCTGTTCGCCT





TTGTCATCAAGATGCCCGTTATGTACCGGATCGGCTGCCTGCGGGACGATGTGGTTTTCTTCATCTA





CCTCTACCAACGGTGGATCTACCGCGTCGACCCCACCCGAGTCAACGAGTTTGGCATGAGTGGAGA





AGACCCCACAGCTGCCGCCCCCGTGGCCGAGGTTCCCACAGCAGCAGGGGCCCTCACGCCCACAC





CTGCACCCACCACGACCACCGCCACCAGGGAGGAGGCCTCCACGTCCCTGCCCACCAAGCCCACC





CAGGGGGCCAGCTCTGCCAGCGAGCCCCAGGAAGCCCCTCCAAAGCCAGCAGAGGACAAGAAAAA





GGATTAGTCGAGACTGGTCCTCACCTGCTCCGGCTCCTGGCGACCACTACCCCTGCGTCCCGGCCC





CCTCGCCTCCCCTCCCTGTCGCCCTTTCCCTGGACAGATCAGGCCGGGGCGGTGGGAGGCCCGCC





TCAGGTCAGGGCCCAGCGTGTGATGTAGGGGCCGGGGCAGGCCAGGGTTTGTTTGTGGAGGCGCT





GTCTGTCCCTCTGTCCCTCTGTGTTTCCAGCCATCTCGCCCTGCCAGCCCAGCACCACTGGGAATCA





TGGTGAAGCTGATGCAGCGTTGCCGAGGGGGGGGTTGGGGGGGGGGGGGCCGGGCCCCCCTA





CGGGATGCCCACGGCCGTTCATCATCTTGTCCCTCGTCCCCCTACCACACTCCCCCTCCTAGACCG





CCGCCCTTTAACACAGTCTGGATTTAATAAATTCATATGGGTGTTTAACTTAAACTCAGCACTAAAAAA





AAAAAAAAAAAA






As used herein, the term “CLU” refers to the gene encoding Clusterin. The terms “CLU” and “Clusterin” include wild-type forms of the CLU gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CLU. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CLU nucleic acid sequence (e.g., SEQ ID NO: 17, ENA accession number M25915). SEQ ID NO: 17 is a wild-type gene sequence encoding CLU protein, and is shown below:










(SEQ ID NO: 17)



CTGCGAACCCTCTCTACTCTCCGAAGGGAATTGTCCTTCCTGGCTTCCACTACTTCCACC






CCTGAATGCACAGGCAGCCCGGCCCAAGTCTCCCACTAGGGATGCAGATGGATTCGGTGT





GAAGGGCTGGCTGCTGTTGCCTCCGGCTCTTGAAAGTCAAGTTCAGAGGCGTGCAAAGAC





TCCAGAATTGGAGGCATGATGAAGACTCTGCTGCTGTTTGTGGGGCTGCTGCTGACCTGG





GAGAGTGGGCAGGTCCTGGGGGACCAGACGGTCTCAGACAATGAGCTCCAGGAAATGTCC





AATCAGGGAAGTAAGTACGTCAATAAGGAAATTCAAAATGCTGTCAACGGGGTGAAACAG





ATAAAGACTCTCATAGAAAAAACAAACGAAGAGCGCAAGACACTGCTCAGCAACCTAGAA





GAAGCCAAGAAGAAGAAAGAGGATGCCCTAAATGAGACCAGGGAATCAGAGACAAAGCTG





AAGGAGCTCCCAGGAGTGTGCAATGAGACCATGATGGCCCTCTGGGAAGAGTGTAAGCCC





TGCCTGAAACAGACCTGCATGAAGTTCTACGCACGCGTCTGCAGAAGTGGCTCAGGCCTG





GTTGGCCGCCAGCTTGAGGAGTTCCTGAACCAGAGCTCGCCCTTCTACTTCTGGATGAAT





GGTGACCGCATCGACTCCCTGCTGGAGAACGACCGGCAGCAGACGCACATGCTGGATGTC





ATGCAGGACCACTTCAGCCGCGCGTCCAGCATCATAGACGAGCTCTTCCAGGACAGGTTC





TTCACCCGGGAGCCCCAGGATACCTACCACTACCTGCCCTTCAGCCTGCCCCACCGGAGG





CCTCACTTCTTCTTTCCCAAGTCCCGCATCGTCCGCAGCTTGATGCCCTTCTCTCCGTAC





GAGCCCCTGAACTTCCACGCCATGTTCCAGCCCTTCCTTGAGATGATACACGAGGCTCAG





CAGGCCATGGACATCCACTTCCACAGCCCGGCCTTCCAGCACCCGCCAACAGAATTCATA





CGAGAAGGCGACGATGACCGGACTGTGTGCCGGGAGATCCGCCACAACTCCACGGGCTGC





CTGCGGATGAAGGACCAGTGTGACAAGTGCCGGGAGATCTTGTCTGTGGACTGTTCCACC





AACAACCCCTCCCAGGCTAAGCTGCGGCGGGAGCTCGACGAATCCCTCCAGGTCGCTGAG





AGGTTGACCAGGAAATATAACGAGCTGCTAAAGTCCTACCAGTGGAAGATGCTCAACACC





TCCTCCTTGCTGGAGCAGCTGAACGAGCAGTTTAACTGGGTGTCCCGGCTGGCAAACCTC





ACGCAAGGCGAAGACCAGTACTATCTGCGGGTCACCACGGTGGCTTCCCACACTTCTGAC





TCGGACGTTCCTTCCGGTGTCACTGAGGTGGTCGTGAAGCTCTTTGACTCTGATCCCATC





ACTGTGACGGTCCCTGTAGAAGTCTCCAGGAAGAACCCTAAATTTATGGAGACCGTGGCG





GAGAAAGCGCTGCAGGAATACCGCAAAAAGCACCGGGAGGAGTGAGATGTGGATGTTGCT





TTTGCACCTACGGGGGCATCTGAGTCCAGCTCCCCCCAAGATGAGCTGCAGCCCCCCAGA





GAGAGCTCTGCACGTCACCAAGTAACCAGGC






As used herein, the term “CR1” refers to the gene encoding Complement receptor type 1. The terms “CR1” and “Complement receptor type 1” include wild-type forms of the CR1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CR1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CR1 nucleic acid sequence (e.g., SEQ ID NO: 18, ENA accession number Y00816). SEQ ID NO: 18 is a wild-type gene sequence encoding CR1 protein, and is shown below:










(SEQ ID NO: 18)



CGTGGTTTGTAGATGTGCTTGGGGAGAATGGGGGCCTCTTCTCCAAGAAGCCCGGAGCCT






GTCGGGCCGCCGGCGCCCGGTCTCCCCTTCTGCTGCGGAGGATCCCTGCTGGCGGTTGTG





GTGCTGCTTGCGCTGCCGGTGGCCTGGGGTCAATGCAATGCCCCAGAATGGCTTCCATTT





GCCAGGCCTACCAACCTAACTGATGAGTTTGAGTTTCCCATTGGGACATATCTGAACTAT





GAATGCCGCCCTGGTTATTCCGGAAGACCGTTTTCTATCATCTGCCTAAAAAACTCAGTC





TGGACTGGTGCTAAGGACAGGTGCAGACGTAAATCATGTCGTAATCCTCCAGATCCTGTG





AATGGCATGGTGCATGTGATCAAAGGCATCCAGTTCGGATCCCAAATTAAATATTCTTGT





ACTAAAGGATACCGACTCATTGGTTCCTCGTCTGCCACATGCATCATCTCAGGTGATACT





GTCATTTGGGATAATGAAACACCTATTTGTGACAGAATTCCTTGTGGGCTACCCCCCACC





ATCACCAATGGAGATTTCATTAGCACCAACAGAGAGAATTTTCACTATGGATCAGTGGTG





ACCTACCGCTGCAATCCTGGAAGCGGAGGGAGAAAGGTGTTTGAGCTTGTGGGTGAGCCC





TCCATATACTGCACCAGCAATGACGATCAAGTGGGCATCTGGAGCGGCCCCGCCCCTCAG





TGCATTATACCTAACAAATGCACGCCTCCAAATGTGGAAAATGGAATATTGGTATCTGAC





AACAGAAGCTTATTTTCCTTAAATGAAGTTGTGGAGTTTAGGTGTCAGCCTGGCTTTGTC





ATGAAAGGACCCCGCCGTGTGAAGTGCCAGGCCCTGAACAAATGGGAGCCGGAGCTACCA





AGCTGCTCCAGGGTATGTCAGCCACCTCCAGATGTCCTGCATGCTGAGCGTACCCAAAGG





GACAAGGACAACTTTTCACCTGGGCAGGAAGTGTTCTACAGCTGTGAGCCCGGCTACGAC





CTCAGAGGGGCTGCGTCTATGCGCTGCACACCCCAGGGAGACTGGAGCCCTGCAGCCCCC





ACATGTGAAGTGAAATCCTGTGATGACTTCATGGGCCAACTTCTTAATGGCCGTGTGCTA





TTTCCAGTAAATCTCCAGCTTGGAGCAAAAGTGGATTTTGTTTGTGATGAAGGATTTCAA





TTAAAAGGCAGCTCTGCTAGTTACTGTGTCTTGGCTGGAATGGAAAGCCTTTGGAATAGC





AGTGTTCCAGTGTGTGAACAAATCTTTTGTCCAAGTCCTCCAGTTATTCCTAATGGGAGA





CACACAGGAAAACCTCTGGAAGTCTTTCCCTTTGGAAAAGCAGTAAATTACACATGCGAC





CCCCACCCAGACAGAGGGACGAGCTTCGACCTCATTGGAGAGAGCACCATCCGCTGCACA





AGTGACCCTCAAGGGAATGGGGTTTGGAGCAGCCCTGCCCCTCGCTGTGGAATTCTGGGT





CACTGTCAAGCCCCAGATCATTTTCTGTTTGCCAAGTTGAAAACCCAAACCAATGCATCT





GACTTTCCCATTGGGACATCTTTAAAGTACGAATGCCGTCCTGAGTACTACGGGAGGCCA





TTCTCTATCACATGTCTAGATAACCTGGTCTGGTCAAGTCCCAAAGATGTCTGTAAACGT





AAATCATGTAAAACTCCTCCAGATCCAGTGAATGGCATGGTGCATGTGATCACAGACATC





CAGGTTGGATCCAGAATCAACTATTCTTGTACTACAGGGCACCGACTCATTGGTCACTCA





TCTGCTGAATGTATCCTCTCGGGCAATGCTGCCCATTGGAGCACGAAGCCGCCAATTTGT





CAACGAATTCCTTGTGGGCTACCCCCCACCATCGCCAATGGAGATTTCATTAGCACCAAC





AGAGAGAATTTTCACTATGGATCAGTGGTGACCTACCGCTGCAATCCTGGAAGCGGAGGG





AGAAAGGTGTTTGAGCTTGTGGGTGAGCCCTCCATATACTGCACCAGCAATGACGATCAA





GTGGGCATCTGGAGCGGCCCGGCCCCTCAGTGCATTATACCTAACAAATGCACGCCTCCA





AATGTGGAAAATGGAATATTGGTATCTGACAACAGAAGCTTATTTTCCTTAAATGAAGTT





GTGGAGTTTAGGTGTCAGCCTGGCTTTGTCATGAAAGGACCCCGCCGTGTGAAGTGCCAG





GCCCTGAACAAATGGGAGCCGGAGCTACCAAGCTGCTCCAGGGTATGTCAGCCACCTCCA





GATGTCCTGCATGCTGAGCGTACCCAAAGGGACAAGGACAACTTTTCACCCGGGCAGGAA





GTGTTCTACAGCTGTGAGCCCGGCTATGACCTCAGAGGGGCTGCGTCTATGCGCTGCACA





CCCCAGGGAGACTGGAGCCCTGCAGCCCCCACATGTGAAGTGAAATCCTGTGATGACTTC





ATGGGCCAACTTCTTAATGGCCGTGTGCTATTTCCAGTAAATCTCCAGCTTGGAGCAAAA





GTGGATTTTGTTTGTGATGAAGGATTTCAATTAAAAGGCAGCTCTGCTAGTTATTGTGTC





TTGGCTGGAATGGAAAGCCTTTGGAATAGCAGTGTTCCAGTGTGTGAACAAATCTTTTGT





CCAAGTCCTCCAGTTATTCCTAATGGGAGACACACAGGAAAACCTCTGGAAGTCTTTCCC





TTTGGAAAAGCAGTAAATTACACATGCGACCCCCACCCAGACAGAGGGACGAGCTTCGAC





CTCATTGGAGAGAGCACCATCCGCTGCACAAGTGACCCTCAAGGGAATGGGGTTTGGAGC





AGCCCTGCCCCTCGCTGTGGAATTCTGGGTCACTGTCAAGCCCCAGATCATTTTCTGTTT





GCCAAGTTGAAAACCCAAACCAATGCATCTGACTTTCCCATTGGGACATCTTTAAAGTAC





GAATGCCGTCCTGAGTACTACGGGAGGCCATTCTCTATCACATGTCTAGATAACCTGGTC





TGGTCAAGTCCCAAAGATGTCTGTAAACGTAAATCATGTAAAACTCCTCCAGATCCAGTG





AATGGCATGGTGCATGTGATCACAGACATCCAGGTTGGATCCAGAATCAACTATTCTTGT





ACTACAGGGCACCGACTCATTGGTCACTCATCTGCTGAATGTATCCTCTCAGGCAATACT





GCCCATTGGAGCACGAAGCCGCCAATTTGTCAACGAATTCCTTGTGGGCTACCCCCAACC





ATCGCCAATGGAGATTTCATTAGCACCAACAGAGAGAATTTTCACTATGGATCAGTGGTG





ACCTACCGCTGCAATCTTGGAAGCAGAGGGAGAAAGGTGTTTGAGCTTGTGGGTGAGCCC





TCCATATACTGCACCAGCAATGACGATCAAGTGGGCATCTGGAGCGGCCCCGCCCCTCAG





TGCATTATACCTAACAAATGCACGCCTCCAAATGTGGAAAATGGAATATTGGTATCTGAC





AACAGAAGCTTATTTTCCTTAAATGAAGTTGTGGAGTTTAGGTGTCAGCCTGGCTTTGTC





ATGAAAGGACCCCGCCGTGTGAAGTGCCAGGCCCTGAACAAATGGGAGCCAGAGTTACCA





AGCTGCTCCAGGGTGTGTCAGCCGCCTCCAGAAATCCTGCATGGTGAGCATACCCCAAGC





CATCAGGACAACTTTTCACCTGGGCAGGAAGTGTTCTACAGCTGTGAGCCTGGCTATGAC





CTCAGAGGGGCTGCGTCTCTGCACTGCACACCCCAGGGAGACTGGAGCCCTGAAGCCCCG





AGATGTGCAGTGAAATCCTGTGATGACTTCTTGGGTCAACTCCCTCATGGCCGTGTGCTA





TTTCCACTTAATCTCCAGCTTGGGGCAAAGGTGTCCTTTGTCTGTGATGAAGGGTTTCGC





TTAAAGGGCAGTTCCGTTAGTCATTGTGTCTTGGTTGGAATGAGAAGCCTTTGGAATAAC





AGTGTTCCTGTGTGTGAACATATCTTTTGTCCAAATCCTCCAGCTATCCTTAATGGGAGA





CACACAGGAACTCCCTCTGGAGATATTCCCTATGGAAAAGAAATATCTTACACATGTGAC





CCCCACCCAGACAGAGGGATGACCTTCAACCTCATTGGGGAGAGCACCATCCGCTGCACA





AGTGACCCTCATGGGAATGGGGTTTGGAGCAGCCCTGCCCCTCGCTGTGAACTTTCTGTT





CGTGCTGGTCACTGTAAAACCCCAGAGCAGTTTCCATTTGCCAGTCCTACGATCCCAATT





AATGACTTTGAGTTTCCAGTCGGGACATCTTTGAATTATGAATGCCGTCCTGGGTATTTT





GGGAAAATGTTCTCTATCTCCTGCCTAGAAAACTTGGTCTGGTCAAGTGTTGAAGACAAC





TGTAGACGAAAATCATGTGGACCTCCACCAGAACCCTTCAATGGAATGGTGCATATAAAC





ACAGATACACAGTTTGGATCAACAGTTAATTATTCTTGTAATGAAGGGTTTCGACTCATT





GGTTCCCCATCTACTACTTGTCTCGTCTCAGGCAATAATGTCACATGGGATAAGAAGGCA





CCTATTTGTGAGATCATATCTTGTGAGCCACCTCCAACCATATCCAATGGAGACTTCTAC





AGCAACAATAGAACATCTTTTCACAATGGAACGGTGGTAACTTACCAGTGCCACACTGGA





CCAGATGGAGAACAGCTGTTTGAGCTTGTGGGAGAACGGTCAATATATTGCACCAGCAAA





GATGATCAAGTTGGTGTTTGGAGCAGCCCTCCCCCTCGGTGTATTTCTACTAATAAATGC





ACAGCTCCAGAAGTTGAAAATGCAATTAGAGTACCAGGAAACAGGAGTTTCTTTTCCCTC





ACTGAGATCATCAGATTTAGATGTCAGCCCGGGTTTGTCATGGTAGGGTCCCACACTGTG





CAGTGCCAGACCAATGGCAGATGGGGGCCCAAGCTGCCACACTGCTCCAGGGTGTGTCAG





CCGCCTCCAGAAATCCTGCATGGTGAGCATACCCTAAGCCATCAGGACAACTTTTCACCT





GGGCAGGAAGTGTTCTACAGCTGTGAGCCCAGCTATGACCTCAGAGGGGCTGCGTCTCTG





CACTGCACGCCCCAGGGAGACTGGAGCCCTGAAGCCCCTAGATGTACAGTGAAATCCTGT





GATGACTTCCTGGGCCAACTCCCTCATGGCCGTGTGCTACTTCCACTTAATCTCCAGCTT





GGGGCAAAGGTGTCCTTTGTTTGCGATGAAGGGTTCCGATTAAAAGGCAGGTCTGCTAGT





CATTGTGTCTTGGCTGGAATGAAAGCCCTTTGGAATAGCAGTGTTCCAGTGTGTGAACAA





ATCTTTTGTCCAAATCCTCCAGCTATCCTTAATGGGAGACACACAGGAACTCCCTTTGGA





GATATTCCCTATGGAAAAGAAATATCTTACGCATGCGACACCCACCCAGACAGAGGGATG





ACCTTCAACCTCATTGGGGAGAGCTCCATCCGCTGCACAAGTGACCCTCAAGGGAATGGG





GTTTGGAGCAGCCCTGCCCCTCGCTGTGAACTTTCTGTTCCTGCTGCCTGCCCACATCCA





CCCAAGATCCAAAACGGGCATTACATTGGAGGACACGTATCTCTATATCTTCCTGGGATG





ACAATCAGCTACACTTGTGACCCCGGCTACCTGTTAGTGGGAAAGGGCTTCATTTTCTGT





ACAGACCAGGGAATCTGGAGCCAATTGGATCATTATTGCAAAGAAGTAAATTGTAGCTTC





CCACTGTTTATGAATGGAATCTCGAAGGAGTTAGAAATGAAAAAAGTATATCACTATGGA





GATTATGTGACTTTGAAGTGTGAAGATGGGTATACTCTGGAAGGCAGTCCCTGGAGCCAG





TGCCAGGCGGATGACAGATGGGACCCTCCTCTGGCCAAATGTACCTCTCGTGCACATGAT





GCTCTCATAGTTGGCACTTTATCTGGTACGATCTTCTTTATTTTACTCATCATTTTCCTC





TCTTGGATAATTCTAAAGCACAGAAAAGGCAATAATGCACATGAAAACCCTAAAGAAGTG





GCTATCCATTTACATTCTCAAGGAGGCAGCAGCGTTCATCCCCGAACTCTGCAAACAAAT





GAAGAAAATAGCAGGGTCCTTCCTTGACAAAGTACTATACAGCTGAAGAACATCTCGAAT





ACAATTTTGGTGGGAAAGGAGCCAATTGATTTCAACAGAATCAGATCTGAGCTTCATAAA





GTCTTTGAAGTGACTTCACAGAGACGCAGACATGTGCACTTGAAGATGCTGCCCCTTCCC





TGGTACCTAGCAAAGCTCCTGCCTCTTTGTGTGCGTCACTGTGAAACCCCCACCCTTCTG





CCTCGTGCTAAACGCACACAGTATCTAGTCAGGGGAAAAGACTGCATTTAGGAGATAGAA





AATAGTTTGGATTACTTAAAGGAATAAGGTGTTGCCTGGAATTTCTGGTTTGTAAGGTGG





TCACTGTTCTTTTTTAAAATATTTGTAATATGGAATGGGCTCAGTAAGAAGAGCTTGGAA





AATGCAGAAAGTTATGAAAAATAAGTCACTTATAATTATGCTACCTACTGATAACCACTC





CTAATATTTTGATTCATTTTCTGCCTATCTTCTTTCACATATGTGTTTTTTTACATACGT





ACTTTTCCCCCCTTAGTTTGTTTCCTTTTATTTTATAGAGCAGAACCCTAGTCTTTTAAA





CAGTTTAGAGTGAAATATATGCTATATCAGTTTTTACTTTCTCTAGGGAGAAAAATTAAT





TTACTAGAAAGGCATGAAATGATCATGGGAAGAGTGGTTAAGACTACTGAAGAGAAATAT





TTGGAAAATAAGATTTCGATATCTTCTTTTTTTTTGAGATGGAGTCTGGCTCTGTCTCCC





AGGCTGGAGTGCAGTGGCGTAATCTCGGCTCACTGCAACGTCCGCCTCCCG






As used herein, the term “CSF1” refers to the gene encoding Macrophage colony-stimulating factor 1. The terms “CSF1” and “Macrophage colony-stimulating factor 1” include wild-type forms of the CSF1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CSF1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CSF1 nucleic acid sequence (e.g., SEQ ID NO: 19, ENA accession number M37435). SEQ ID NO: 19 is a wild-type gene sequence encoding CSF1 protein, and is shown below:










(SEQ ID NO: 19)



CCTGGGTCCTCTCGGCGCCAGAGCCGCTCTCCGCATCCCAGGACAGCGGTGCGGCCCTCG






GCCGGGGCGCCCACTCCGCAGCAGCCAGCGAGCCAGCTGCCCCGTATGACCGCGCCGGGC





GCCGCCGGGCGCTGCCCTCCCACGACATGGCTGGGCTCCCTGCTGTTGTTGGTCTGTCTC





CTGGCGAGCAGGAGTATCACCGAGGAGGTGTCGGAGTACTGTAGCCACATGATTGGGAGT





GGACACCTGCAGTCTCTGCAGCGGCTGATTGACAGTCAGATGGAGACCTCGTGCCAAATT





ACATTTGAGTTTGTAGACCAGGAACAGTTGAAAGATCCAGTGTGCTACCTTAAGAAGGCA





TTTCTCCTGGTACAAGACATAATGGAGGACACCATGCGCTTCAGAGATAACACCGCCAAT





CCCATCGCCATTGTGCAGCTGCAGGAACTCTCTTTGAGGCTGAAGAGCTGCTTCACCAAG





GATTATGAAGAGCATGACAAGGCCTGCGTCCGAACTTTCTATGAGACACCTCTCCAGTTG





CTGGAGAAGGTCAAGAATGTCTTTAATGAAACAAAGAATCTCCTTGACAAGGACTGGAAT





ATTTTCAGCAAGAACTGCAACAACAGCTTTGCTGAATGCTCCAGCCAAGATGTGGTGACC





AAGCCTGATTGCAACTGCCTGTACCCCAAAGCCATCCCTAGCAGTGACCCGGCCTCTGTC





TCCCCTCATCAGCCCCTCGCCCCCTCCATGGCCCCTGTGGCTGGCTTGACCTGGGAGGAC





TCTGAGGGAACTGAGGGCAGCTCCCTCTTGCCTGGTGAGCAGCCCCTGCACACAGTGGAT





CCAGGCAGTGCCAAGCAGCGGCCACCCAGGAGCACCTGCCAGAGCTTTGAGCCGCCAGAG





ACCCCAGTTGTCAAGGACAGCACCATCGGTGGCTCACCACAGCCTCGCCCCTCTGTCGGG





GCCTTCAACCCCGGGATGGAGGATATTCTTGACTCTGCAATGGGCACTAATTGGGTCCCA





GAAGAAGCCTCTGGAGAGGCCAGTGAGATTCCCGTACCCCAAGGGACAGAGCTTTCCCCC





TCCAGGCCAGGAGGGGGCAGCATGCAGACAGAGCCCGCCAGACCCAGCAACTTCCTCTCA





GCATCTTCTCCACTCCCTGCATCAGCAAAGGGCCAACAGCCGGCAGATGTAACTGCTACA





GCCTTGCCCAGGGTGGGCCCCGTGATGCCCACTGGCCAGGACTGGAATCACACCCCCCAG





AAGACAGACCATCCATCTGCCCTGCTCAGAGACCCCCCGGAGCCAGGCTCTCCCAGGATC





TCATCACTGCGCCCCCAGGCCCTCAGCAACCCCTCCACCCTCTCTGCTCAGCCACAGCTT





TCCAGAAGCCACTCCTCGGGCAGCGTGCTGCCCCTTGGGGAGCTGGAGGGCAGGAGGAGC





ACCAGGGATCGGACGAGCCCCGCAGAGCCAGAAGCAGCACCAGCAAGTGAAGGGGCAGCC





AGGCCCCTGCCCCGTTTTAACTCCGTTCCTTTGACTGACACAGGCCATGAGAGGCAGTCC





GAGGGATCCTCCAGCCCGCAGCTCCAGGAGTCTGTCTTCCACCTGCTGGTGCCCAGTGTC





ATCCTGGTCTTGCTGGCTGTCGGAGGCCTCTTGTTCTACAGGTGGAGGCGGCGGAGCCAT





CAAGAGCCTCAGAGAGCGGATTCTCCCTTGGAGCAACCAGAGGGCAGCCCCCTGACTCAG





GATGACAGACAGGTGGAACTGCCAGTGTAGAGGGAATTCTAAGCTGGACGCACAGAACAG





TCTCTTCGTGGGAGGAGACATTATGGGGCGTCCACCACCACCCCTCCCTGGCCATCCTCC





TGGAATGTGGTCTGCCCTCCACCAGAGCTCCTGCCTGCCAGGACTGGACCAGAGCAGCCA





GGCTGGGGCCCCTCTGTCTCAACCCGCAGACCCTTGACTGAATGAGAGAGGCCAGAGGAT





GCTCCCCATGCTGCCACTATTTATTGTGAGCCCTGGAGGCTCCCATGTGCTTGAGGAAGG





CTGGTGAGCCCGGCTCAGGACCCTCTTCCCTCAGGGGCTGCAGCCTCCTCTCACTCCCTT





CCATGCCGGAACCCAGGCCAGGGACCCACCGGCCTGTGGTTTGTGGGAAAGCAGGGTGCA





CGCTGAGGAGTGAAACAACCCTGCACCCAGAGGGCCTGCCTGGTGCCAAGGTATCCCAGC





CTGGACAGGCATGGACCTGTCTCCAGACAGAGGAGCCTGAAGTTCGTGGGGGGGGACAGC





CTCGGCCTGATTTCCCGTAAAGGTGTGCAGCCTGAGAGACGGGAAGAGGAGGCCTCTGCA





CCTGCTGGTCTGCACTGACAGCCTGAAGGGTCTACACCCTCGGCTCACCTAAGTCCCTGT





GCTGGTTGCCAGGCCCAGAGGGGAGGCCAGCCCTGCCCTCAGGACCTGCCTGACCTGCCA





GTGATGCCAAGAGGGGGATCAAGCACTGGCCTCTGCCCCTCCTCCTTCCAGCACCTGCCA





GAGCTTCTCCAGCAGGCCAAGCAGAGGCTCCCCTCATGAAGGAAGCCATTGCACTGTGAA





CACTGTACCTGCCTGCTGAACAGCCTCCCCCCGTCCATCCATGAGCCAGCATCCGTCCGT





CCTCCACTCTCCAGCCTCTCCCCAGCCTCCTGCACTGAGCTGGCCTCACCAGTCGACTGA





GGGAGCCCCTCAGCCCTGACCTTCTCCTGACCTGGCCTTTGACTCCCCGGAGTGGAGTGG





GGTGGGAGAACCTCCTGGGCCGCCAGCCAGAGCCGCTCTTTAGGCTGTGTTCTTCGCCCA





GGTTTCTGCATCTTCCACTTTGACATTCCCAAGAGGGAAGGGACTAGTGGGAGAGAGCAA





GGGAGGGGAGGGCACAGACAGAGAGCCTACAGGGCGAGCTCTGACTGAAGATGGGCCTTT





GAAATATAGGTATGCACCTGAGGTTGGGGGAGGGTCTGCACTCCCAAACCCCAGCGCAGT





GTCCTTTCCCTGCTGCCGACAGGAACCTGGGGCTGAGCAGGTTATCCCTGTCAGGAGCCC





TGGACTGGGCTGCATCTCAGCCCCACCTGCATGGTATCCAGCTCCCATCCACTTCTCACC





CTTCTTTCCTCCTGACCTTGGTCAGCAGTGATGACCTCCAACTCTCACCCACCCCCTCTA





CCATCACCTCTAACCAGGCAAGCCAGGGTGGGAGAGCAATCAGGAGAGCCAGGCCTCAGC





TTCCAATGCCTGGAGGGCCTCCACTTTGTGGCCAGCCTGTGGTGCTGGCTCTGAGGCCTA





GGCAACGAGCGACAGGGCTGCCAGTTGCCCCTGGGTTCCTTTGTGCTGCTGTGTGCCTCC





TCTCCTGCCGCCCTTTGTCCTCCGCTAAGAGACCCTGCCCTACCTGGCCGCTGGGCCCCG





TGACTTTCCCTTCCTGCCCAGGAAAGTGAGGGTCGGCTGGCCCCACCTTCCCTGTCCTGA





TGCCGACAGCTTAGGGAAGGGCACTGAACTTGCATATGGGGCTTAGCCTTCTAGTCACAG





CCTCTATATTTGATGCTAGAAAACACATATTTTTAAATGGAAGAAAAATAAAAAGGCATT





CCCCCTTCATCCCCCTACCTTAAACATATAATATTTTAAAGGTCAAAAAAGCAATCCAAC





CCACTGCAGAAGCTCTTTTTGAGCACTTGGTGGCATCAGAGCAGGAGGAGCCCCAGAGCC





ACCTCTGGTGTCCCCCAGGCTACCTGCTCAGGAACCCCTTCTGTTCTCTGAGAACTCAAC





AGAGGACATTGGCTCACGCACTGTGAGATTTTGTTTTTATACTTGCAACTGGTGAATTAT





TTTTTATAAAGTCATTTAAATATCTATTTAAAAGATAGGAAGCTGCTTATATATTTAATA





ATAAAAGAAGTGCACAAGCTGCCGTTGACGTAGCTCGAG






As used herein, the term “CST7” refers to the gene encoding Cystatin-F. The terms “CST7” and “Cystatin-F” include wild-type forms of the CST7 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CST7. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CST7 nucleic acid sequence (e.g., SEQ ID NO: 20, ENA accession number AF031824). SEQ ID NO: 20 is a wild-type gene sequence encoding CST7 protein, and is shown below:










(SEQ ID NO: 20)



GGCTCAGCACAGGCACAAACCATTGCCCGGCACTGGCCCGTGCTGCCTGAGAAGGATTGG






CACGGGCACAGACCACTGCCCCCACCTGCCCTGCGCCATCTACCCAAGAAGGCTCGGCAC





GGGCACCAACCACTGCCTCCAACTGCCCCATGCTGCCTGAGAAGGCACTGCACGGCCACC





CCCAACTGCCCCGCACTGTCCCTACCCGGGCAGCCATGCGAGCGGCTGGAACTCTGCTGG





CCTTCTGCTGCCTGGTCTTGAGCACCACTGGGGGCCCTTCCCCAGATACTTGTTCCCAGG





ACCTTAACTCACGTGTGAAGCCAGGATTTCCTAAAACAATAAAGACCAATGACCCAGGAG





TCCTCCAAGCAGCCAGATACAGTGTTGAAAAGTTCAACAACTGCACGAACGACATGTTCT





TGTTCAAGGAGTCCCGCATCACAAGGGCCCTAGTTCAGATAGTGAAAGGCCTGAAATATA





TGCTGGAGGTGGAAATTGGCAGAACTACCTGCAAGAAAAACCAGCACCTGCGTCTGGATG





ACTGTGACTTCCAAACCAACCACACCTTGAAGCAGACTCTGAGCTGCTACTCTGAAGTCT





GGGTCGTGCCCTGGCTCCAGCACTTCGAGGTGCCTGTTCTCCGTTGTCACTGACCCCCGC





CTCTTCAGCAAGACCACAGCCATGACAAACACCAGGATGCATGCTCCTTGTCCCCTCCCA





CCCGCCTCATGACCCAGCCTCACAGACCCTCTCAGGCCTCTGACGAGTGAGCGGGTGAAG





TGCCACTGGGTCACCGCAGGGCAGCTGGAATGGCAGCATGGTAGCACCTCCTAACAGATT





AAATAGATCACATTTGCTTCTAAAATT






As used herein, the term “CTSB” refers to the gene encoding Cathepsin B. The terms “CTSB” and “Cathepsin B” include wild-type forms of the CTSB gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CTSB. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CTSB nucleic acid sequence (e.g., SEQ ID NO: 21, ENA accession number M14221). SEQ ID NO: 21 is a wild-type gene sequence encoding CTSB protein, and is shown below:










(SEQ ID NO: 21)



AATTCCGCGGCAACCGCTCCGGCAACGCCAACCGCTCCGCTGCGCGCAGGCTGGGCTGCA






GGCTCTCGGCTGCAGCGCTGGGCTGGTGTGCAGTGGTGCGACCACGGCTCACGGCAGCCT





CAGCCACCCAGATGTAAGCGATCTGGTTCCCACCTCAGCCTTCCGAGTAGTGGATCTAGG





ATCTGGCTTCCAACATGTGGCAGCTCTGGGCCTCCCTCTGCTGCCTGCTGGTGTTGGCCA





ATGCCCGGAGCAGGCCCTCTTTCCATCCCGTGTOGGATGAGCTGGTCAACTATGTCAACA





AACGGAATACCACGTGGCAGGCCGGGCACAACTTCTACAACGTGGACATGAGCTACTTGA





AGAGGCTATGTGGTACCTTCCTGGGTGGGCCCAAGCCACCCCAGAGAGTTATGTTTACCG





AGGACCTGAAGCTGCCTGCAAGCTTCGATGCACGGGAACAATGGCCACAGTGTCCCACCA





TCAAAGAGATCAGAGACCAGGGCTCCTGTGGCTCCTGCTGGGCCTTCGGGGCTGTGGAAG





CCATCTCTGACCGCATCTGCATCCACACCAATGCGCACGTCAGCGTGGAGGTGTCGGCGG





AGGACCTGCTCACCTGCTGTGGCAGCATGTGTGGGGACGGCTGTAATGGTGGCTATCCTG





CTGAAGCTTGGAACTTCTGGACAAGAAAAGGCCTGGTTTCTGGTGGCCTCTATGAATCCC





ATGTAGGGTGCAGACCGTACTCCATCCCTCCCTGTGAGCACCACGTCAACGGCTCCCGGC





CCCCATGCACGGGGGAGGGAGATACCCCCAAGTGTAGCAAGATCTGTGAGCCTGGCTACA





GCCCGACCTACAAACAGGACAAGCACTACGGATACAATTCCTACAGCGTCTCCAATAGCG





AGAAGGACATCATGGCCGAGATCTACAAAAACGGCCCCGTGGAGGGAGCTTTCTCTGTGT





ATTCGGACTTCCTGCTCTACAAGTCAGGAGTGTACCAACACGTCACCGGAGAGATGATGG





GTGGCCATGCCATCCGCATCCTGGGCTGGGGAGTGGAGAATGGCACACCCTACTGGCTGG





TTGCCAACTCCTGGAACACTGACTGGGGTGACAATGGCTTCTTTAAAATACTCAGAGGAC





AGGATCACTGCGGAATCGAATCAGAAGTGGTGGCTGGAATTCCACGCACCGATCAGTACT





GGGAAAAGATCTAATCTGCCGTGGGCCTGTCGTGCCAGTCCTGGGGGCGAGATCGGGGTA





GAAAGTCATTTTATTCTTTAAGTTCACGTAAGATACAAGTTTCAGGCAGGGTCTGAAGGA





CTGGATTGGCCAAAGTCCTCCAAGGAGACCAAGTCCTGGCTACATCCCAGCCTGTGGTTA





CAGTGCAGACAGGCCATGTGAGCCACCGCTGCCAGCACAGAGCGTCCTTCCCCCTGTAGA





CTAGTGCCGTGGGAGTACCTGCTGCCCAGCTGCTGTGGCCCCCTCCGTGATCCATCCATC





TCCAGGGAGCAAGACAGAGACGCAGGATGGAAAGCGGAGTTCCTAACAGGATGAAAGTTC





CCCCATCAGTTCCCCCAGTACCTCCAAGCAAGTAGCTTTCCACATTTGTCACAGAAATCA





GAGGAGAGATGGTGTTGGGAGCCCTTTGGAGAACGCCAGTCTCCAGGTCCCCCTGCATCT





ATCGAGTTTGCAATGTCACAACCTCTCTGATCTTGTGCTCAGCATGATTCTTTAATAGAA





GTTTTATTTTTCGTGCACTCTGCTAATCATGTGGGTGAGCCAGTGGAACAGCGGGAGCCT





GTGCTGGTTTGCAGATTGCCTCCTAATGACGCGGCTCAAAAGGAAACCAAGTGGTCAGGA





GTTGTTTCTGACCCACTGATCTCTACTACCACAAGGAAAATAGTTTAGGAGAAACCAGCT





TTTACTGTTTTTGAAAAATTACAGCTTCACCCTGTCAAGTTAACAAGGAATGCCTGTGCC





AATAAAAGGTTTCTCCAACTTG






As used herein, the term “CTSD” refers to the gene encoding Cathepsin D. The terms “CTSD” and “Cathepsin D” include wild-type forms of the CTSD gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CTSD. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CTSD nucleic acid sequence (e.g., SEQ ID NO: 22, ENA accession number M11233). SEQ ID NO: 22 is a wild-type gene sequence encoding CTSD protein, and is shown below:









(SEQ ID NO: 22)


GGCTATAAGCGCACGGCCTCGGCGACCCTCTCCGACCCGGCCGCCGCCGC





CATGCAGCCCTCCAGCCTTCTGCCGCTCGCCCTCTGCCTGCTGGCTGCAC





CCGCCTCCGCGCTCGTCAGGATCCCGCTGCACAAGTTCACGTCCATCCGC





CGGACCATGTCGGAGGTTGGGGGCTCTGTGGAGGACCTGATTGCCAAAGG





CCCCGTCTCAAAGTACTCCCAGGCGGTGCCAGCCGTGACCGAGGGGCCCA





TTCCCGAGGTGCTCAAGAACTACATGGACGCCCAGTACTACGGGGAGATT





GGCATCGGGACGCCCCCCCAGTGCTTCACAGTCGTCTTCGACACGGGCTC





CTCCAACCTGTGGGTCCCCTCCATCCACTGCAAACTGCTGGACATCGCTT





GCTGGATCCACCACAAGTACAACAGCGACAAGTCCAGCACCTACGTGAAG





AATGGTACCTCGTTTGACATCCACTATGGCTCGGGCAGCCTCTCCGGGTA





CCTGAGCCAGGACACTGTGTCGGTGCCCTGCCAGTCAGCGTCGTCAGCCT





CTGCCCTGGGCGGTGTCAAAGTGGAGAGGCAGGTCTTTGGGGAGGCCACC





AAGCAGCCAGGCATCACCTTCATCGCAGCCAAGTTCGATGGCATCCTGGG





CATGGCCTACCCCCGCATCTCCGTCAACAACGTGCTGCCCGTCTTCGACA





ACCTGATGCAGCAGAAGCTGGTGGACCAGAACATCTTCTCCTTCTACCTG





AGCAGGGACCCAGATGCGCAGCCTGGGGGTGAGCTGATGCTGGGTGGCAC





AGACTCCAAGTATTACAAGGGTTCTCTGTCCTACCTGAATGTCACCCGCA





AGGCCTACTGGCAGGTCCACCTGGACCAGGTGGAGGTGGCCAGCGGGCTG





ACCCTGTGCAAGGAGGGCTGTGAGGCCATTGTGGACACAGGCACTTCCCT





CATGGTGGGCCCGGTGGATGAGGTGCGCGAGCTGCAGAAGGCCATCGGGG





CCGTGCCGCTGATTCAGGGCGAGTACATGATCCCCTGTGAGAAGGTGTCC





ACCCTGCCCGCGATCACACTGAAGCTGGGAGGCAAAGGCTACAAGCTGTC





CCCAGAGGACTACACGCTCAAGGTGTCGCAGGCCGGGAAGACCCTCTGCC





TGAGCGGCTTCATGGGCATGGACATCCCGCCACCCAGCGGGCCACTCTGG





ATCCTGGGCGACGTCTTCATCGGCCGCTACTACACTGTGTTTGACCGTGA





CAACAACAGGGTGGGCTTCGCCGAGGCTGCCCGCCTCTAGTTCCCAAGGC





GTCCGCGCGCCAGCACAGAAACAGAGGAGAGTCCCAGAGCAGGAGGCCCC





TGGCCCAGCGGCCCCTCCCACACACACCCACACACTCGCCCGCCCACTGT





CCTGGGCGCCCTGGAAGCCGGCGGCCCAAGCCCGACTTGCTGTTTTGTTC





TGTGGTTTTCCCCTCCCTGGGTTCAGAAATGCTGCCTGCCTGTCTGTCTC





TCCATCTGTTTGGTGGGGGTAGAGCTGATCCAGAGCACAGATCTGTTTCG





TGCATTGGAAGACCCCACCCAAGCTTGGCAGCCGAGCTCGTGTATCCTGG





GGCTCCCTTCATCTCCAGGGAGTCCCCTCCCCGGCCCTACCAGCGCCCGC





TGGGCTGAGCCCCTACCCCACACCAGGCCGTCCTCCCGGGCCCTCCCTTG





GAAACCTGCCCTGCCTGAGGGCCCCTCTGCCCAGCTTGGGCCCAGCTGGG





CTCTGCCACCCTACCTGTTCAGTGTCCCGGGCCCGTTGAGGATGAGGCCG





CTAGAGGCCTGAGGATGAGCTGGAAGGAGTGAGAGGGGACAAAACCCACC





TTGTTGGAGCCTGCAGGGTGGTGCTGGGACTGAGCCAGTCCCAGGGGCAT





GTATTGGCCTGGAGGTGGGGTTGGGATTGGGGGCTGGTGCCAGCCTTCCT





CTGCAGCTGACCTCTGTTGTCCTCCCCTTGGGCGGCTGAGAGCCCCAGCT





GACATGGAAATACAGTTGTTGGCCTCCGGCCTCCCCTC






As used herein, the term “CTSL” refers to the gene encoding Cathepsin L1. The terms “CTSL” and “Cathepsin L1” include wild-type forms of the CTSL gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CTSL. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CTSL nucleic acid sequence (e.g., SEQ ID NO: 23, ENA accession number X12451). SEQ ID NO: 23 is a wild-type gene sequence encoding CTSL protein, and is shown below:









(SEQ ID NO: 23)


AGAACCGCGACCTCCGCAACCTTGAGCGGCATCCGTGGAGTGCGCCTGCA





GCTACGACCGCAGCAGGAAAGCGCCGCCGGCCAGGCCCAGCTGTGGCCGG





ACAGGGACTGGAAGAGAGGACGCGGTCGAGTAGGTGTGCACCAGCCCTGG





CAACGAGAGCGTCTACCCCGAACTCTGCTGGCCTTGAGGTGGGGAAGCCG





GGGAGGGCAGTTGAGGACCCCGCGGAGGCGCGTGACTGGTTGAGCGGGCA





GGCCAGCCTCCGAGCCGGGTGGACACAGGTTTTAAAACATGAATCCTACA





CTCATCCTTGCTGCCTTTTGCCTGGGAATTGCCTCAGCTACTCTAACATT





TGATCACAGTTTAGAGGCACAGTGGACCAAGTGGAAGGCGATGCACAACA





GATTATACGGCATGAATGAAGAAGGATGGAGGAGAGCAGTGTGGGAGAAG





AACATGAAGATGATTGAACTGCACAATCAGGAATACAGGGAAGGGAAACA





CAGCTTCACAATGGCCATGAACGCCTTTGGAGACATGACCAGTGAAGAAT





TCAGGCAGGTGATGAATGGCTTTCAAAACCGTAAGCCCAGGAAGGGGAAA





GTGTTCCAGGAACCTCTGTTTTATGAGGCCCCCAGATCTGTGGATTGGAG





AGAGAAAGGCTACGTGACTCCTGTGAAGAATCAGGGTCAGTGTGGTTCTT





GTTGGGCTTTTAGTGCTACTGGTGCTCTTGAAGGACAGATGTTCCGGAAA





ACTGGGAGGCTTATCTCACTGAGTGAGCAGAATCTGGTAGACTGCTCTGG





GCCTCAAGGCAATGAAGGCTGCAATGGTGGCCTAATGGATTATGCTTTCC





AGTATGTTCAGGATAATGGAGGCCTGGACTCTGAGGAATCCTATCCATAT





GAGGCAACAGAAGAATCCTGTAAGTACAATCCCAAGTATTCTGTTGCTAA





TGACACCGGCTTTGTGGACATCCCTAAGCAGGAGAAGGCCCTGATGAAGG





CAGTTGCAACTGTGGGGCCCATTTCTGTTGCTATTGATGCAGGTCATGAG





TCCTTCCTGTTCTATAAAGAAGGCATTTATTTTGAGCCAGACTGTAGCAG





TGAAGACATGGATCATGGTGTGCTGGTGGTTGGCTACGGATTTGAAAGCA





CAGAATCAGATAACAATAAATATTGGCTGGTGAAGAACAGCTGGGGTGAA





GAATGGGGCATGGGTGGCTACGTAAAGATGGCCAAAGACCGGAGAAACCA





TTGTGGAATTGCCTCAGCAGCCAGCTACCCCACTGTGTGAGCTGGTGGAC





GGTGATGAGGAAGGACTTGACTGGGGATGGCGCATGCATGGGAGGAATTC





ATCTTCAGTCTACCAGCCCCCGCTGTGTCGGATACACACTCGAATCATTG





AAGATCCGAGTGTGATTTGAATTCTGTGATATTTTCACACTGGTAAATGT





TACCTCTATTTTAATTACTGCTATAAATAGGTTTATATTATTGATTCACT





TACTGACTTTGCATTTTCGTTTTTAAAAGGATGTATAAATTTTTACCTGT





TTAAATAAAATTTAATTTCAAATGT






As used herein, the term “CXCL10” refers to the gene encoding C—X-C motif chemokine 10. The terms “CXCL10” and “C—X-C motif chemokine 10” include wild-type forms of the CXCL10 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CXCL10. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CXCL10 nucleic acid sequence (e.g., SEQ ID NO: 24, ENA accession number X02530). SEQ ID NO: 24 is a wild-type gene sequence encoding CXCL10 protein, and is shown below:









(SEQ ID NO: 24)


GAGACATTCCTCAATTGCTTAGACATATTCTGAGCCTACAGCAGAGGAAC





CTCCAGTCTCAGCACCATGAATCAAACTGCGATTCTGATTTGCTGCCTTA





TCTTTCTGACTCTAAGTGGCATTCAAGGAGTACCTCTCTCTAGAACCGTA





CGCTGTACCTGCATCAGCATTAGTAATCAACCTGTTAATCCAAGGTCTTT





AGAAAAACTTGAAATTATTCCTGCAAGCCAATTTTGTCCACGTGTTGAGA





TCATTGCTACAATGAAAAAGAAGGGTGAGAAGAGATGTCTGAATCCAGAA





TCGAAGGCCATCAAGAATTTACTGAAAGCAGTTAGCAAGGAAATGTCTAA





AAGATCTCCTTAAAACCAGAGGGGAGCAAAATCGATGCAGTGCTTCCAAG





GATGGACCACACAGAGGCTGCCTCTCCCATCACTTCCCTACATGGAGTAT





ATGTCAAGCCATAATTGTTCTTAGTTTGCAGTTACACTAAAAGGTGACCA





ATGATGGTCACCAAATCAGCTGCTACTACTCCTGTAGGAAGGTTAATGTT





CATCATCCTAAGCTATTCAGTAATAACTCTACCCTGGCACTATAATGTAA





GCTCTACTGAGGTGCTATGTTCTTAGTGGATGTTCTGACCCTGCTTCAAA





TATTTCCCTCACCTTTCCCATCTTCCAAGGGTACTAAGGAATCTTTCTGC





TTTGGGGTTTATCAGAATTCTCAGAATCTCAAATAACTAAAAGGTATGCA





ATCAAATCTGCTTTTTAAAGAATGCTCTTTACTTCATGGACTTCCACTGC





CATCCTCCCAAGGGGCCCAAATTCTTTCAGTGGCTACCTACATACAATTC





CAAACACATACAGGAAGGTAGAAATATCTGAAAATGTATGTGTAAGTATT





CTTATTTAATGAAAGACTGTACAAAGTATAAGTCTTAGATGTATATATTT





CCTATATTGTTTTCAGTGTACATGGAATAACATGTAATTAAGTACTATGT





ATCAATGAGTAACAGGAAAATTTTAAAAATACAGATAGATATATGCTCTG





CATGTTACATAAGATAAATGTGCTGAATGGTTTTCAAATAAAAATGAGGT





ACTCTCCTGGAAATATTAAGAAAGACTATCTAAATGTTGAAAGATCAAAA





GGTTAATAAAGTAATTATAACT






As used herein, the term “CXCL13” refers to the gene encoding C—X-C motif chemokine 13. The terms “CXCL13” and “C—X-C motif chemokine 13” include wild-type forms of the CXCL13 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type CXCL13. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type CXCL13 nucleic acid sequence (e.g., SEQ ID NO: 25, ENA accession number AF044197). SEQ ID NO: 25 is a wild-type gene sequence encoding CXCL13 protein, and is shown below:









(SEQ ID NO: 25)


TTCGGCACTTGGGAGAAGATGTTTGAAAAAACTGACTCTGCTAATGAGCC





TGGACTCAGAGCTCAAGTCTGAACTCTACCTCCAGACAGAATGAAGTTCA





TCTCGACATCTCTGCTTCTCATGCTGCTGGTCAGCAGCCTCTCTCCAGTC





CAAGGTGTTCTGGAGGTCTATTACACAAGCTTGAGGTGTAGATGTGTCCA





AGAGAGCTCAGTCTTTATCCCTAGACGCTTCATTGATCGAATTCAAATCT





TGCCCCGTGGGAATGGTTGTCCAAGAAAAGAAATCATAGTCTGGAAGAAG





AACAAGTCAATTGTGTGTGTGGACCCTCAAGCTGAATGGATACAAAGAAT





GATGGAAGTATTGAGAAAAAGAAGTTCTTCAACTCTACCAGTTCCAGTGT





TTAAGAGAAAGATTCCCTGATGCTGATATTTCCACTAAGAACACCTGCAT





TCTTCCCTTATCCCTGCTCTGGATTTTAGTTTTGTGCTTAGTTAAATCTT





TTCCAGGGAGAAAGAACTTCCCCATACAAATAAGGCATGAGGACTATGTG





AAAAATAACCTTGCAGGAGCTGATGGGGCAAACTCAAGCTTCTTCACTCA





CAGCACCCTATATACACTTGGAGTTTGCATTCTTATTCATCAGGGAGGAA





AGTTTCTTTGAAAATAGTTATTCAGTTATAAGTAATACAGGATTATTTTG





ATTATATACTTGTTGTTTAATGTTTAAAATTTCTTAGAAAACAATGGAAT





GAGAATTTAAGCCTCAAATTTGAACATGTGGCTTGAATTAAGAAGAAAAT





TATGGCATATATTAAAAGCAGGCTTCTATGAAAGACTCAAAAAGCTGCCT





GGGAGGCAGATGGAACTTGAGCCTGTCAAGAGGCAAAGGAATCCATGTAG





TAGATATCCTCTGCTTAAAAACTCACTACGGAGGAGAATTAAGTCCTACT





TTTAAAGAATTTCTTTATAAAATTTACTGTCTAAGATTAATAGCATTCGA





AGATCCCCAGACTTCATAGAATACTCAGGGAAAGCATTTAAAGGGTGATG





TACACATGTATCCTTTCACACATTTGCCTTGACAAACTTCTTTCACTCAC





ATCTTTTTCACTGACTTTTTTTGTGGGGGCGGGGCCGGGGGGACTCTGGT





ATCTAATTCTTTAATGATTCCTATAAATCTAATGACATTCAATAAAGTTG





AGCAAACATTTTACTT






As used herein, the term “DSG2” refers to the gene encoding Desmoglein 2. The terms “DSG2” and “Desmoglein 2” include wild-type forms of the DSG2 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type DSG2. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type DSG2 nucleic acid sequence (e.g., SEQ ID NO: 26, NCBI Reference Sequence: NM_001943.4). SEQ ID NO: 26 is a wild-type gene sequence encoding DSG2 protein, and is shown below:










(SEQ ID NO: 26)



CCACCTCTGTAAAAGCGGCCCGGGCCGGCCCCCGGCTCCATTTTCTCGCGGCGGCCACACCTGGA






GCCGCGCCTTTGGGTTGGGCTGGGCTGGGCCGCGCAACCGCCACGGGAAGACAGCCCTCGGGGC





GGGGAGGGAGAGGGTGGCCGGGCCGGGGGGAGGCCGGGGCCAGGGAGGAGCCGAGTGCGCGC





TCGGGGCAGGCGGCGGCGCGGAGCGGTGCGGCGGCGGGAGGCGGAGGCGAGGGTGCGATGGC





GCGGAGCCCGGGACGCGCGTACGCCCTGCTGCTTCTCCTGATCTGCTTTAACGTTGGAAGTGGACT





TCACTTACAGGTCTTAAGCACAAGAAATGAAAATAAGCTGCTTCCTAAACATCCTCATTTAGTGCGGC





AAAAGCGCGCCTGGATCACCGCCCCCGTGGCTCTTCGGGAGGGAGAGGATCTGTCCAAGAAGAAT





CCAATTGCCAAGATACATTCTGATCTTGCAGAAGAAAGAGGACTCAAAATTACTTACAAATACACTGG





AAAAGGGATTACAGAGCCACCTTTTGGTATATTTGTCTTTAACAAAGATACTGGAGAACTGAATGTTA





CCAGCATTCTTGATCGAGAAGAAACACCATTTTTTCTGCTAACAGGTTACGCTTTGGATGCAAGAGGA





AACAATGTAGAGAAACCCTTAGAGCTACGCATTAAGGTTCTTGATATCAATGACAACGAACCAGTGTT





CACACAGGATGTCTTTGTTGGGTCTGTTGAAGAGTTGAGTGCAGCACATACTCTTGTGATGAAAATCA





ATGCAACAGATGCAGATGAGCCCAATACCCTGAATTCGAAAATTTCCTATAGAATCGTATCTCTGGAG





CCTGCTTATCCTCCAGTGTTCTACCTAAATAAAGATACAGGAGAGATTTATACAACCAGTGTTACCTT





GGACAGAGAGGAACACAGCAGCTACACTTTGACAGTAGAAGCAAGAGATGGCAATGGAGAAGTTAC





AGACAAACCTGTAAAACAAGCTCAAGTTCAGATTCGTATTTTGGATGTCAATGACAATATACCTGTAG





TAGAAAATAAAGTGCTTGAAGGGATGGTTGAAGAAAATCAAGTCAACGTAGAAGTTACGCGCATAAA





AGTGTTCGATGCAGATGAAATAGGTTCTGATAATTGGCTGGCAAATTTTACATTTGCATCAGGAAATG





AAGGAGGTTATTTCCACATAGAAACAGATGCTCAAACTAACGAAGGAATTGTGACCCTTATTAAGGAA





GTAGATTATGAAGAAATGAAGAATCTTGACTTCAGTGTTATTGTCGCTAATAAAGCAGCTTTTCACAA





GTCGATTAGGAGTAAATACAAGCCTACACCCATTCCCATCAAGGTCAAAGTGAAAAATGTGAAAGAA





GGCATTCATTTTAAAAGCAGCGTCATCTCAATTTATGTTAGCGAGAGCATGGATAGATCAAGCAAAGG





CCAAATAATTGGAAATTTTCAAGCTTTTGATGAGGACACTGGACTACCAGCCCATGCAAGATATGTAA





AATTAGAAGATAGAGATAATTGGATCTCTGTGGATTCTGTCACATCTGAAATTAAACTTGCAAAACTTC





CTGATTTTGAATCTAGATATGTTCAAAATGGCACATACACTGTAAAGATTGTGGCCATATCAGAAGATT





ATCCTAGAAAAACCATCACTGGCACAGTCCTTATCAATGTTGAAGACATCAACGACAACTGTCCCACA





CTGATAGAGCCTGTGCAGACAATCTGTCACGATGCAGAGTATGTGAATGTTACTGCAGAGGACCTGG





ATGGACACCCAAACAGTGGCCCTTTCAGTTTCTCCGTCATTGACAAACCACCTGGCATGGCAGAAAA





ATGGAAAATAGCACGCCAAGAAAGTACCAGTGTGCTGCTGCAACAAAGTGAGAAAAAGCTTGGGAG





AAGTGAAATTCAGTTCCTGATTTCAGACAATCAGGGTTTTAGTTGTCCTGAAAAGCAGGTCCTTACAC





TCACAGTTTGTGAGTGTCTGCATGGCAGCGGCTGCAGGGAAGCACAGCATGACTCCTATGTGGGCC





TGGGACCCGCAGCAATTGCGCTCATGATTTTGGCCTTTCTGCTCCTGCTATTGGTACCACTTTTACTG





CTGATGTGCCATTGCGGAAAGGGCGCCAAAGGCTTTACCCCCATACCTGGCACCATAGAGATGCTG





CATCCTTGGAATAATGAAGGAGCACCACCTGAAGACAAGGTGGTGCCATCATTTCTGCCAGTGGATC





AAGGGGGCAGTCTAGTAGGAAGAAATGGAGTAGGAGGTATGGCCAAGGAAGCCACGATGAAAGGA





AGTAGCTCTGCTTCCATTGTCAAAGGGCAACATGAGATGTCCGAGATGGATGGAAGGTGGGAAGAA





CACAGAAGCCTGCTTTCTGGTAGAGCTACCCAGTTTACAGGGGCCACAGGCGCTATCATGACCACT





GAAACCACGAAGACCGCAAGGGCCACAGGGGCTTCCAGAGACATGGCCGGAGCTCAGGCAGCTGC





TGTTGCACTGAACGAAGAATTCTTAAGAAATTATTTCACTGATAAAGCGGCCTCTTACACTGAGGAAG





ATGAAAATCACACAGCCAAAGATTGCCTTCTGGTTTATTCTCAGGAAGAAACTGAATCGCTGAATGCT





TCTATTGGTTGTTGCAGTTTTATTGAAGGAGAGCTAGATGACCGCTTCTTAGATGATTTGGGACTTAA





ATTCAAGACACTAGCTGAAGTTTGCCTGGGTCAAAAAATAGATATAAATAAGGAAATTGAGCAGAGAC





AAAAACCTGCCACAGAAACAAGTATGAACACAGCTTCACATTCACTCTGTGAGCAAACTATGGTTAAT





TCAGAGAATACCTACTCCTCTGGCAGTAGCTTCCCAGTTCCAAAATCTTTGCAAGAAGCCAATGCAG





AGAAAGTAACTCAGGAAATAGTCACTGAAAGATCTGTGTCTTCTAGGCAGGCGCAAAAGGTAGCTAC





ACCTCTTCCTGACCCAATGGCTTCTAGAAATGTGATAGCAACAGAAACTTCCTATGTCACAGGGTCCA





CTATGCCACCAACCACTGTGATCCTGGGTCCTAGCCAGCCACAGAGCCTTATTGTGACAGAGAGGG





TGTATGCTCCAGCTTCTACCTTGGTAGATCAGCCTTATGCTAATGAAGGTACAGTTGTGGTCACTGAA





AGAGTAATACAGCCTCATGGGGGTGGATCGAATCCTCTGGAAGGCACTCAGCATCTTCAAGATGTAC





CTTACGTCATGGTGAGGGAAAGAGAGAGCTTCCTTGCCCCCAGCTCAGGTGTGCAGCCTACTCTGG





CCATGCCTAATATAGCAGTAGGACAGAATGTGACAGTGACAGAAAGAGTTCTAGCACCTGCTTCCAC





TCTGCAATCCAGTTACCAGATTCCCACTGAAAATTCTATGACGGCTAGGAACACCACGGTGTCTGGA





GCTGGAGTCCCTGGCCCTCTGCCAGATTTTGGTTTAGAGGAATCTGGTCATTCTAATTCTACCATAAC





CACATCTTCCACCAGAGTTACCAAGCATAGCACTGTACAGCATTCTTACTCCTAAACAGCAGTCAGCC





ACAAACTGACCCAGAGTTTAATTAGCAGTGACTAATTTCATGTTTCCAATGTACCTGATTTTTCATGAG





CCTTACAGACACACAGAGACACATACACATTGATCTTAAAATTTTTCTCAGTCACTGATATGCAAAGG





ACCACACTGTCTCTGCTTCCAGGAGTATTTTAGAAATGTTCCACAATTTACTGAAGACATAGAGATGA





TGCTGCTGCTTAGGTGCCTTTTAGCAAGCTATGCAAACAATCCTGATAAAACAAGATACATAGAGAGT





CAATCTGGCTTCTGAGAATTTACCAAGTGAACAGAGTACCTAGTTCATCAGCCGTCCAGTAAAGCAA





CCCAGGAAACTGACTGGGTCTCTTTGCCTACCGTATTAACATTAAACATTGATGTTCTGTATTCTGTA





CTTTACTGCACCCAGCAGACTTTCAACAACTCATTGATCCAAAGATACATGCACAGTCTGAGCACCAG





CTATGGTGCTCATAACTTCTTTAAGACTTGAACCCTTTCAATCTGTGTGATTCATTAAATTGGACCATT





GATGATAAGAATACACATTGTATGTTTCTGTGCACATGACAGTGTGTGTGTGTGCACGTACATACTGT





ATAGTCTTAAAAATAGCATTATACTGGCCAGGGGTGGTGGCTAACGCCTGTAATCCCAGCACTTTGG





GAGGCCGAGGCGGGTGGATCAACTGTGGTCAGGAGTTTGAGATCAGCCAGGCCAACCTGGTGAAA





CCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGCGTGATGGTGGGCGCCTGTAATCCCAGCTACT





TGGGAGGCTGAGGCAGGAGAATCACTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCGAGATCGC





ACCATTGCACTCCAGTCTGGGCAACAGAGTGAGATTCCGTCTCAAAAAAAAAAAGAAAAGGAAAAAA





AAATAGCATTATACCTCTTCCTTGTCTCAACCGCCATGAAAATTCTGAACACTCCAAATTCAGTTGAAT





AATCCAAAACAAAATTTATAAGTATAAAATAATTTTACTTCTTATAGTAATAGTATACTTTAAAAAGCCT





CAGGGTATATTATOTTCTAAACAGCTACAATTCAGTGCAGCTACATTAACCAACTATGTTCTCTAGTTG





AGAACAACTAGGCCTATTTCACTGCTGTGTAGCCTCAGTGCCTAACATGGGTGCCAAATAAATATTCG





TAGAATTACACTGAATTGTAAAAACCATTCGTTTTTGTTTACAATTGCCAAAAATCTCAAAAGGCCCTG





TATTTATGTAATTCTTTGAAATTATTATTTTATTTTGATTTCTCAGTTATTGACTGGCTGGGTGTGACTT





AGTACATAAGTACTCAATATTATAAAAACCTCAAATAATTGACTTGATTTTACACAACATCCTTCCCTTT





TCTACAAGTTAATTTTTTTACAAATCATTTGGGTTATCTCCTAAATAGGTTATATTTTATTGCTTCTAGA





AACAATGTTTCAAAATATATGTGCATTATCAGTAATAATTTGTATAAATATTTCCCACAACAATTTTCAT





AATTTTCAAAGACTAATTTCTTGACTGAAGATATTTTGCTAGGGAAGTGAAACTTTAAAATTTTGTAGA





TTTTAAAAAATATTGTTGAATGGTGTCATGCAAAGGATTTATATAGTGTGCTCCCACTAACTGTACAGA





TCAGGACACATATTTTTAGACATCTAAGTCTGTAGCTTAAATGGAGGTTACTCTTCCATCATCTAGAAT





TGTTTACTTAGTAATTGTTGTTTCTTTTATTATTATAGACTTACTATCAGTTTTATTTTGCCAAGTATGCA





ACAGGTATATCACTAGTATATGAAAATGTAAATATCACTTGTGTACTCAAACAAAAGTTGGTCTTAAGC





TTCCACCTTGAGCAGCCTTGGAAACCTAACCTGCCTCTTTTAGCATAATCACATTTTCTAAATGATTTT





CTTTGTTCCTGAAAAAGTGATTTGTATTAGTTTTACATTTGTTTTTTGGAAGATTATATTTGTATATGTA





TCATCATAAAATATTTAAATAAAAAGTATCTTTAGAGTGACCCTTTCCCCATAGATTTTTATTTCTCTAT





TATATTTTACAAGGAATATAACTCAGTTTGTTAGGGAGAGTGCCTTAAAGGCAGGTGTTTCTTGGACT





TTGTTATTTAATTAGATCTGCTTGCAATAAAAAAAGTTGTCGGTTATCTAAAATTCAAAAAAAAAAAAAA





AAAA






As used herein, the term “ECHDC3” refers to the gene encoding Enoyl-CoA Hydratase Domain Containing 3. The terms “ECHDC” and “Enoyl-CoA Hydratase Domain Containing 3” include wild-type forms of the ECHDC gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type ECHDC. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type ECHDC nucleic acid sequence (e.g., SEQ ID NO: 27, NCBI Reference Sequence: NM_024693.4). SEQ ID NO: 27 is a wild-type gene sequence encoding ECHDC protein, and is shown below:









(SEQ ID NO: 27)


GGGGCGGGGCGTGCCGGGGGGGGCGTAGTACGGACTGGGCCTGGCCTGGG





GCGTCCCCGCGAAGCCTGGGCCTGTCAGGCGGTTCCGTCCGGGTCTCGGC





CACCGTCGAGTTCCGTCGAGTTCCGTCCCGGCCCTGCTCACAGCAGCGCC





CTCGGAGCGCCCAGCACCTGCGGCCGGCCAGGCAGCGCGATCCTGCGGCG





TCTGGCCATCCCGAATGCTATGGCCGCCGTCGCCGTCTTGCGGGCCTTCG





GGGCAAGTGGGCCCATGTGTCTCCGGCGCGGCCCCTGGGCCCAGCTCCCC





GCCCGCTTCTGCAGCCGGGACCCGGCCGGGGGGGGGGGGCGGGAGTCGGA





GCCGCGGCCCACCAGCGCGCGGCAGCTGGACGGCATAAGGAACATCGTCT





TGAGCAATCCCAAGAAGAGGAACACGTTGTCACTTGCAATGCTGAAATCT





CTCCAAAGTGACATTCTTCATGACGCTGACAGCAACGATCTGAAAGTCAT





TATCATCTCGGCTGAGGGGCCTGTGTTTTCTTCTGGGCATGACTTAAAGG





AGCTGACAGAGGAGCAAGGCCGTGATTACCATGCCGAAGTATTTCAGACC





TGTTCCAAGGTCATGATGCACATCCGGAACCACCCCGTCCCCGTCATTGC





CATGGTCAATGGCCTGGCCACGGCTGCCGGCTGTCAACTGGTTGCCAGCT





GCGACATTGCCGTGGCGAGCGACAAGTCCTCTTTTGCCACTCCTGGGGTG





AACGTCGGGCTCTTCTGTTCTACCCCTGGGGTTGCCTTGGCAAGAGCAGT





GCCTAGAAAGGTGGCCTTGGAGATGCTCTTTACTGGTGAGCCCATTTCTG





CCCAGGAGGCCCTGCTCCACGGGCTGCTTAGCAAGGTGGTGCCAGAGGCG





GAGCTGCAGGAGGAGACCATGCGGATCGCTAGGAAGATCGCATCGCTGAG





CCGTCCGGTGGTGTCCCTGGGCAAAGCCACCTTCTACAAGCAGCTGCCCC





AGGACCTGGGGACGGCTTACTACCTCACCTCCCAGGCCATGGTGGACAAC





CTGGCCCTGCGGGACGGGCAGGAGGGCATCACGGCCTTCCTCCAGAAGAG





AAAACCTGTCTGGTCACACGAGCCAGTGTGAGTGGAGGCAGAGGAGTGAG





GCCCACGGGCAGCGCCCAGGAGCCCACCTTCCCCTCTGGCCCAGCCACCA





CTGCCTCTCAGCTTCAACAGGTGACAGGCTGCTTTCGTGACTTGATATTG





GTGTCATAGCATTTGGCCTACATTAAAAGCCACAATTTCATGGGGAAAGG





ACAAAATGGAGAGTGACTGAGGTGCTGACCTCAGTGCAAGGCTGGTGAAC





CCTGCAGCGGGCCAGCTATGGTGGGAAGCCTGGCATTTGGGGTGCTCCTT





GCAACGTCTTAAGCAAGCGACCCCCCTGACATAGCAAAAGGTGGCAACCC





ATGGAGGCAGAAAGAAGGACGCCAGCCTGACCCTTATCTGAAACGTCCTA





AGCAGAGTTAATCCTGGCTGCTCAGGAGAGGCGACACATTTCAAATCTCC





ACGAGATATTCTCCACACAGAAAATCTTCTTGATTCTATAGAGACTTAAT





CATGCCTATGGCTTTGAATAATCTTATGTGATTTAAATAAATTAAATCTT





TATAAAAAAAAAAAAAAAAAAAA






As used herein, the term “EPHA1” refers to the gene encoding Ephrin type-A receptor 1. The terms “EPHA1” and “Ephrin type-A receptor 1” include wild-type forms of the EPHA1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type EPHA1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type EPHA1 nucleic acid sequence (e.g., SEQ ID NO: 28, ENA accession number M18391). SEQ ID NO: 28 is a wild-type gene sequence encoding EPHA1 protein, and is shown below:









(SEQ ID NO: 57)


GCCCCCGCCCGGCCCGCCCCGCTCTCCTAGTCCCTTGCAACCTGGCGCTG





CATCCGGGCCACTGTCCCAGGTCCCAGGTCCCGGCCCGGAGCTATGGAGC





GGCGCTGGCCCCTGGGGCTAGGGCTGGTGCTGCTGCTCTGCGCCCCGCTG





CCCCCGGGGGCGCGCGCCAAGGAAGTTACTCTGATGGACACAAGCAAGGC





ACAGGGAGAGCTGGGCTGGCTGCTGGATCCCCCAAAAGATGGGTGGAGTG





AACAGCAACAGATACTGAATGGGACACCCCTCTACATGTACCAGGACTGC





CCAATGCAAGGACGCAGAGACACTGACCACTGGCTTCGCTCCAATTGGAT





CTACCGCGGGGAGGAGGCTTCCCGCGTCCACGTGGAGCTGCAGTTCACCG





TGCGGGACTGCAAGAGTTTCCCTGGGGGAGCCGGGCCTCTGGGCTGCAAG





GAGACCTTCAACCTTCTGTACATGGAGAGTGACCAGGATGTGGGCATTCA





GCTCCGACGGCCCTTGTTCCAGAAGGTAACCACGGTGGCTGCAGACCAGA





GCTTCACCATTCGAGACCTTGCGTCTGGCTCCGTGAAGCTGAATGTGGAG





CGCTGCTCTCTGGGCCGCCTGACCCGCCGTGGCCTCTACCTCGCTTTCCA





CAACCCGGGTGCCTGTGTGGCCCTGGTGTCTGTCCGGGTCTTCTACCAGC





GCTGTCCTGAGACCCTGAATGGCTTGGCCCAATTCCCAGACACTCTGCCT





GGCCCCGCTGGGTTGGTGGAAGTGGCGGGCACCTGCTTGCCCCACGCGCG





GGCCAGCCCCAGGCCCTCAGGTGCACCCCGCATGCACTGCAGCCCTGATG





GCGAGTGGCTGGTGCCTGTAGGACGGTGCCACTGTGAGCCTGGCTATGAG





GAAGGTGGCAGTGGCGAAGCATGTGTTGCCTGCCCTAGCGGCTCCTACCG





GATGGACATGGACACACCCCATTGTCTCACGTGCCCCCAGCAGAGCACTG





CTGAGTCTGAGGGGGCCACCATCTGTACCTGTGAGAGCGGCCATTACAGA





GCTCCCGGGGAGGGCCCCCAGGTGGCATGCACAGGTCCCCCCTCGGCCCC





CCGAAACCTGAGCTTCTCTGCCTCAGGGACTCAGCTCTCCCTGCGTTGGG





AACCCCCAGCAGATACGGGGGGACGCCAGGATGTCAGATACAGTGTGAGG





TGTTCCCAGTGTCAGGGCACAGCACAGGACGGGGGGCCCTGCCAGCCCTG





TGGGGTGGGCGTGCACTTCTCGCCGGGGGCCCGGGCGCTCACCACACCTG





CAGTGCATGTCAATGGCCTTGAACCTTATGCCAACTACACCTTTAATGTG





GAAGCCCAAAATGGAGTGTCAGGGCTGGGCAGCTCTGGCCATGCCAGCAC





CTCAGTCAGCATCAGCATGGGGCATGCAGAGTCACTGTCAGGCCTGTCTC





TGAGACTGGTGAAGAAAGAACCGAGGCAACTAGAGCTGACCTGGGCGGGG





TCCCGGCCCCGAAGCCCTGGGGCGAACCTGACCTATGAGCTGCACGTGCT





GAACCAGGATGAAGAACGGTACCAGATGGTTCTAGAACCCAGGGTCTTGC





TGACAGAGCTGCAGCCTGACACCACATACATCGTCAGAGTCCGAATGCTG





ACCCCACTGGGTCCTGGCCCTTTCTCCCCTGATCATGAGTTTCGGACCAG





CCCACCAGTGTCCAGGGGCCTGACTGGAGGAGAGATTGTAGCCGTCATCT





TTGGGCTGCTGCTTGGTGCAGCCTTGCTGCTTGGGATTCTCGTTTTCCGG





TCCAGGAGAGCCCAGCGGCAGAGGCAGCAGAGGCACGTGACCGCGCCACC





GATGTGGATCGAGAGGACAAGCTGTGCTGAAGCCTTATGTGGTACCTCCA





GGCATACGAGGACCCTGCACAGGGAGCCTTGGACTTTACCCGGAGGCTGG





TCTAATTTTCCTTCCCGGGAGCTTGATCCAGCGTGGCTGATGGTGGACAC





TGTCATAGGAGAAGGAGAGTTTGGGGAAGTGTATCGAGGGACCCTCAGGC





TCCCCAGCCAGGACTGCAAGACTGTGGCCATTAAGACCTTAAAAGACACA





TCCCCAGGTGGCCAGTGGTGGAACTTCCTTCGAGAGGCAACTATCATGGG





CCAGTTTAGCCACCCGCATATTCTGCATCTGGAAGGCGTCGTCACAAAGC





GAAAGCCGATCATGATCATCACAGAATTTATGGAGAATGCAGCCCTGGAT





GCCTTCCTGAGGGAGCGGGAGGACCAGCTGGTCCCTGGGCAGCTAGTGGC





CATGCTGCAGGGCATAGCATCTGGCATGAACTACCTCAGTAATCACAATT





ATGTCCACCGGGACCTGGCTGCCAGAAACATCTTGGTGAATCAAAACCTG





TGCTGCAAGGTGTCTGACTTTGGCCTGACTCGCCTCCTGGATGACTTTGA





TGGCACATACGAAACCCAGGGAGGAAAGATCCCTATCCGTTGGACAGCCC





CTGAAGCCATTGCCCATCGGATCTTCACCACAGCCAGCGATGTGTGGAGC





TTTGGGATTGTGATGTGGGAGGTGCTGAGCTTTGGGGACAAGCCTTATGG





GGAGATGAGCAATCAGGAGGTTATGAAGAGCATTGAGGATGGGTACCGGT





TGCCCCCTCCTGTGGACTGCCCTGCCCCTCTGTATGAGCTCATGAAGAAC





TGCTGGGCATATGACCGTGCCCGCCGGCCACACTTCCAGAAGCTTCAGGC





ACATCTGGAGCAACTGCTTGCCAACCCCCACTCCCTGCGGACCATTGCCA





ACTTTGACCCCAGGGTGACTCTTCGCCTGCCCAGCCTGAGTGGCTCAGAT





GGGATCCCGTATCGAACCGTCTCTGAGTGGCTCGAGTCCATACGCATGAA





ACGCTACATCCTGCACTTCCACTCGGCTGGGCTGGACACCATGGAGTGTG





TGCTGGAGCTGACCGCTGAGGACCTGACGCAGATGGGAATCACACTGCCC





GGGCACCAGAAGCGCATTCTTTGCAGTATTCAGGGATTCAAGGACTGATC





CCTCCTCTCACCCCATGCCCAATCAGGGTGCAAGGAGCAAGGACGGGGCC





AAGGTCGCTCATGGTCACTCCCTGCGCCCCTTCCCACAACCTGCCAGACT





AGGCTATCGGTGCTGCTTCTGCCCGCTTTAAGGAGAACCCTGCTCTGCAC





CCCAGAAAACCTCTTTGTTTTAAAAGGGAGGTGGGGGTAGAAGTAAAAGG





ATGATCATGGGAGGGAGCTCAGGGGTTAATATATATACATACATACACAT





ATATATATTGTTGTAAATAAACAGGAAATGATTTTCTGCCTCCATCCCAC





CCATCAGGGCTGCAGGCACT






As used herein, the term “FABP5” refers to the gene encoding Fatty acid-binding protein 5. The terms “FABP5” and “Fatty acid-binding protein 5” include wild-type forms of the FABP5 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type FABP5. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type FABP5 nucleic acid sequence (e.g., SEQ ID NO: 29, ENA accession number M94856). SEQ ID NO: 29 is a wild-type gene sequence encoding FABP5 protein, and is shown below:









(SEQ ID NO: 29)


ACCGCCGACGCAGACCCCTCTCTGCACGCCAGCCCGCCCGCACCCACCAT





GGCCACAGTTCAGCAGCTGGAAGGAAGATGGCGCCTGGTGGACAGCAAAG





GCTTTGATGAATACATGAAGGAGCTAGGAGTGGGAATAGCTTTGCGAAAA





ATGGGCGCAATGGCCAAGCCAGATTGTATCATCACTTGTGATGGTAAAAA





CCTCACCATAAAAACTGAGAGCACTTTGAAAACAACACAGTTTTCTTGTA





CCCTGGGAGAGAAGTTTGAAGAAACCACAGCTGATGGCAGAAAAACTCAG





ACTGTCTGCAACTTTACAGATGGTGCATTGGTTCAGCATCAGGAGTGGGA





TGGGAAGGAAAGCACAATAACAAGAAAATTGAAAGATGGGAAATTAGTGG





TGGAGTGTGTCATGAACAATGTCACCTGTACTCGGATCTATGAAAAAGTA





GAATAAAAATTCCATCATCACTTTGGACAGGAGTTAATTAAGAGAATGAC





CAAGCTCAGTTCAATGAGCAAATCTCCATACTGTTTCTTTCTTTTTTTTT





TCATTACTGTGTTCAATTATCTTTATCATAAACATTTTACATGCAGCTAT





TTCAAAGTGTGTTGGATTAATTAGGATCATCCCTTTGGTTAATAAATAAA





TGTGTTTGTGCT






As used herein, the term “FERMT2” refers to the gene encoding Fermitin family homolog 2. The terms “FERMT2” and “Fermitin family homolog 2” include wild-type forms of the FERMT2 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type FERMT2. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type FERMT2 nucleic acid sequence (e.g., SEQ ID NO: 30, ENA accession number Z24725). SEQ ID NO: 30 is a wild-type gene sequence encoding FERMT2 protein, and is shown below:









(SEQ ID NO: 30)


CAAAAAGTGTGTGGAAAGGTGGATTGAGGGAGCGGGACCCCCGCGGGACC





CGAGGGGGCGGCAGGCGGGGAACGGGGAGTCAGCCCGCGCTGTGTCTCGG





GGCCGGCCGGCAGGAAGGAGCCATGGCTCTGGACGGGATAAGGATGCCAG





ATGGCTGCTACGCGGACGGGACGTGGGAACTGAGTGTCCATGTGACGGAC





CTGAACCGCGATATCACCCTGAGAGTGACCGGCGAGGTGCACATTGGAGG





CGTGATGCTTAAGCTGGTGGAGAAACTCGATGTAAAAAAAGATTGGTCTG





ACCATGCTCTCTGGTGGGAAAAGAAGAGAACTTGGCTTCTGAAGACACAT





TGGACCTTAGATAAGTATGGTATTCAGGCAGATGCTAAGCTTCAGTTCAC





CCCTCAGCACAAACTGCTCCGCCTGCAGCTTCCCAACATGAAGTATGTGA





AGGTGAAAGTGAATTTCTCTGATAGAGTCTTCAAAGCTGTTTCTGACATC





TGTAAGACTTTTAATATCAGACACCCCGAAGAACTTTCTCTCTTAAAGAA





ACCCAGAGATCCAACAAAGAAAAAAAAGAAGAAGCTAGATGACCAGTCTG





AAGATGAGGCACTTGAATTAGAGGGGCCTCTTATCACTCCTGGATCAGGA





AGTATATATTCAAGCCCAGGACTGTATAGTAAAACAATGACCCCCACTTA





TGATGCTCATGATGGAAGCCCCTTGTCACCAACTTCTGCTTGGTTTGGTG





ACAGTGCTTTGTCAGAAGGCAATCCTGGTATACTTGCTGTCAGTCAACCA





ATCACGTCACCAGAAATCTTGGCAAAAATGTTCAAGCCTCAAGCTCTTCT





TGATAAAGCAAAAATCAACCAAGGATGGCTTGATTCCTCAAGATCTCTCA





TGGAACAAGATGTGAAGGAAAATGAGGCCTTGCTGCTCCGATTCAAGTAT





TACAGCTTTTTTGATTTGAATCCAAAGTATGATGCAATCAGAATCAATCA





GCTTTATGAGCAGGCCAAATGGGCCATTCTCCTGGAAGAGATTGAATGCA





CAGAAGAAGAAATGATGATGTTTGCAGCCCTGCAGTATCATATCAATAAG





CTGTCAATCATGACATCAGAGAATCATTTGAACAACAGTGACAAAGAAGT





TGATGAAGTTGATGCTGCCCTTTCAGACCTGGAGATTACTCTGGAAGGGG





GTAAAACGTCAACAATTTTGGGTGACATTACTTCCATTCCTGAACTTGCT





GACTACATTAAAGTTTTCAAGCCAAAAAAGCTGACTCTGAAAGGTTACAA





ACAATATTGGTGCACCTTCAAAGACACATCCATTTCTTGTTATAAGAGCA





AAGAAGAATCCAGTGGCACACCAGCTCATCAGATGAACCTCAGGGGATGT





GAAGTTACCCCAGATGTAAACATTTCAGGCCAAAAATTTAACATTAAACT





CCTGATTCCAGTTGCAGAAGGCATGAATGAAATCTGGCTTCGTTGTGACA





ATGAAAAACAGTATGCACACTGGATGGCAGCCTGCAGATTAGCCTCCAAA





GGCAAGACCATGGCGGACAGTTCTTACAACTTAGAAGTTCAGAATATTCT





TTCCTTTCTGAAGATGCAGCATTTAAACCCAGATCCTCAGTTAATACCAG





AGCAGATCACGACTGATATAACTCCTGAATGTTTGGTGTCTCCCCGCTAT





CTAAAAAAGTATAAGAACAAGCAGATAACAGCGAGAATCTTGGAGGCCCA





TCAGAATGTAGCTCAGATGAGTCTAATTGAAGCCAAGATGAGATTTATTC





AAGCTTGGCAGTCACTACCTGAATTTGGCATCACTCACTTCATTGCAAGG





TTCCAAGGGGGCAAAAAAGAAGAACTTATTGGAATTGCATACAACAGACT





GATTCGGATGGATGCCAGCACTGGAGATGCAATTAAAACATGGCGTTTCA





GCAACATGAAACAGTGGAATGTCAACTGGGAAATCAAAATGGTCACCGTA





GAGTTTGCAGATGAAGTACGATTGTCCTTCATTTGTACTGAAGTAGATTG





CAAAGTGGTTCATGAATTCATTGGTGGCTACATATTTCTCTCAACACGTG





CAAAAGACCAAAACGAGAGTTTAGATGAAGAGATGTTCTACAAACTTACC





AGTGGTTGGGTGTGAATAGAAATACTGTTTAATGAAACTCCACGGCCATA





ACAATATTTAACTTTAAAAGCTGTTTGTTATATGCTGCTTAATAAAGTAA





GCTTGAAATTTATCATTTTATCATGAAAACTTCTTTGCCTTACCAGACCA





GTTAATATGTGCACTAAACAAGCACGACTATTAATCTATCATGTTATGAT





ATAATAAACTTGAATTTGGCACACATTCCTTAGGGCCATGAATTGAAAAC





TGAAATAGTGGGCAAATCAGGAACAAACCATCACTGATTTACTGATTTAA





GCTAGCCAAACTGTAAGAAACAAGCCATCTATTTTAAAGCTATCCAGGGC





TTAACCTATATGAACTCTATTTATCATGTCTAATGCATGTGATTTAATGT





ATGTTTAATTTGATATCATGTTTTAAAATATCCTACTTCTGGTAGCCATT





TAATTCCTCCCCCTACCCCCAAATAAATCAGGCATGCAGGAGGCCTGATA





TTTAGTAATGTCATTGTGTTTGACCTTGAAGGAAAATGCTATTAGTCCGT





CGTGCTTNATTTGTTTTTGTCCTTGAATAAGCATGTTATGTATATNGTCT





CGTGTTTTTATTTTTACACCATATTGTATTACACTTTTAGTATTCACCAG





CATAANCACTGTCTGCCTAAAATATGCAACTCTTTGCATTACAATATGAA





GTAAAGTTCTATGAAGTATGCATTTTGTGTAACTAATGTAAAAACACAAA





TTTTATAAAATTGTACAGTTTTTTAAAAACTACTCACAACTAGCAGATGG





CTTAAATGTAGCAATCTCTGCGTTAATTAAATGCCTTTAAGAGATATAAT





TAACGTGCAGTTTTAATATCTACTAAATTAAGAATGACTTCATTATGATC





ATGATTTGCCACAATGTCCTTAACTCTAATGCCTGGACTGGCCATGTTCT





AGTCTGTTGCGCTGTTACAATCTGTATTGGTGCTAGTCAGAAAATTCCTA





GCTCACATAGCCCAAAAGGGTGCGAGGGAGAGGTGGATTACCAGTATTGT





TCAATAATCCATGGTTCAAAGACTGTATAAATGCATTTTATTTTAAATAA





AAGCAAAACTTTTATTTAAA






As used herein, the term “FTH1” refers to the gene encoding Ferritin heavy chain. The terms “FTH1” and “Ferritin heavy chain” include wild-type forms of the FTH1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type FTH1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type FTH1 nucleic acid sequence (e.g., SEQ ID NO: 31, ENA accession number X00318). SEQ ID NO: 31 is a wild-type gene sequence encoding FTH1 protein, and is shown below:









(SEQ ID NO: 31)


CACCGCACCCTCGGACTGCCCCAAGGCCCCCGCCGCCGCTCCAGCGCCGC





GCAGCCACCGCCGCCGCCGCCGCCTCTCCTTAGTCGCCGCCATGACGACC





GCGTCCACCTCGCAGGTGCGCCAGAACTACCACCAGGACTCAGAGGCCGC





CATCAACCGCCAGATCAACCTGGAGCTCTACGCCTCCTACGTTTACCTGT





CCATGTCTTACTACTTTGACCGCGATGATGTGGCTTTGAAGAACTTTGCC





AAATACTTTCTTCACCAATCTCATGAGGAGAGGGAACATGCTGAGAAACT





GATGAAGCTGCAGAACCAACGAGGTGGCCGAATCTTCCTTCAGGATATCA





AGAAACCAGACTGTGATGACTGGGAGAGCGGGCTGAATGCAATGGAGTGT





GCATTACATTTGGAAAAAAATGTGAATCAGTCACTACTGGAACTGCACAA





ACTGGCCACTGACAAAAATGACCCCCATTTGTGTGACTTCATTGAGACAC





ATTACCTGAATGAGCAGGTGAAAGCCATCAAAGAATTGGGTGACCACGTG





ACCAACTTGCGCAAGATGGGAGCGCCCGAATCTGGCTTGGCGGAATATCT





CTTTGACAAGCACACCTGGGAGACAGTGATAATGAAAGCTAAGCCTCGGG





CTAATTTCCCATAGCCGTGGGGTGACTTCCTGGTCACCAAGGCAGTGCAT





GCATGTTGGGGTTTCCTTTACCTTTTCTATAAGTTGTACCAAAACATCCA





CTTAAGTTCTTTGATTTGTACCATTCCTTCAAATAAAGAAATTTGGTACC





C






As used herein, the term “GNAS” refers to the gene encoding Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas. The terms “GNAS” and “Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas” include wild-type forms of the GNAS gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type GNAS. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type GNAS nucleic acid sequence (e.g., SEQ ID NO: 32, ENA accession number X04408). SEQ ID NO: 32 is a wild-type gene sequence encoding GNAS protein, and is shown below:









(SEQ ID NO: 32)


GCGGGCGTGCTGCCGCCGCTGCCGCCGCCGCCGCAGCCCGGCCGCGCCCC





GCCGCCGCCGCCGCCGCCATGGGCTGCCTCGGGAACAGTAAGACCGAGGA





CCAGCGCAACGAGGAGAAGGCGCAGCGTGAGGCCAACAAAAAGATCGAGA





AGCAGCTGCAGAAGGACAAGCAGGTCTACCGGGCCACGCACCGCCTGCTG





CTGCTGGGTGCTGGAGAATCTGGTAAAAGCACCATTGTGAAGCAGATGAG





GATCCTGCATGTTAATGGGTTTAATGGAGAGGGGGGCGAAGAGGACCCGC





AGGCTGCAAGGAGCAACAGCGATGGTGAGAAGGCAACCAAAGTGCAGGAC





ATCAAAAACAACCTGAAAGAGGCGATTGAAACCATTGTGGCCGCCATGAG





CAACCTGGTGCCCCCCGTGGAGCTGGCCAACCCCGAGAACCAGTTCAGAG





TGGACTACATCCTGAGTGTGATGAACGTGCCTGACTTTGACTTCCCTCCC





GAATTCTATGAGCATGCCAAGGCTCTGTGGGAGGATGAAGGAGTGCGTGC





CTGCTACGAACGCTCCAACGAGTACCAGCTGATTGACTGTGCCCAGTACT





TCCTGGACAAGATCGACGTGATCAAGCAGGCTGACTATGTGCCGAGCGAT





CAGGACCTGCTTCGCTGCCGTGTCCTGACTTCTGGAATCTTTGAGACCAA





GTTCCAGGTGGACAAAGTCAACTTCCACATGTTTGACGTGGGTGGCCAGC





GCGATGAACGCCGCAAGTGGATCCAGTGCTTCAACGATGTGACTGCCATC





ATCTTCGTGGTGGCCAGCAGCAGCTACAACATGGTCATCCGGGAGGACAA





CCAGACCAACCGCCTGCAGGAGGCTCTGAACCTCTTCAAGAGCATCTGGA





ACAACAGATGGCTGCGCACCATCTCTGTGATCCTGTTCCTCAACAAGCAA





GATCTGCTCGCTGAGAAAGTCCTTGCTGGGAAATCGAAGATTGAGGACTA





CTTTCCAGAATTTGCTCGCTACACTACTCCTGAGGATGCTACTCCCGAGC





CCGGAGAGGACCCACGCGTGACCCGGGCCAAGTACTTCATTCGAGATGAG





TTTCTGAGGATCAGCACTGCCAGTGGAGATGGGCGTCACTACTGCTACCC





TCATTTCACCTGCGCTGTGGACACTGAGAACATCCGCCGTGTGTTCAACG





ACTGCCGTGACATCATTCAGCGCATGCACCTTCGTCAGTACGAGCTGCTC





TAAGAAGGGAACCCCCAAATTTAATTAAAGCCTTAAGCACAATTAATTAA





AAGTGAAACGTAATTGTACAAGCAGTTAATCACCCACCATAGGGCATGAT





TAACAAAGCAACCTTTCCCTTCCCCCGAGTGATTTTGCGAAACCCCCTTT





TCCCTTCAGCTTGCTTAGATGTTCCAAATTTAGAAAGCTTAAGGCGGCCT





ACAGAAAAAGGAAAAAAGGCCACAAAAGTTCCCTCTCACTTTCAGTAAAA





ATAAATAAAACAGCAGCAGCAAACAAATAAAATGAAATAAAAGAAACAAA





TGAAATAAATATTGTGTTGTGCAGCATTAAAAAAAATCAAAATAAAAATT





AAATGTGAGCAAAG






As used herein, the term “GRN” refers to the gene encoding Progranulin. The terms “GRN” and “Progranulin” include wild-type forms of the GRN gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type GRN. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type GRN nucleic acid sequence (e.g., SEQ ID NO: 33, ENA accession number X62320). SEQ ID NO: 33 is a wild-type gene sequence encoding GRN protein, and is shown below:









(SEQ ID NO: 33)


GCTGCTGCCCAAGGACCGCGGAGTCGGACGCAGGCAGACCATGTGGACCC





TGGTGAGCTGGGTGGCCTTAACAGCAGGGCTGGTGGCTGGAACGCGGTGC





CCAGATGGTCAGTTCTGCCCTGTGGCCTGCTGCCTGGACCCCGGAGGAGC





CAGCTACAGCTGCTGCCGTCCCCTTCTGGACAAATGGCCCACAACACTGA





GCAGGCATCTGGGTGGCCCCTGCCAGGTTGATGCCCACTGCTCTGCCGGC





CACTCCTGCATCTTTACCGTCTCAGGGACTTCCAGTTGCTGCCCCTTCCC





AGAGGCCGTGGCATGCGGGGATGGCCATCACTGCTGCCCACGGGGCTTCC





ACTGCAGTGCAGACGGGCGATCCTGCTTCCAAAGATCAGGTAACAACTCC





GTGGGTGCCATCCAGTGCCCTGATAGTCAGTTCGAATGCCCGGACTTCTC





CACGTGCTGTGTTATGGTCGATGGCTCCTGGGGGTGCTGCCCCATGCCCC





AGGCTTCCTGCTGTGAAGACAGGGTGCACTGCTGTCCGCACGGTGCCTTC





TGCGACCTGGTTCACACCCGCTGCATCACACCCACGGGCACCCACCCCCT





GGCAAAGAAGCTCCCTGCCCAGAGGACTAACAGGGCAGTGGCCTTGTCCA





GCTCGGTCATGTGTCCGGACGCACGGTCCCGGTGCCCTGATGGTTCTACC





TGCTGTGAGCTGCCCAGTGGGAAGTATGGCTGCTGCCCAATGCCCAACGC





CACCTGCTGCTCCGATCACCTGCACTGCTGCCCCCAAGACACTGTGTGTG





ACCTGATCCAGAGTAAGTGCCTCTCCAAGGAGAACGCTACCACGGACCTC





CTCACTAAGCTGCCTGCGCACACAGTGGGGGATGTGAAATGTGACATGGA





GGTGAGCTGCCCAGATGGCTATACCTGCTGCCGTCTACAGTCGGGGGCCT





GGGGCTGCTGCCCTTTTACCCAGGCTGTGTGCTGTGAGGACCACATACAC





TGCTGTCCCGCGGGGTTTACGTGTGACACGCAGAAGGGTACCTGTGAACA





GGGGCCCCACCAGGTGCCCTGGATGGAGAAGGCCCCAGCTCACCTCAGCC





TGCCAGACCCACAAGCCTTGAAGAGAGATGTCCCCTGTGATAATGTCAGC





AGCTGTCCCTCCTCCGATACCTGCTGCCAACTCACGTCTGGGGAGTGGGG





CTGCTGTCCAATCCCAGAGGCTGTCTGCTGCTCGGACCACCAGCACTGCT





GCCCCCAGGGCTACACGTGTGTAGCTGAGGGGCAGTGTCAGCGAGGAAGC





GAGATCGTGGCTGGACTGGAGAAGATGCCTGCCCGCCGGGCTTCCTTATC





CCACCCCAGAGACATCGGCTGTGACCAGCACACCAGCTGCCCGGTGGGGC





AGACCTGCTGCCCGAGCCTGGGTGGGAGCTGGGCCTGCTGCCAGTTGCCC





CATGCTGTGTGCTGCGAGGATCGCCAGCACTGCTGCCCGGCTGGCTACAC





CTGCAACGTGAAGGCTCGATCCTGCGAGAAGGAAGTGGTCTCTGCCCAGC





CTGCCACCTTCCTGGCCCGTAGCCCTCACGTGGGTGTGAAGGACGTGGAG





TGTGGGGAAGGACACTTCTGCCATGATAACCAGACCTGCTGCCGAGACAA





CCGACAGGGCTGGGCCTGCTGTCCCTACCGCCAGGGCGTCTGTTGTGCTG





ATCGGCGCCACTGCTGTCCTGCTGGCTTCCGCTGCGCAGCCAGGGGTACC





AAGTGTTTGCGCAGGGAGGCCCCGCGCTGGGACGCCCCTTTGAGGGACCC





AGCCTTGAGACAGCTGCTGTGAGGGACAGTACTGAAGACTCTGCAGCCCT





CGGGACCCCACTCGGAGGGTGCCCTCTGCTCAGGCCTCCCTAGCACCTCC





CCCTAACCAAATTCTCCCTGGACCCCATTCTGAGCTCCCCATCACCATGG





GAGGTGGGGCCTCAATCTAAGGCCTTCCCTGTCAGAAGGGGGTTGTGGCA





AAAGCCACATTACAAGCTGCCATCCCCTCCCCGTTTCAGTGGACCCTGTG





GCCAGGTGCTTTTCCCTATCCACAGGGGTGTTTGTGTGTGTGCGCGTGTG





CGTTTCAATAAAGTTTGTACACTTTCAAAAAAAAAAAAAAAAAAAAAAAA





AA






As used herein, the term “HBEGF” refers to the gene encoding Heparin Binding EGF Like Growth Factor. The terms “HBEGF” and “Heparin Binding EGF Like Growth Factor” include wild-type forms of the HBEGF gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type HBEGF. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type HBEGF nucleic acid sequence (e.g., SEQ ID NO: 34, NCBI Reference Sequence: NM_001945.2). SEQ ID NO: 34 is a wild-type gene sequence encoding HBEGF protein, and is shown below:









(SEQ ID NO: 34)


ATTCGGCCGAAGGAGCTACGCGGGCCACGCTGCTGGCTGGCCTGACCTAG





GCGCGCGGGGTCGGGCGGCCGCGCGGGCGGGCTGAGTGAGCAAGACAAGA





CACTCAAGAAGAGCGAGCTGCGCCTGGGTCCCGGCCAGGCTTGCACGCAG





AGGCGGGGGGCAGACGGTGCCCGGCGGAATCTCCTGAGCTCCGCCGCCCA





GCTCTGGTGCCAGCGCCCAGTGGCCGCCGCTTCGAAAGTGACTGGTGCCT





CGCCGCCTCCTCTCGGTGCGGGACCATGAAGCTGCTGCCGTCGGTGGTGC





TGAAGCTCTTTCTGGCTGCAGTTCTCTCGGCACTGGTGACTGGCGAGAGC





CTGGAGCGGCTTCGGAGAGGGCTAGCTGCTGGAACCAGCAACCCGGACCC





TCCCACTGTATCCACGGACCAGCTGCTACCCCTAGGAGGCGGCCGGGACC





GGAAAGTCCGTGACTTGCAAGAGGCAGATCTGGACCTTTTGAGAGTCACT





TTATCCTCCAAGCCACAAGCACTGGCCACACCAAACAAGGAGGAGCACGG





GAAAAGAAAGAAGAAAGGCAAGGGGCTAGGGAAGAAGAGGGACCCATGTC





TTCGGAAATACAAGGACTTCTGCATCCATGGAGAATGCAAATATGTGAAG





GAGCTCCGGGCTCCCTCCTGCATCTGCCACCCGGGTTACCATGGAGAGAG





GTGTCATGGGCTGAGCCTCCCAGTGGAAAATCGCTTATATACCTATGACC





ACACAACCATCCTGGCCGTGGTGGCTGTGGTGCTGTCATCTGTCTGTCTG





CTGGTCATCGTGGGGCTTCTCATGTTTAGGTACCATAGGAGAGGAGGTTA





TGATGTGGAAAATGAAGAGAAAGTGAAGTTGGGCATGACTAATTCCCACT





GAGAGAGACTTGTGCTCAAGGAATCGGCTGGGGACTGCTACCTCTGAGAA





GACACAAGGTGATTTCAGACTGCAGAGGGGAAAGACTTCCATCTAGTCAC





AAAGACTCCTTCGTCCCCAGTTGCCGTCTAGGATTGGGCCTCCCATAATT





GCTTTGCCAAAATACCAGAGCCTTCAAGTGCCAAACAGAGTATGTCCGAT





GGTATCTGGGTAAGAAGAAAGCAAAAGCAAGGGACCTTCATGCCCTTCTG





ATTCCCCTCCACCAAACCCCACTTCCCCTCATAAGTTTGTTTAAACACTT





ATCTTCTGGATTAGAATGCCGGTTAAATTCCATATGCTCCAGGATCTTTG





ACTGAAAAAAAAAAAGAAGAAGAAGAAGGAGAGCAAGAAGGAAAGATTTG





TGAACTGGAAGAAAGCAACAAAGATTGAGAAGCCATGTACTCAAGTACCA





CCAAGGGATCTGCCATTGGGACCCTCCAGTGCTGGATTTGATGAGTTAAC





TGTGAAATACCACAAGCCTGAGAACTGAATTTTGGGACTTCTACCCAGAT





GGAAAAATAACAACTATTTTTGTTGTTGTTGTTTGTAAATGCCTCTTAAA





TTATATATTTATTTTATTCTATGTATGTTAATTTATTTAGTTTTTAACAA





TCTAACAATAATATTTCAAGTGCCTAGACTGTTACTTTGGCAATTTCCTG





GCCCTCCACTCCTCATCCCCACAATCTGGCTTAGTGCCACCCACCTTTGC





CACAAAGCTAGGATGGTTCTGTGACCCATCTGTAGTAATTTATTGTCTGT





CTACATTTCTGCAGATCTTCCGTGGTCAGAGTGCCACTGCGGGAGCTCTG





TATGGTCAGGATGTAGGGGTTAACTTGGTCAGAGCCACTCTATGAGTTGG





ACTTCAGTCTTGCCTAGGCGATTTTGTCTACCATTTGTGTTTTGAAAGCC





CAAGGTGCTGATGTCAAAGTGTAACAGATATCAGTGTCTCCCCGTGTCCT





CTCCCTGCCAAGTCTCAGAAGAGGTTGGGCTTCCATGCCTGTAGCTTTCC





TGGTCCCTCACCCCCATGGCCCCAGGCCCACAGCGTGGGAACTCACTTTC





CCTTGTGTCAAGACATTTCTCTAACTCCTGCCATTCTTCTGGTGCTACTC





CATGCAGGGGTCAGTGCAGCAGAGGACAGTCTGGAGAAGGTATTAGCAAA





GCAAAAGGCTGAGAAGGAACAGGGAACATTGGAGCTGACTGTTCTTGGTA





ACTGATTACCTGCCAATTGCTACCGAGAAGGTTGGAGGTGGGGAAGGCTT





TGTATAATCCCACCCACCTCACCAAAACGATGAAGTTATGCTGTCATGGT





CCTTTCTGGAAGTTTCTGGTGCCATTTCTGAACTGTTACAACTTGTATTT





CCAAACCTGGTTCATATTTATACTTTGCAATCCAAATAAAGATAACCCTT





ATTCCATAAAAAAAAAAAAAAAAAAAAAAAA






As used herein, the term “HLA-DRB1” refers to the gene encoding HLA class II histocompatibility antigen, DRB1 beta chain. The terms “HLA-DRB1” and “HLA class II histocompatibility antigen, DRB1 beta chain” include wild-type forms of the HLA-DRB1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type HLA-DRB1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type HLA-DRB1 nucleic acid sequence (e.g., SEQ ID NO: 35, ENA accession number X00699). SEQ ID NO: 35 is a wild-type gene sequence encoding HLA-DRB1 protein, and is shown below:









(SEQ ID NO: 35)


CTGCTCTGGCCCCTGGTCCTGTCCTGTTCTCCAGCATGGTGTGTCTGAGG





CTCCCTGGAGGCTCCTGCATGGCAGTTCTGACAGTGACACTGATGGTGCT





GAGCTCCCCACTGGCTTTGGCTGGGGACACCAGACCACGTTTCTTGGAGT





ACTCTACGTCTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTAC





CTGGACAGATACTTCCATAACCAGGAGGAGAACGTGCGCTTCGACAGCGA





CGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGATGCCGAGT





ACTGGAACAGCCAGAAGGACCTCCTGGAGCAGAAGCGGGGCCGGGTGGAC





AACTACTGCAGACACAACTACGGGGTTGTGGAGAGCTTCACAGTGCAGCG





GCGAGTCCATCCTAAGGTGACTGTGTATCCTTCAAAGACCCAGCCCCTGC





AGCACCATAACCTCCTGGTCTGTTCTGTGAGTGGTTTCTATCCAGGCAGC





ATTGAAGTCAGGTGGTTCCGGAATGGCCAGGAAGAGAAGACTGGGGTGGT





GTCCACAGGCCTGATCCACAATGGAGACTGGACCTTCCAGACCCTGGTGA





TGCTGGAAACAGTTCCTCGGAGTGGAGAGGTTTACACCTGCCAAGTGGAG





CACCCAAGCGTGACAAGCCCTCTCACAGTGGAATGGAGAGCACGGTCTGA





ATCTGCACAGAGCAAGATGCTGAGTGGAGTCGGGGGCTTTGTGCTGGGCC





TGCTCTTCCTTGGGGCCGGGCTGTTCATCTACTTCAGGAATCAGAAAGGA





CACTCTGGACTTCAGCCAAGAGGATTCCTGAGCTGAAGTGCAGATGACAC





ATTCAAAGAAGAACTTTCTGCCCCAGCTTTGCAGGATGAAAAGCTTTCCC





TCCTGGCTGTTATTCTTCCACAAGAGAGGGCTTTCTCAGGACCTGGTTGC





TACTGGTTCAGCAACTGCAGAAAATGTCCTCCCTTGTGGCTTCCTCAGCT





CCTGTTCTTGGCCTGAAGCCCCACAGCTTTGATGGCAGTGCCTCATCTTC





AACTTTTGTGCTCCCCTTTGCCTAAACCCTATGGCCTCCTGTGCATCTGT





ACTCACCCTGTACCA






As used herein, the term “HLA-DRB5” refers to the gene encoding HLA class II histocompatibility antigen, DR beta 5 chain. The terms “HLA-DRB5” and “HLA class II histocompatibility antigen, DR beta 5 chain” include wild-type forms of the HLA-DRB5 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type HLA-DRB5. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type HLA-DRB5 nucleic acid sequence (e.g., SEQ ID NO: 36, ENA accession number M20429). SEQ ID NO: 36 is a wild-type gene sequence encoding HLA-DRB5 protein, and is shown below:










(SEQ ID NO: 36)



CCAGCATGGTGTGTCTGAAGCTCCCTGGAGGTTCCTACATGGCAAAGCTGACAGTGACAC






TGATGGTGCTGAGCTCCCCACTGGCTTTGGCTGGGGACACCCGACCACGTTTCTTGCAGC





AGGATAAGTATGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGCACAGAG





ACATCTATAACCAAGAGGAGGACTTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGG





TGACGGAGCTGGGGCGGCCTGACGCTGAGTACTGGAACAGCCAGAAGGACTTCCTGGAAG





ACAGGCGCGCCGCGGTGGACACCTACTGCAGACACAACTACGGGGTTGGTGAGAGCTTCA





CAGTGCAGCGGCGAGTTGAGCCTAAGGTGACTGTGTATCCTGCAAGGACCCAGACCCTGC





AGCACCACAACCTCCTGGTCTGCTCTGTGAATGGTTTCTATCCAGGCAGCATTGAAGTCA





GGTGGTTCCGGAACAGCCAGGAAGAGAAGGCTGGGGTGGTGTCCACAGGCCTGATTCAGA





ATGGAGACTGGACCTTCCAGACCCTGGTGATGCTGGAAACAGTTCCTCGAAGTGGAGAGG





TTTACACCTGCCAAGTGGAGCACCCAAGCGTGACGAGCCCTCTCACAGTGGAATGGAGAG





CACAGTCTGAATCTGCACAGAGCAAGATGCTGAGTGGAGTCGGGGGCTTTGTGCTGGGCC





TGCTCTTCCTTGGGGCCGGGCTATTCATCTACTTCAAGAATCAGAAAGGGCACTCTGGAC





TTCACCCAACAGGACTCGTGAGCTGAAGTGCAGATGACCACATTCAAGGGGGAACCTTCT





GCCCCAGCTTTGCATGATGAAAAGCTTTCCTGCTTGGCTCTTATTCTTCCACAAGAGAGG





ACTTTCTCAGGCCCTGGTTGCTACCGGTTCAGCAACTCTGCAGAAAATGTCCATCCTTGT





GGCTTCCTCAGCTCCTGCCCCTTGGCCTGAAGTCCCAGCATTGATGGCAGTGCCTCATCT





TCAACTTTAGTGCTCCCCTTTACCTAACCCTACGGCCTCCCATGCATCTGTACTCCCCCT





GTGTGCCACAAATGCACTACGTTATTAAATTTTTCTGAAGCCCAGAGTTAAAAATCATCT





GTCCACCTGGCTCCAAAGACAAAAAATAAAAA









As used herein, the term “IFIT1” refers to the gene encoding Interferon-induced protein with tetratricopeptide repeats 1. The terms “IFIT1” and “Interferon-induced protein with tetratricopeptide repeats 1” include wild-type forms of the IFIT1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type IFIT1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type IFIT1 nucleic acid sequence (e.g., SEQ ID NO: 37, ENA accession number X03557). SEQ ID NO: 37 is a wild-type gene sequence encoding IFIT1 protein, and is shown below:










(SEQ ID NO: 37)



CCAGATCTCAGAGGAGCCTGGCTAAGCAAAACCCTGCAGAACGGCTGCCTAATTTACAGC






AACCATGAGTACAAATGGTGATGATCATCAGGTCAAGGATAGTCTGGAGCAATTGAGATG





TCACTTTACATGGGAGTTATCCATTGATGACGATGAAATGCCTGATTTAGAAAACAGAGT





CTTGGATCAGATTGAATTCCTAGACACCAAATACAGTGTGGGAATACACAACCTACTAGC





CTATGTGAAACACCTGAAAGGCCAGAATGAGGAAGCCCTGAAGAGCTTAAAAGAAGCTGA





AAACTTAATGCAGGAAGAACATGACAACCAAGCAAATGTGAGGAGTCTGGTGACCTGGGG





CAACTTTGCCTGGATGTATTACCACATGGGCAGACTGGCAGAAGCCCAGACTTACCTGGA





CAAGGTGGAGAACATTTGCAAGAAGCTTTCAAATCCCTTCCGCTATAGAATGGAGTGTCC





AGAAATAGACTGTGAGGAAGGATGGGCCTTGCTGAAGTGTGGAGGAAAGAATTATGAACG





GGCCAAGGCCTGCTTTGAAAAGGTGCTTGAAGTGGACCCTGAAAACCCTGAATCCAGCGC





TGGGTATGCGATCTCTGCCTATCGCCTGGATGGCTTTAAATTAGCCACAAAAAATCACAA





GCCATTTTCTTTGCTTCCCCTAAGGCAGGCTGTCCGCTTAAATCCAGACAATGGATATAT





TAAGGTTCTCCTTGCCCTGAAGCTTCAGGATGAAGGACAGGAAGCTGAAGGAGAAAAGTA





CATTGAAGAAGCTCTAGCCAACATGTCCTCACAGACCTATGTCTTTCGATATGCAGCCAA





GTTTTACCGAAGAAAAGGCTCTGTGGATAAAGCTCTTGAGTTATTAAAAAAGGCCTTGCA





GGAAACACCCACTTCTGTCTTACTGCATCACCAGATAGGGCTTTGCTACAAGGCACAAAT





GATCCAAATCAAGGAGGCTACAAAAGGGCAGCCTAGAGGGCAGAACAGAGAAAAGCTAGA





CAAAATGATAAGATCAGCCATATTTCATTTTGAATCTGCAGTGGAAAAAAAGCCCACATT





TGAGGTGGCTCATCTAGACCTGGCAAGAATGTATATAGAAGCAGGCAATCACAGAAAAGC





TGAAGAGAATTTTCAAAAATTGTTATGCATGAAACCAGTGGTAGAAGAAACAATGCAAGA





CATACATTTCTACTATGGTCGGTTTCAGGAATTTCAAAAGAAATCTGACGTCAATGCAAT





TATCCATTATTTAAAAGCTATAAAAATAGAACAGGCATCATTAACAAGGGATAAAAGTAT





CAATTCTTTGAAGAAATTGGTTTTAAGGAAACTTCGGAGAAAGGCATTAGATCTGGAAAG





CTTGAGCCTCCTTGGGTTCGTCTACAAATTGGAAGGAAATATGAATGAAGCCCTGGAGTA





CTATGAGCGGGCCCTGAGACTGGCTGCTGACTTTGAGAACTCTGTGAGACAAGGTCCTTA





GGCACCCAGATATCAGCCACTTTCACATTTCATTTCATTTTATGCTAACATTTACTAATC





ATCTTTTCTGCTTACTGTTTTCAGAAACATTATAATTCACTGTAATGATGTAATTCTTGA





ATAATAAATCTGACAAAATATT






As used herein, the term “IFIT3” refers to the gene encoding Interferon-induced protein with tetratricopeptide repeats 3. The terms “IFIT3” and “Interferon-induced protein with tetratricopeptide repeats 3” include wild-type forms of the IFIT3 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type IFIT3. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type IFIT3 nucleic acid sequence (e.g., SEQ ID NO: 38, ENA accession number AF026939). SEQ ID NO: 38 is a wild-type gene sequence encoding IFIT3 protein, and is shown below:










(SEQ ID NO: 38)



GTGGAAACCTCTTCAGCATTTGCTTGGAATCAGTAAGCTAAAAACAAAATCAACCGGGAC






CCCAGCTTTTCAGAACTGCAGGGAAACAGCCATCATGAGTGAGGTCACCAAGAATTCCCT





GGAGAAAATCCTCCCACAGCTGAAATGCCATTTCACCTGGAACTTATTCAAGGAAGACAG





TGTCTCAAGGGATCTAGAAGATAGAGTGTGTAACCAGATTGAATTTTTAAACACTGAGTT





CAAAGCTACAATGTACAACTTGTTGGCCTACATAAAACACCTAGATGGTAACAACGAGGC





AGCCCTGGAATGCTTACGGCAAGCTGAAGAGTTAATCCAGCAAGAACATGCTGACCAAGC





AGAAATCAGAAGTCTAGTCACTTGGGGAAACTACGCCTGGGTCTACTATCACTTGGGCAG





ACTCTCAGATGCTCAGATTTATGTAGATAAGGTGAAACAAACCTGCAAGAAATTTTCAAA





TCCATACAGTATTGAGTATTCTGAACTTGACTGTGAGGAAGGGTGGACACAACTGAAGTG





TGGAAGAAATGAAAGGGCGAAGGTGTGTTTTGAGAAGGCTCTGGAAGAAAAGCCCAACAA





CCCAGAATTCTCCTCTGGACTGGCAATTGCGATGTACCATCTGGATAATCACCCAGAGAA





ACAGTTCTCTACTGATGTTTTGAAGCAGGCCATTGAGCTGAGTCCTGATAACCAATACGT





CAAGGTTCTCTTGGGCCTGAAACTGCAGAAGATGAATAAAGAAGCTGAAGGAGAGCAGTT





TGTTGAAGAAGCCTTGGAAAAGTCTCCTTGCCAAACAGATGTCCTCCGCAGTGCAGCCAA





ATTTTACAGAAGAAAAGGTGACCTAGACAAAGCTATTGAACTGTTTCAACGGGTGTTGGA





ATCCACACCAAACAATGGCTACCTCTATCACCAGATTGGGTGCTGCTACAAGGCAAAAGT





AAGACAAATGCAGAATACAGGAGAATCTGAAGCTAGTGGAAATAAAGAGATGATTGAAGC





ACTAAAGCAATATGCTATGGACTATTCGAATAAAGCTCTTGAGAAGGGACTGAATCCTCT





GAATGCATACTCCGATCTCGCTGAGTTCCTGGAGACGGAATGTTATCAGACACCATTCAA





TAAGGAAGTCCCTGATGCTGAAAAGCAACAATCCCATCAGCGCTACTGCAACCTTCAGAA





ATATAATGGGAAGTCTGAAGACACTGCTGTGCAACATGGTTTAGAGGGTTTGTCCATAAG





CAAAAAATCAACTGACAAGGAAGAGATCAAAGACCAACCACAGAATGTATCCGAAAATCT





GCTTCCACAAAATGCACCAAATTATTGGTATCTTCAAGGATTAATTCATAAGCAGAATGG





AGATCTGCTGCAAGCAGCCAAATGTTATGAGAAGGAACTGGGCCGCCTGCTAAGGGATGC





CCCTTCAGGCATAGGCAGTATTTTCCTGTCAGCATCTGAGCTTGAGGATGGTAGTGAGGA





AATGGGCCAGGGCGCAGTCAGCTCCAGTCCCAGAGAGCTCCTCTCTAACTCAGAGCAACT





GAACTGAGACAGAGGAGGAAAACAGAGCATCAGAAGCCTGCAGTGGTGGTTGTGACGGGT





AGGAGGATAGGAAGACAGGGGGCCCCAACCTGGGATTGCTGAGCAGGGAAGCTTTGCATG





TTGCTCTAAGGTACATTTTTAAAGAGTTGTTTTTTGGCCGGGCGCAGTGGCTCATGCCTG





TAATCCCAGCACTTTGGGAGGCCGAGGTGGGCGGATCACGAGGTCTGGAGTTTGAGACCA





TCCTGGCTAACACAGTGAAATCCCGTCTCTACTAAAAATACAAAAAATTAGCCAGGCGTG





GTGGCTGGCACCTGTAGTCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATGGCGTGAACC





TGGAAGGAAGAGGTTGCAGTGAGCCAAGATTGCGCCCCTGCACTCCAGCCTGGGCAACAG





AGCAAGACTC






As used herein, the term “IFITM3” refers to the gene encoding Interferon Induced Transmembrane Protein. The terms “IFITM3” and “Interferon Induced Transmembrane Protein” include wild-type forms of the IFITM3 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type IFITM3. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type IFITM3 nucleic acid sequence (e.g., SEQ ID NO: 39, NCBI Reference Sequence: NM_021034.2). SEQ ID NO: 39 is a wild-type gene sequence encoding IFITM3 protein, and is shown below:










(SEQ ID NO: 39)



AGGAAAAGGAAACTGTTGAGAAACCGAAACTACTGGGGAAAGGGAGGGCTCACTGAGAACCATCCC






AGTAACCCGACCGCCGCTGGTCTTCGCTGGACACCATGAATCACACTGTCCAAACCTTCTTCTCTCC





TGTCAACAGTGGCCAGCCCCCCAACTATGAGATGCTCAAGGAGGAGCACGAGGTGGCTGTGCTGG





GGGCGCCCCACAACCCTGCTCCCCCGACGTCCACCGTGATCCACATCCGCAGCGAGACCTCCGTG





CCCGACCATGTCGTCTGGTCCCTGTTCAACACCCTCTTCATGAACCCCTGCTGCCTGGGCTTCATAG





CATTCGCCTACTCCGTGAAGTCTAGGGACAGGAAGATGGTTGGCGACGTGACCGGGGCCCAGGCC





TATGCCTCCACCGCCAAGTGCCTGAACATCTGGGCCCTGATTCTGGGCATCCTCATGACCATTCTGC





TCATCGTCATCCCAGTGCTGATCTTCCAGGCCTATGGATAGATCAGGAGGCATCACTGAGGCCAGG





AGCTCTGCCCATGACCTGTATCCCACGTACTCCAACTTCCATTCCTCGCCCTGCCCCCGGAGCCGA





GTCCTGTATCAGCCCTTTATCCTCACACGCTTTTCTACAATGGCATTCAATAAAGTGCACGTGTTTCT





GGTGCTAAAAAAAAAA






As used herein, the term “IFNAR1” refers to the gene encoding Interferon alpha/beta receptor 1. The terms “IFNAR1” and “Interferon alpha/beta receptor 1” include wild-type forms of the IFNAR1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type IFNAR1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type IFNAR1 nucleic acid sequence (e.g., SEQ ID NO: 40, ENA accession number J03171). SEQ ID NO: 40 is a wild-type gene sequence encoding IFNAR1 protein, and is shown below:










(SEQ ID NO: 40)



TTAGGACGGGGCGATGGCGGCTGAGAGGAGCTGCGCGTGCGCGAACATGTAACTGGTGGG






ATCTGCGGCGGCTCCCAGATGATGGTCGTCCTCCTGGGCGCGACGACCCTAGTGCTCGTC





GCCGTGGGCCCATGGGTGTTGTCCGCAGCCGCAGGTGGAAAAAATCTAAAATCTCCTCAA





AAAGTAGAGGTCGACATCATAGATGACAACTTTATCCTGAGGTGGAACAGGAGCGATGAG





TCTGTCGGGAATGTGACTTTTTCATTCGATTATCAAAAAACTGGGATGGATAATTGGATA





AAATTGTCTGGGTGTCAGAATATTACTAGTACCAAATGCAACTTTTCTTCACTCAAGCTG





AATGTTTATGAAGAAATTAAATTGCGTATAAGAGCAGAAAAAGAAAACACTTCTTCATGG





TATGAGGTTGACTCATTTACACCATTTCGCAAAGCTCAGATTGGTCCTCCAGAAGTACAT





TTAGAAGCTGAAGATAAGGCAATAGTGATACACATCTCTCCTGGAACAAAAGATAGTGTT





ATGTGGGCTTTGGATGGTTTAAGCTTTACATATAGCTTACTTATCTGGAAAAACTCTTCA





GGTGTAGAAGAAAGGATTGAAAATATTTATTCCAGACATAAAATTTATAAACTCTCACCA





GAGACTACTTATTGTCTAAAAGTTAAAGCAGCACTACTTACGTCATGGAAAATTGGTGTC





TATAGTCCAGTACATTGTATAAAGACCACAGTTGAAAATGAACTACCTCCACCAGAAAAT





ATAGAAGTCAGTGTCCAAAATCAGAACTATGTTCTTAAATGGGATTATACATATGCAAAC





ATGACCTTTCAAGTTCAGTGGCTCCACGCCTTTTTAAAAAGGAATCCTGGAAACCATTTG





TATAAATGGAAACAAATACCTGACTGTGAAAATGTCAAAACTACCCAGTGTGTCTTTCCT





CAAAACGTTTTCCAAAAAGGAATTTACCTTCTCCGCGTACAAGCATCTGATGGAAATAAC





ACATCTTTTTGGTCTGAAGAGATAAAGTTTGATACTGAAATACAAGCTTTCCTACTTCCT





CCAGTCTTTAACATTAGATCCCTTAGTGATTCATTCCATATCTATATCGGTGCTCCAAAA





CAGTCTGGAAACACGCCTGTGATCCAGGATTATCCACTGATTTATGAAATTATTTTTTGG





GAAAACACTTCAAATGCTGAGAGAAAAATTATCGAGAAAAAAACTGATGTTACAGTTCCT





AATTTGAAACCACTGACTGTATATTGTGTGAAAGCCAGAGCACACACCATGGATGAAAAG





CTGAATAAAAGCAGTGTTTTTAGTGACGCTGTATGTGAGAAAACAAAACCAGGAAATACC





TCTAAAATTTGGCTTATAGTTGGAATTTGTATTGCATTATTTGCTCTCCCGTTTGTCATT





TATGCTGCGAAAGTCTTCTTGAGATGCATCAATTATGTCTTCTTTCCATCACTTAAACCT





TCTTCCAGTATAGATGAGTATTTCTCTGAACAGCCATTGAAGAATCTTCTGCTTTCAACT





TCTGAGGAACAAATCGAAAAATGTTTCATAATTGAAAATATAAGCACAATTGCTACAGTA





GAAGAAACTAATCAAACTGATGAAGATCATAAAAAATACAGTTCCCAAACTAGCCAAGAT





TCAGGAAATTATTCTAATGAAGATGAAAGCGAAAGTAAAACAAGTGAAGAACTACAGCAG





GACTTTGTATGACCAGAAATGAACTGTGTCAAGTATAAGGTTTTTCAGCAGGAGTTACAC





TGGGAGCCTGAGGTCCTCACCTTCCTCTCAGTAACTACAGAGAGGACGTTTCCTGTTTAG





GGAAAGAAAAAACATCTTCAGATCATAGGTCCTAAAAATACGGGCAAGCTCTTAACTATT





TAAAAATGAAATTACAGGCCCGGGCACGGTGGCTCACACCTGTAATCCCAGCACTTTGGG





AGGCTGAGGCAGGCAGATCATGAGGTCAAGAGATCGAGACCAGCCTGGCCAACGTGGTGA





AACCCCATCTCTACTAAAAATACAAAAATTAGCCGGGTAGTAGGTAGGCGCGCGCCTGTT





GTCTTAGCTACTCAGGAGGCTGAGGCAGGAGAATCGCTTGAAAACAGGAGGTGGAGGTTG





CAGTGAGCCGAGATCACGCCACTGCACTCCAGCCTGGTGACAGCGTGAGACTCTTTAAAA





AAAGAAATTAAAAGAGTTGAGACAAACGTTTCCTACATTCTTTTCCATGTGTAAAATCAT





GAAAAAGCCTGTCACCGGACTTGCATTGGATGAGATGAGTCAGACCAAAACAGTGGCCAC





CCGTCTTCCTCCTGTGAGCCTAAGTGCAGCCGTGCTAGCTGCGCACCGTGGCTAAGGATG





ACGTCTGTGTTCCTGTCCATCACTGATGCTGCTGGCTACTGCATGTGCCACACCTGTCTG





TTCGCCATTCCTAACATTCTGTTTCATTCTTCCTCGGGAGATATTTCAAACATTTGGTCT





TTTCTTTTAACACTGAGGGTAGGCCCTTAGGAAATTTATTTAGGAAAGTCTGAACACGTT





ATCACTTGGTTTTCTGGAAAGTAGCTTACCCTAGAAAACAGCTGCAAATGCCAGAAAGAT





GATCCCTAAAAATGTTGAGGGACTTCTGTTCATTCATCCCGAGAACATTGGCTTCCACAT





CACAGTATCTACCCTTACATGGTTTAGGATTAAAGCCAGGCAATCTTTTACTATG






As used herein, the term “IFNAR2” refers to the gene encoding Interferon alpha/beta receptor 2. The terms “IFNAR2” and “Interferon alpha/beta receptor 2” include wild-type forms of the IFNAR2 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type IFNAR2. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type IFNAR2 nucleic acid sequence (e.g., SEQ ID NO: 41, ENA accession number X77722). SEQ ID NO: 41 is a wild-type gene sequence encoding IFNAR2 protein, and is shown below:










(SEQ ID NO: 41)



GCTTTTGTCCCCCGCCCGCCGCTTCTGTCCGAGAGGCCGCCCGCGAGGCGCATCCTGACC






GCGAGCGTCGGGTCCCAGAGCCGGGCGCGGCTGGGGCCCGAGGCTAGCATCTCTCGGGAG





CCGCAAGGCGAGAGCTGCAAAGTTTAATTAGACACTTCAGAATTTTGATCACCTAATGTT





GATTTCAGATGTAAAAGTCAAGAGAAGACTCTAAAAATAGCAAAGATGCTTTTGAGCCAG





AATGCCTTCATCGTCAGATCACTTAATTTGGTTCTCATGGTGTATATCAGCCTCGTGTTT





GGTATTTCATATGATTCGCCTGATTACACAGATGAATCTTGCACTTTCAAGATATCATTG





CGAAATTTCCGGTCCATCTTATCATGGGAATTAAAAAACCACTCCATTGTACCAACTCAC





TATACATTGCTGTATACAATCATGAGTAAACCAGAAGATTTGAAGGTGGTTAAGAACTGT





GCAAATACCACAAGATCATTTTGTGACCTCACAGATGAGTGGAGAAGCACACACGAGGCC





TATGTCACCGTCCTAGAAGGATTCAGCGGGAACACAACGTTGTTCAGTTGCTCACACAAT





TTCTGGCTGGCCATAGACATGTCTTTTGAACCACCAGAGTTTGAGATTGTTGGTTTTACC





AACCACATTAATGTGATGGTGAAATTTCCATCTATTGTTGAGGAAGAATTACAGTTTGAT





TTATCTCTCGTCATTGAAGAACAGTCAGAGGGAATTGTTAAGAAGCATAAACCCGAAATA





AAAGGAAACATGAGTGGAAATTTCACCTATATCATTGACAAGTTAATTCCAAACACGAAC





TACTGTGTATCTGTTTATTTAGAGCACAGTGATGAGCAAGCAGTAATAAAGTCTCCCTTA





AAATGCACCCTCCTTCCACCTGGCCAGGAATCAGAATCAGCAGAATCTGCCAAAATAGGA





GGAATAATTACTGTGTTTTTGATAGCATTGGTCTTGACAAGCACCATAGTGACACTGAAA





TGGATTGGTTATATATGCTTAAGAAATAGCCTCCCCAAAGTCTTGAGGCAAGGTCTCACT





AAGGGCTGGAATGCAGTGGCTATTCACAGGTGCAGTCATAATGCACTACAGTCTGAAACT





CCTGAGCTCAAACAGTCGTCCTGCCTAAGCTTCCCCAGTAGCTGGGATTACAAGCGTGCA





TCCCTGTGCCCCAGTGATTAAGTTTTATTATGTAGAAAATAAAGAGCAAACAGTTACAAA





AGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA






As used herein, the term “IGF1” refers to the gene encoding Insulin-like growth factor I. The terms “IGF1” and “Insulin-like growth factor I” include wild-type forms of the IGF1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type IGF1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type IGF1 nucleic acid sequence (e.g., SEQ ID NO: 42, ENA accession number X00173). SEQ ID NO: 42 is a wild-type gene sequence encoding IGF1 protein, and is shown below:










(SEQ ID NO: 42)



CTTCAGAAGCAATGGGAAAAATCAGCAGTCTTCCAACCCAATTATTTAAGTGCTGCTTTT






GTGATTTCTTGAAGGTGAAGATGCACACCATGTCCTCCTCGCATCTCTTCTACCTGGCGC





TGTGCCTGCTCACCTTCACCAGCTCTGCCACGGCTGGACCGGAGACGCTCTGCGGGGCTG





AGCTGGTGGATGCTCTTCAGTTCGTGTGTGGAGACAGGGGCTTTTATTTCAACAAGCCCA





CAGGGTATGGCTCCAGCAGTCGGAGGGCGCCTCAGACAGGTATCGTGGATGAGTGCTGCT





TCCGGAGCTGTGATCTAAGGAGGCTGGAGATGTATTGCGCACCCCTCAAGCCTGCCAAGT





CAGCTCGCTCTGTCCGTGCCCAGCGCCACACCGACATGCCCAAGACCCAGAAGGAAGTAC





ATTTGAAGAACGCAAGTAGAGGGAGTGCAGGAAACAAGAACTACAGGATGTAGGAAGACC





CTCCTGAGGAGTGAAGAGTGACATGCCACCGCAGGATCCTTTGCTCTGCACGAGTTACCT





GTTAAACTTTGGAACACCTACCAAAAAATAAGTTTGATAACATTTAAAAGATGGGCGTTT





CCCCCAATGAAATACACAAGTAAACATTCCAACATTGTCTTTAGGAGTGATTTGCACCTT





GCAAAAATGGTCCTGGAGTTGGTAGATTGCTGTTGATCTTTTATCAATAATGTTCTATAG





AAAAG






As used herein, the term “IL10RA” refers to the gene encoding Interleukin-10 receptor subunit alpha. The terms “IL10RA” and “Interleukin-10 receptor subunit alpha” include wild-type forms of the MORA gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type MORA. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type IL10RA nucleic acid sequence (e.g., SEQ ID NO: 43, ENA accession number U00672). SEQ ID NO: 43 is a wild-type gene sequence encoding MORA protein, and is shown below:










(SEQ ID NO: 43)



AAAGAGCTGGAGGCGCGCAGGCCGGCTCCGCTCCGGCCCCGGACGATGCGGCGCGCCCAG






GATGCTGCCGTGCCTCGTAGTGCTGCTGGCGGCGCTCCTCAGCCTCCGTCTTGGCTCAGA





CGCTCATGGGACAGAGCTGCCCAGCCCTCCGTCTGTGTGGTTTGAAGCAGAATTTTTCCA





CCACATCCTCCACTGGACACCCATCCCAAATCAGTCTGAAAGTACCTGCTATGAAGTGGC





GCTCCTGAGGTATGGAATAGAGTCCTGGAACTCCATCTCCAACTGTAGCCAGACCCTGTC





CTATGACCTTACCGCAGTGACCTTGGACCTGTACCACAGCAATGGCTACCGGGCCAGAGT





GCGGGCTGTGGACGGCAGCCGGCACTCCAACTGGACCGTCACCAACACCCGCTTCTCTGT





GGATGAAGTGACTCTGACAGTTGGCAGTGTGAACCTAGAGATCCACAATGGCTTCATCCT





CGGGAAGATTCAGCTACCCAGGCCCAAGATGGCCCCCGCGAATGACACATATGAAAGCAT





CTTCAGTCACTTCCGAGAGTATGAGATTGCCATTCGCAAGGTGCCGGGAAACTTCACGTT





CACACACAAGAAAGTAAAACATGAAAACTTCAGCCTCCTAACCTCTGGAGAAGTGGGAGA





GTTCTGTGTCCAGGTGAAACCATCTGTCGCTTCCCGAAGTAACAAGGGGATGTGGTCTAA





AGAGGAGTGCATCTCCCTCACCAGGCAGTATTTCACCGTGACCAACGTCATCATCTTCTT





TGCCTTTGTCCTGCTGCTCTCCGGAGCCCTCGCCTACTGCCTGGCCCTCCAGCTGTATGT





GCGGCGCCGAAAGAAGCTACCCAGTGTCCTGCTCTTCAAGAAGCCCAGCCCCTTCATCTT





CATCAGCCAGCGTCCCTCCCCAGAGACCCAAGACACCATCCACCCGCTTGATGAGGAGGC





CTTTTTGAAGGTGTCCCCAGAGCTGAAGAACTTGGACCTGCACGGCAGCACAGACAGTGG





CTTTGGCAGCACCAAGCCATCCCTGCAGACTGAAGAGCCCCAGTTCCTCCTCCCTGACCC





TCACCCCCAGGCTGACAGAACGCTGGGAAACGGGGAGCCCCCTGTGCTGGGGGACAGCTG





CAGTAGTGGCAGCAGCAATAGCACAGACAGCGGGATCTGCCTGCAGGAGCCCAGCCTGAG





CCCCAGCACAGGGCCCACCTGGGAGCAACAGGTGGGGAGCAACAGCAGGGGCCAGGATGA





CAGTGGCATTGACTTAGTTCAAAACTCTGAGGGCCGGGCTGGGGACACACAGGGTGGCTC





GGCCTTGGGCCACCACAGTCCCCCGGAGCCTGAGGTGCCTGGGGAAGAAGACCCAGCTGC





TGTGGCATTCCAGGGTTACCTGAGGCAGACCAGATGTGCTGAAGAGAAGGCAACCAAGAC





AGGCTGCCTGGAGGAAGAATCGCCCTTGACAGATGGCCTTGGCCCCAAATTCGGGAGATG





CCTGGTTGATGAGGCAGGCTTGCATCCACCAGCCCTGGCCAAGGGCTATTTGAAACAGGA





TCCTCTAGAAATGACTCTGGCTTCCTCAGGGGCCCCAACGGGACAGTGGAACCAGCCCAC





TGAGGAATGGTCACTCCTGGCCTTGAGCAGCTGCAGTGACCTGGGAATATCTGACTGGAG





CTTTGCCCATGACCTTGCCCCTCTAGGCTGTGTGGCAGCCCCAGGTGGTCTCCTGGGCAG





CTTTAACTCAGACCTGGTCACCCTGCCCCTCATCTCTAGCCTGCAGTCAAGTGAGTGACT





CGGGCTGAGAGGCTGCTTTTGATTTTAGCCATGCCTGCTCCTCTGCCTGGACCAGGAGGA





GGGCCCTGGGGCAGAAGTTAGGCACGAGGCAGTCTGGGCACTTTTCTGCAAGTCCACTGG





GGCTGGCCCAGCCAGGCTGCAGGGCTGGTCAGGGTGTCTGGGGCAGGAGGAGGCCAACTC





ACTGAACTAGTGCAGGGTATGTGGGTGGCACTGACCTGTTCTGTTGACTGGGGCCCTGCA





GACTCTGGCAGAGCTGAGAAGGGCAGGGACCTTCTCCCTCCTAGGAACTCTTTCCTGTAT





CATAAAGGATTATTTGCTCAGGGGAACCATGGGGCTTTCTGGAGTTGTGGTGAGGCCACC





AGGCTGAAGTCAGCTCAGACCCAGACCTCCCTGCTTAGGCCACTCGAGCATCAGAGCTTC





CAGCAGGAGGAAGGGCTGTAGGAATGGAAGCTTCAGGGCCTTGCTGCTGGGGTCATTTTT





AGGGGAAAAAGGAGGATATGATGGTCACATGGGGAACCTCCCCTCATCGGGCCTCTGGGG





CAGGAAGCTTGTCACTGGAAGATCTTAAGGTATATATTTTCTGGACACTCAAACACATCA





TAATGGATTCACTGAGGGGAGACAAAGGGAGCCGAGACCCTGGATGGGGCTTCCAGCTCA





GAACCCATCCCTCTGGTGGGTACCTCTGGCACCCATCTGCAAATATCTCCCTCTCTCCAA





CAAATGGAGTAGCATCCCCCTGGGGCACTTGCTGAGGCCAAGCCACTCACATCCTCACTT





TGCTGCCCCACCATCTTGCTGACAACTTCCAGAGAAGCCATGGTTTTTTGTATTGGTCAT





AACTCAGCCCTTTGGGCGGCCTCTGGGCTTGGGCACCAGCTCATGCCAGCCCCAGAGGGT





CAGGGTTGGAGGCCTGTGCTTGTGTTTGCTGCTAATGTCCAGCTACAGACCCAGAGGATA





AGCCACTGGGCACTGGGCTGGGGTCCCTGCCTTGTTGGTGTTCAGCTGTGTGATTTTGGA





CTAGCCACTTGTCAGAGGGCCTCAATCTCCCATCTGTGAAATAAGGACTCCACCTTTAGG





GGACCCTCCATGTTTGCTGGGTATTAGCCAAGCTGGTCCTGGGAGAATGCAGATACTGTC





CGTGGACTACCAAGCTGGCTTGTTTCTTATGCCAGAGGCTAACAGATCCAATGGGAGTCC





ATGGTGTCATGCCAAGACAGTATCAGACACAGCCCCAGAAGGGGGCATTATGGGCCCTGC





CTCCCCATAGGCCATTTGGACTCTGCCTTCAAACAAAGGCAGTTCAGTCCACAGGCATGG





AAGCTGTGAGGGGACAGGCCTGTGCGTGCCATCCAGAGTCATCTCAGCCCTGCCTTTCTC





TGGAGCATTCTGAAAACAGATATTCTGGCCCAGGGAATCCAGCCATGACCCCCACCCCTC





TGCCAAAGTACTCTTAGGTGCCAGTCTGGTAACTGAACTCCCTCTGGAGGCAGGCTTGAG





GGAGGATTCCTCAGGGTTCCCTTGAAAGCTTTATTTATTTATTTTGTTCATTTATTTATT





GGAGAGGCAGCATTGCACAGTGAAAGAATTCTGGATATCTCAGGAGCCCCGAAATTCTAG





CTCTGACTTTGCTGTTTCCAGTGGTATGACCTTGGAGAAGTCACTTATCCTCTTGGAGCC





TCAGTTTCCTCATCTGCAGAATAATGACTGACTTGTCTAATTCATAGGGATGTGAGGTTC





TGCTGAGGAAATGGGTATGAATGTGCCTTGAACACAAAGCTCTGTCAATAAGTGATACAT





GTTTTTTATTCCAATAAATTGTCAAGACCACA






As used herein, the term “ILIA” refers to the gene encoding Interleukin-1 alpha. The terms “ILIA” and “Interleukin-1 alpha” include wild-type forms of the ILIA gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type ILIA. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type ILIA nucleic acid sequence (e.g., SEQ ID NO: 44, ENA accession number X02531). SEQ ID NO: 44 is a wild-type gene sequence encoding ILIA protein, and is shown below:










(SEQ ID NO: 44)



ATGGCCAAAGTTCCAGACATGTTTGAAGACCTGAAGAACTGTTACAGTGAAAATGAAGAA






GACAGTTCCTCCATTGATCATCTGTCTCTGAATCAGAAATCCTTCTATCATGTAAGCTAT





GGCCCACTCCATGAAGGCTGCATGGATCAATCTGTGTCTCTGAGTATCTCTGAAACCTCT





AAAACATCCAAGCTTACCTTCAAGGAGAGCATGGTGGTAGTAGCAACCAACGGGAAGGTT





CTGAAGAAGAGACGGTTGAGTTTAAGCCAATCCATCACTGATGATGACCTGGAGGCCATC





GCCAATGACTCAGAGGAAGAAATCATCAAGCCTAGGTCAGCACCTTTTAGCTTCCTGAGC





AATGTGAAATACAACTTTATGAGGATCATCAAATACGAATTCATCCTGAATGACGCCCTC





AATCAAAGTATAATTCGAGCCAATGATCAGTACCTCACGGCTGCTGCATTACATAATCTG





GATGAAGCAGTGAAATTTGACATGGGTGCTTATAAGTCATCAAAGGATGATGCTAAAATT





ACCGTGATTCTAAGAATCTCAAAAACTCAATTGTATGTGACTGCCCAAGATGAAGACCAA





CCAGTGCTGCTGAAGGAGATGCCTGAGATACCCAAAACCATCACAGGTAGTGAGACCAAC





CTCCTCTTCTTCTGGGAAACTCACGGCACTAAGAACTATTTCACATCAGTTGCCCATCCA





AACTTGTTTATTGCCACAAAGCAAGACTACTGGGTGTGCTTGGCAGGGGGGCCACCCTCT





ATCACTGACTTTCAGATACTGGAAAACCAGGCGTAGGTCTGGAGTCTCACTTGTCTCACT





TGTGCAGTGTTGACAGTTCATATGTACCATGTACATGAAGAAGCTAAATCCTTTACTGTT





AGTCATTTGCTGAGCATGTACTGAGCCTTGTAATTCTAAATGAATGTTTACACTCTTTGT





AAGAGTGGAACCAACACTAACATATAATGTTGTTATTTAAAGAACACCCTATATTTTGCA





TAGTACCAATCATTTTAATTATTATTCTTCATAACAATTTTAGGAGGACCAGAGCTACTG





ACTATGGCTACCAAAAAGACTCTACCCATATTACAGATGGGCAAATTAAGGCATAAGAAA





ACTAAGAAATATGCACAATAGCAGTTGAAACAAGAAGCCACAGACCTAGGATTTCATGAT





TTCATTTCAACTGTTTGCCTTCTGCTTTTAAGTTGCTGATGAACTCTTAATCAAATAGCA





TAAGTTTCTGGGACCTCAGTTTTATCATTTTCAAAATGGAGGGAATAATACCTAAGCCTT





CCTGCCGCAACAGTTTTTTATGCTAATCAGGGAGGTCATTTTGGTAAAATACTTCTCGAA





GCCGAGCCTCAAGATGAAGGCAAAGCACGAAATGTTATTTTTTAATTATTATTTATATAT





GTATTTATAAATATATTTAAGATAATTATAATATACTATATTTATGGGAACCCCTTCATC





CTCTGAGTGTGACCAGGCATCCTCCACAATAGCAGACAGTGTTTTCTGGGATAAGTAAGT





TTGATTTCATTAATACAGGGCATTTTGGTCCAAGTTGTGCTTATCCCATAGCCAGGAAAC





TCTGCATTCTAGTACTTGGGAGACCTGTAATCATATAATAAATGTACATTAATTACCTTG





AGCCAGTAATTGGTCCGATCTTTGACTCTTTTGCCATTAAACTTACCTGGGCATTCTTGT





TTCATTCAATTCCACCTGCAATCAAGTCCTACAAGCTAAAATTAGATGAACTCAACTTTG





ACAACCATAGACCACTGTTATCAAAACTTTCTTTTCTGGAATGTAATCAATGTTTCTTCT





AGGTTCTAAAAATTGTGATCAGACCATAATGTTACATTATTATCAACAATAGTGATTGAT





AGAGTGTTATCAGTCATAACTAAATAAAGCTTGCAAGTGAGGGAGTCATTTCATTGGCGT





TTGAGTCAGCAAAGAAGTCAAG






As used herein, the term “IL1B” refers to the gene encoding Interleukin-1 beta. The terms “IL1B” and “Interleukin-1 beta” include wild-type forms of the IL1B gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type IL1B. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type IL1B nucleic acid sequence (e.g., SEQ ID NO: 45, ENA accession number X02770). SEQ ID NO: 45 is a wild-type gene sequence encoding IL1B protein, and is shown below:










(SEQ ID NO: 45)



ACAAACCTTTTCGAGGCAAAAGGCAAAAAAGGCTGCTCTGGGATTCTCTTCAGCCAATCT






TCAATGCTCAAGTGTCTGAAGCAGCCATGGCAGAAGTACCTAAGCTCGCCAGTGAAATGA





TGGCTTATTACAGTGGCAATGAGGATGACTTGTTCTTTGAAGCTGATGGCCCTAAACAGA





TGAAGTGCTCCTTCCAGGACCTGGACCTCTGCCCTCTGGATGGCGGCATCCAGCTACGAA





TCTCCGACCACCACTACAGCAAGGGCTTCAGGCAGGCCGCGTCAGTTGTTGTGGCCATGG





ACAAGCTGAGGAAGATGCTGGTTCCCTGCCCACAGACCTTCCAGGAGAATGACCTGAGCA





CCTTCTTTCCCTTCATCTTTGAAGAAGAACCTATCTTCTTCGACACATGGGATAACGAGG





CTTATGTGCACGATGCACCTGTACGATCACTGAACTGCACGCTCCGGGACTCACAGCAAA





AAAGCTTGGTGATGTCTGGTCCATATGAACTGAAAGCTCTCCACCTCCAGGGACAGGATA





TGGAGCAACAAGTGGTGTTCTCCATGTCCTTTGTACAAGGAGAAGAAAGTAATGACAAAA





TACCTGTGGCCTTGGGCCTCAAGGAAAAGAATCTGTACCTGTCCTGCGTGTTGAAAGATG





ATAAGCCCACTCTACAGCTGGAGAGTGTAGATCCCAAAAATTACCCAAAGAAGAAGATGG





AAAAGCGATTTGTCTTCAACAAGATAGAAATCAATAACAAGCTGGAATTTGAGTCTGCCC





AGTTCCCCAACTGGTACATCAGCACCTCTCAAGCAGAAAACATGCCCGTCTTCCTGGGAG





GGACCAAAGGCGGCCAGGATATAACTGACTTCACCATGCAATTTGTGTCTTCCTAAAGAG





AGCTGTACCCAGAGAGTCCTGTGCTGAATGTGGACTCAATCCCTAGGGCTGGCAGAAAGG





GAACAGAAAGGTTTTTGAGTACGGCTATAGCCTGGACTTTCCTGTTGTCTACACCAATGC





CCAACTGCCTGCCTTAGGGTAGTGCTAAGAGGATCTCCTGTCCATCAGCCAGGACAGTCA





GCTCTCTCCTTTCAGGGCCAATCCCAGCCCTTTTGTTGAGCCAGGCCTCTCTCACCTCTC





CTACTCACTTAAAGCCCGCCTGACAGAAACCAGGCCACATTTTGGTTCTAAGAAACCCTC





CTCTGTCATTCGCTCCCACATTCTGATGAGCAACCGCTTCCCTATTTATTTATTTATTTG





TTTGTTTGTTTTGATTCATTGGTCTAATTTATTCAAAGGGGGCAAGAAGTAGCAGTGTCT





GTAAAAGAGCCTAGTTTTTAATAGCTATGGAATCAATTCAATTTGGACTGGTGTGCTCTC





TTTAAATCAAGTCCTTTAATTAAGACTGAAAATATATAAGCTCAGATTATTTAAATGGGA





ATATTTATAAATGAGCAAATATCATACTGTTCAATGGTTCTCAAATAAACTTCACT






As used herein, the term “IL1RAP” refers to the gene encoding Interleukin-1 receptor accessory protein. The terms “IL1 RAP” and “Interleukin-1 receptor accessory protein” include wild-type forms of the IL1 RAP gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type IL1 RAP. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type IL1RAP nucleic acid sequence (e.g., SEQ ID NO: 46, ENA accession number AF029213). SEQ ID NO: 46 is a wild-type gene sequence encoding IL1 RAP protein, and is shown below:










(SEQ ID NO: 46)



TCTCAAAGGATGACACTTCTGTGGTGTGTAGTGAGTCTCTACTTTTATGGAATCCTGCAA






AGTGATGCCTCAGAACGCTGCGATGACTGGGGACTAGACACCATGAGGCAAATCCAAGTG





TTTGAAGATGAGCCAGCTCGCATCAAGTGCCCACTCTTTGAACACTTCTTGAAATTCAAC





TACAGCACAGCCCATTCAGCTGGCCTTACTCTGATCTGGTATTGGACTAGGCAGGACCGG





GACCTTGAGGAGCCAATTAACTTCCGCCTCCCCGAGAACCGCATTAGTAAGGAGAAAGAT





GTGCTGTGGTTCCGGCCCACTCTCCTCAATGACACTGGCAACTATACCTGCATGTTAAGG





AACACTACATATTGCAGCAAAGTTGCATTTCCCTTGGAAGTTGTTCAAAAAGACAGCTGT





TTCAATTCCCCCATGAAACTCCCAGTGCATAAACTGTATATAGAATATGGCATTCAGAGG





ATCACTTGTCCAAATGTAGATGGATATTTTCCTTCCAGTGTCAAACCGACTATCACTTGG





TATATGGGCTGTTATAAAATACAGAATTTTAATAATGTAATACCCGAAGGTATGAACTTG





AGTTTCCTCATTGCCTTAATTTCAAATAATGGAAATTACACATGTGTTGTTACATATCCA





GAAAATGGACGTACGTTTCATCTCACCAGGACTCTGACTGTAAAGGTAGTAGGCTCTCCA





AAAAATGCAGTGCCCCCTGTGATCCATTCACCTAATGATCATGTGGTCTATGAGAAAGAA





CCAGGAGAGGAGCTACTCATTCCCTGTACGGTCTATTTTAGTTTTCTGATGGATTCTCGC





AATGAGGTTTGGTGGACCATTGATGGAAAAAAACCTGATGACATCACTATTGATGTCACC





ATTAACGAAAGTATAAGTCATAGTAGAACAGAAGATGAAACAAGAACTCAGATTTTGAGC





ATCAAGAAAGTTACCTCTGAGGATCTCAAGCGCAGCTATGTCTGTCATGCTAGAAGTGCC





AAAGGCGAAGTTGCCAAAGCAGCCAAGGTGAAGCAGAAAGTGCCAGCTCCAAGATACACA





GTGGAACTGGCTTGTGGTTTTGGAGCCACAGTCCTGCTAGTGGTGATTCTCATTGTTGTT





TACCATGTTTACTGGCTAGAGATGGTCCTATTTTACCGGGCTCATTTTGGAACAGATGAA





ACCATTTTAGATGGAAAAGAGTATGATATTTATGTATCCTATGCAAGGAATGCGGAAGAA





GAAGAATTTGTATTACTGACCCTCCGTGGAGTTTTGGAGAATGAATTTGGATACAAGCTG





TGCATCTTTGACCGAGACAGTCTGCCTGGGGGAATTGTCACAGATGAGACTTTGAGCTTC





ATTCAGAAAAGCAGACGCCTCCTGGTTGTTCTAAGCCCCAACTACGTGCTCCAGGGAACC





CAAGCCCTCCTGGAGCTCAAGGCTGGCCTAGAAAATATGGCCTCTCGGGGCAACATCAAC





GTCATTTTAGTACAGTACAAAGCTGTGAAGGAAACGAAGGTGAAAGAGCTGAAGAGGGCT





AAGACGGTGCTCACGGTCATTAAATGGAAAGGGGAAAAATCCAAGTATCCACAGGGCAGG





TTCTGGAAGCAGCTGCAGGTGGCCATGCCAGTGAAGAAAAGTCCCAGGCGGTCTAGCAGT





GATGAGCAGGGCCTCTCGTATTCATCTTTGAAAAATGTATGAAAGGAATAATGAAAAGGA






As used herein, the term “INPP5D” refers to the gene encoding Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1. The terms “INPP5D” and “Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1” include wild-type forms of the INPP5D gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type INPP5D. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type INPP5D nucleic acid sequence (e.g., SEQ ID NO: 47, ENA accession number X98429). SEQ ID NO: 47 is a wild-type gene sequence encoding INPP5D protein, and is shown below:










(SEQ ID NO: 47)



GTTGCTGTCGCCGTTGCTGTCGGCCGAGGCCACCAAGAGGCAACGGGGGGCAGGTTGCAG






TGGAGGGGCCTCCGCTCCCCTCGGTGGTGTGTGGGTCCTGGGGGTGCCTGCCGGCCCAGC





CGAGGAGGCCCACGCCCACCATGGTCCCCTGCTGGAACCATGGCAACATCACCCGCTCCA





AGGCGGAGGAGCTGCTTTCCAGGACAGGCAAGGACGGGAGCTTCCTCGTGCGTGCCAGCG





AGTCCATCTCCCGGGCATACGCGCTCTGCGTGCTGTATCGGAATTGCGTTTACACTTACA





GAATTCTGCCCAATGAAGATGATAAATTCACTGTTCAGGCATCCGAAGGCGTCTCCATGA





GGTTCTTCACCAAGCTGGACCAGCTCATCGAGTTTTACAAGAAGGAAAACATGGGGCTGG





TGACCCATCTGCAATACCCTGTGCCGCTGGAGGAAGAGGACACAGGCGACGACCCTGAGG





AGGACACAGAAAGTGTCGTGTCTCCACCCGAGCTGCCCCCAAGAAACATCCCGCTGACTG





CCAGCTCCTGTGAGGCCAAGGAGGTTCCTTTTTCAAACGAGAATCCCCGAGCGACCGAGA





CCAGCCGGCCGAGCCTCTCCGAGACATTGTTCCAGCGACTGCAAAGCATGGACACCAGTG





GGCTTCCAGAAGAGCATCTTAAGGCCATCCAAGATTATTTAAGCACTCAGCTCGCCCAGG





ACTCTGAATTTGTGAAGACAGGGTCCAGCAGTCTTCCTCACCTGAAGAAACTGACCACAC





TGCTCTGCAAGGAGCTCTATGGAGAAGTCATCCGGACCCTCCCATCCCTGGAGTCTCTGC





AGAGGTTATTTGACCAGCAGCTCTCCCCGGGCCTCCGTCCACGTCCTCAGGTTCCTGGTG





AGGCCAATCCCATCAACATGGTGTCCAAGCTCAGCCAACTGACAAGCCTGTTGTCGTCCA





TTGAAGACAAGGTCAAGGCCTTGCTGCACGAGGGTCCTGAGTCTCCGCACCGGCCCTCCC





TTATCCCTCCAGTCACCTTTGAGGTGAAGGCAGAGTCTCTGGGGATTCCTCAGAAAATGC





AGCTCAAAGTCGACGTTGAGTCTGGGAAACTGATCATTAAGAAGTCCAAGGATGGTTCTG





AGGACAAGTTCTACAGCCACAAGAAAATCCTGCAGCTGATTAAGTCACAGAAATTTCTGA





ATAAGTTGGTGATCTTGGTGGAAACGGAGAAGGAGAAGATCCTGCGGAAGGAATATGTTT





TTGCTGACTCCAAAAAGAGAGAAGGCTTCTGCCAGCTCCTGCAGCAGATGAAGAACAAGC





ACTCAGAGCAGCCGGAGCCCGACATGATCACCATCTTCATCGGCACCTGGAACATGGGTA





ACGCCCCCCCTCCCAAGAAGATCACGTCCTGGTTTCTCTCCAAGGGGCAGGGAAAGACGC





GGGACGACTCTGCGGACTACATCCCCCATGACATTTACGTGATCGGCACCCAAGAGGACC





CCCTGAGTGAGAAGGAGTGGCTGGAGATCCTCAAACACTCCCTGCAAGAAATCACCAGTG





TGACTTTTAAAACAGTCGCCATCCACACGCTCTGGAACATCCGCATCGTGGTGCTGGCCA





AGCCTGAGCACGAGAACCGGATCAGCCACATCTGTACTGACAACGTGAAGACAGGCATTG





CAAACACACTGGGGAACAAGGGAGCCGTGGGGGTGTCGTTCATGTTCAATGGAACCTCCT





TAGGGTTCGTCAACAGCCACTTGACTTCAGGAAGTGAAAAGAAACTCAGGCGAAACCAAA





ACTATATGAACATTCTCCGGTTCCTGGCCCTGGGCGACAAGAAGCTGAGTCCCTTTAACA





TCACTCACCGCTTCACGCACCTCTTCTGGTTTGGGGATOTTAACTACCGTGTGGATCTGC





CTACCTGGGAGGCAGAAACCATCATCCAGAAAATCAAGCAGCAGCAGTACGCAGACCTCC





TGTCCCACGACCAGCTGCTCACAGAGAGGAGGGAGCAGAAGGTCTTCCTACACTTCGAGG





AGGAAGAAATCACGTTTGCCCCAACCTACCGTTTTGAGAGACTGACTCGGGACAAATACG





CCTACACCAAGCAGAAAGCGACAGGGATGAAGTACAACTTGCCTTCCTGGTGTGACCGAG





TCCTCTGGAAGTCTTATCCCCTGGTGCACGTGGTGTGTCAGTCTTATGGCAGTACCAGCG





ACATCATGACGAGTGACCACAGCCCTGTCTTTGCCACATTTGAGGCAGGAGTCACTTCCC





AGTTTGTCTCCAAGAACGGTCCCGGGACTGTTGACAGCCAAGGACAGATTGAGTTTCTCA





GGTGCTATGCCACATTGAAGACCAAGTCCCAGACCAAATTCTACCTGGAGTTCCACTCGA





GCTGCTTGGAGAGTTTTGTCAAGAGTCAGGAAGGAGAAAATGAAGAAGGAAGTGAGGGGG





AGCTGGTGGTGAAGTTTGGTGAGACTCTTCCAAAGCTGAAGCCCATTATCTCTGACCCTG





AGTACCTGCTAGACCAGCACATCCTCATCAGCATCAAGTCCTCTGACAGCGACGAATCCT





ATGGCGAGGGCTGCATTGCCCTTCGGTTAGAGGCCACAGAAACGCAGCTGCCCATCTACA





CGCCTCTCACCCACCATGGGGAGTTGACAGGCCACTTCCAGGGGGAGATCAAGCTGCAGA





CCTCTCAGGGCAAGACGAGGGAGAAGCTCTATGACTTTGTGAAGACGGAGCGTGATGAAT





CCAGTGGGCCAAAGACCCTGAAGAGCCTCACCAGCCACGACCCCATGAAGCAGTGGGAAG





TCACTAGCAGGGCCCCTCCGTGCAGTGGCTCCAGCATCACTGAAATCATCAACCCCAACT





ACATGGGAGTGGGGCCCTTTGGGCCACCAATGCCCCTGCACGTGAAGCAGACCTTGTCCC





CTGACCAGCAGCCCACAGCCTGGAGCTACGACCAGCCGCCCAAGGACTCCCCGCTGGGGC





CCTGCAGGGGAGAAAGTCCTCCGACACCTCCCGGCCAGCCGCCCATATCACCCAAGAAGT





TTTTACCCTCAACAGCAAACCGGGGTCTCCCTCCCAGGACACAGGAGTCAAGGCCCAGTG





ACCTGGGGAAGAACGCAGGGGACACGCTGCCTCAGGAGGACCTGCCGCTGACGAAGCCCG





AGATGTTTGAGAACCCCCTGTATGGGTCCCTGAGTTCCTTCCCTAAGCCTGCTCCCAGGA





AGGACCAGGAATCCCCCAAAATGCCGCGGAAGGAACCCCCGCCCTGCCCGGAACCCGGCA





TCTTGTCGCCCAGCATCGTGCTCACCAAAGCCCAGGAGGCTGATCGCGGCGAGGGGCCCG





GCAAGCAGGTGCCCGCGCCCCGGCTGCGCTCCTTCACGTGCTCATCCTCTGCCGAGGGCA





GGGCGGCCGGGGGGACAAGAGCCAAGGGAAGCCCAAGACCCCGGTCAGCTCCCAGGCCC





CGGTGCCGGCCAAGAGGCCCATCAAGCCTTCCAGATCGGAAATCAACCAGCAGACCCCGC





CCACCCCGACGCCGCGGCCGCCGCTGCCAGTCAAGAGCCCGGCGGTGCTGCACCTCCAGC





ACTCCAAGGGCCGCGACTACCGCGACAACACCGAGCTCCCGTATCACGGCAAGCACCGGC





CGGAGGAGGGGCCACCAGGGCCTCTAGGCAGGACTGCCATGCAGTGAAGCCCTCAGTGAG





CTGCCACTGAGTCGGGAGCCCAGAGGAACGGCGTGAAGCCACTGGACCCTCTCCCGGGAC





CTCCTGCTGGCTCCTCCTGCCCAGCTTCCTATGCAAGGCTTTGTGTTTTCAGGAAAGGGC





CTAGCTTCTGTGTGGCCCACAGAGTTCACTGCCTGTGAGACTTAGCACCAAGTGCTGAGG





CTGGAAGAAAAACGCACACCAGACGGGCAACAAACAGTCTGGGTCCCCAGCTCGCTCTTG





GTACTTGGGACCCCAGTGCCTTGTTGAGGGCGCCATTCTGAAGAAAGGAACTGCAGCGCC





GATTTGAGGGTGGAGATATAGATAATAATAATATTAATAATAATAATGGCCACATGGATC





GAACACTCATGGTGTGCCAAGTGCTGTGCTAAGTGCTTTACGAACATTCGTCATATCAGG





ATGACCTCGAGAGCTGAGGCTCTAGCACCTAAAACCACGTGCCCAAACCCACCAGTTTAA





AACGGTGTGTGTTCGGAGGGGTGAAAGCATTAAGAAGCCCAGTGCCCTCCTGGAGTGAGA





CAAGGGCTCGGCCTTAAGGAGCTGAAGAGTCTGGGTAGCTTGTTTAGGGTACAAGAAGCC





TGTTCTGTCCAGCTTCAGTGACACAAGCTGCTTTAGCTAAAGTCCCGCGGGTTCCGGCAT





GGCTAGGCTGAGAGCAGGGATCTACCTGGCTTCTCAGTTCTTTGGTTGGAAGGAGCAGGA





AATCAGCTCCTATTCTCCAGTGGAGAGATCTGGCCTCAGCTTGGGCTAGAGATGCCAAGG





CCTGTGCCAGGTTCCCTGTGCCCTCCTCGAGGTGGGCAGCCATCACCAGCCACAGTTAAG





CCAAGCCCCCCAACATGTATTCCATCGTGCTGGTAGAAGAGTCTTTGCTGTTGCTCCCGA





AAGCCGTGCTCTCCAGCCTGGCTGCCAGGGAGGGTGGGCCTCTTGGTTCCAGGCTCTTGA





AATAGTGCAGCCTTTTCTTCCTATCTCTGTGGCTTTCAGCTCTGCTTCCTTGGTTATTAG





GAGAATAGATGGGTGATGTCTTTCCTTATGTTGCTTTTTCAACATAGCAGAATTAATGTA





GGGAGCTAAATCCAGTGGTGTGTGTGAATGCAGAAGGGAATGCACCCCACATTCCCATGA





TGGAAGTCTGCGTAACCAATAAATTGTGCCTTTCTCACTCAAAACC






As used herein, the term “ITGAM” refers to the gene encoding Integrin Subunit Alpha M. The terms “ITGAM” and “Integrin Subunit Alpha M” include wild-type forms of the ITGAM gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type ITGAM. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type ITGAM nucleic acid sequence (e.g., SEQ ID NO: 48, NCBI Reference Sequence: NM_000632.3). SEQ ID NO: 48 is a wild-type gene sequence encoding ITGAM protein, and is shown below:










(SEQ ID NO: 48)



TTTTCTGCCCTTCTTTGCTTTGGTGGCTTCCTTGTGGTTCCTCAGTGGTGCCTGCAACCCCTGGTTCA






CCTCCTTCCAGGTTCTGGCTCCTTCCAGCCATGGCTCTCAGAGTCCTTCTGTTAACAGCCTTGACCT





TATGTCATGGGTTCAACTTGGACACTGAAAACGCAATGACCTTCCAAGAGAACGCAAGGGGCTTCGG





GCAGAGCGTGGTCCAGCTTCAGGGATCCAGGGTGGTGGTTGGAGCCCCCCAGGAGATAGTGGCTG





CCAACCAAAGGGGCAGCCTCTACCAGTGCGACTACAGCACAGGCTCATGCGAGCCCATCCGCCTGC





AGGTCCCCGTGGAGGCCGTGAACATGTCCCTGGGCCTGTCCCTGGCAGCCACCACCAGCCCCCCT





CAGCTGCTGGCCTGTGGTCCCACCGTGCACCAGACTTGCAGTGAGAACACGTATGTGAAAGGGCTC





TGCTTCCTGTTTGGATCCAACCTACGGCAGCAGCCCCAGAAGTTCCCAGAGGCCCTCCGAGGGTGT





CCTCAAGAGGATAGTGACATTGCCTTCTTGATTGATGGCTCTGGTAGCATCATCCCACATGACTTTCG





GCGGATGAAGGAGTTTGTCTCAACTGTGATGGAGCAATTAAAAAAGTCCAAAACCTTGTTCTCTTTGA





TGCAGTACTCTGAAGAATTCCGGATTCACTTTACCTTCAAAGAGTTCCAGAACAACCCTAACCCAAGA





TCACTGGTGAAGCCAATAACGCAGCTGCTTGGGCGGACACACACGGCCACGGGCATCCGCAAAGT





GGTACGAGAGCTGTTTAACATCACCAACGGAGCCCGAAAGAATGCCTTTAAGATCCTAGTTGTCATC





ACGGATGGAGAAAAGTTTGGCGATCCCTTGGGATATGAGGATGTCATCCCTGAGGCAGACAGAGAG





GGAGTCATTCGCTACGTCATTGGGGTGGGAGATGCCTTCCGCAGTGAGAAATCCCGCCAAGAGCTT





AATACCATCGCATCCAAGCCGCCTCGTGATCACGTGTTCCAGGTGAATAACTTTGAGGCTCTGAAGA





CCATTCAGAACCAGCTTCGGGAGAAGATCTTTGCGATCGAGGGTACTCAGACAGGAAGTAGCAGCT





CCTTTGAGCATGAGATGTCTCAGGAAGGCTTCAGCGCTGCCATCACCTCTAATGGCCCCTTGCTGAG





CACTGTGGGGAGCTATGACTGGGCTGGTGGAGTCTTTCTATATACATCAAAGGAGAAAAGCACCTTC





ATCAACATGACCAGAGTGGATTCAGACATGAATGATGCTTACTTGGGTTATGCTGCCGCCATCATCTT





ACGGAACCGGGTGCAAAGCCTGGTTCTGGGGGCACCTCGATATCAGCACATCGGCCTGGTAGCGAT





GTTCAGGCAGAACACTGGCATGTGGGAGTCCAACGCTAATGTCAAGGGCACCCAGATCGGCGCCTA





CTTCGGGGCCTCCCTCTGCTCCGTGGACGTGGACAGCAACGGCAGCACCGACCTGGTCCTCATCG





GGGCCCCCCATTACTACGAGCAGACCCGAGGGGGCCAGGTGTCCGTGTGCCCCTTGCCCAGGGGG





AGGGCTCGGTGGCAGTGTGATGCTGTTCTCTACGGGGAGCAGGGCCAACCCTGGGGCCGCTTTGG





GGCAGCCCTAACAGTGCTGGGGGACGTAAATGGGGACAAGCTGACGGACGTGGCCATTGGGGCCC





CAGGAGAGGAGGACAACCGGGGTGCTGTTTACCTGTTTCACGGAACCTCAGGATCTGGCATCAGCC





CCTCCCATAGCCAGCGGATAGCAGGCTCCAAGCTCTCTCCCAGGCTCCAGTATTTTGGTCAGTCACT





GAGTGGGGGCCAGGACCTCACAATGGATGGACTGGTAGACCTGACTGTAGGAGCCCAGGGGCACG





TGCTGCTGCTCAGGTCCCAGCCAGTACTGAGAGTCAAGGCAATCATGGAGTTCAATCCCAGGGAAG





TGGCAAGGAATGTATTTGAGTGTAATGATCAGGTGGTGAAAGGCAAGGAAGCCGGAGAGGTCAGAG





TCTGCCTCCATGTCCAGAAGAGCACACGGGATCGGCTAAGAGAAGGACAGATCCAGAGTGTTGTGA





CTTATGACCTGGCTCTGGACTCCGGCCGCCCACATTCCCGCGCCGTCTTCAATGAGACAAAGAACA





GCACACGCAGACAGACACAGGTCTTGGGGCTGACCCAGACTTGTGAGACCCTGAAACTACAGTTGC





CGAATTGCATCGAGGACCCAGTGAGCCCCATTGTGCTGCGCCTGAACTTCTCTCTGGTGGGAACGC





CATTGTCTGCTTTCGGGAACCTCCGGCCAGTGCTGGCGGAGGATGCTCAGAGACTCTTCACAGCCT





TGTTTCCCTTTGAGAAGAATTGTGGCAATGACAACATCTGCCAGGATGACCTCAGCATCACCTTCAGT





TTCATGAGCCTGGACTGCCTCGTGGTGGGTGGGCCCCGGGAGTTCAACGTGACAGTGACTGTGAGA





AATGATGGTGAGGACTCCTACAGGACACAGGTCACCTTCTTCTTCCCGCTTGACCTGTCCTACCGGA





AGGTGTCCACGCTCCAGAACCAGCGCTCACAGCGATCCTGGCGCCTGGCCTGTGAGTCTGCCTCCT





CCACCGAAGTGTCTGGGGCCTTGAAGAGCACCAGCTGCAGCATAAACCACCCCATCTTCCCGGAAA





ACTCAGAGGTCACCTTTAATATCACGTTTGATGTAGACTCTAAGGCTTCCCTTGGAAACAAACTGCTC





CTCAAGGCCAATGTGACCAGTGAGAACAACATGCCCAGAACCAACAAAACCGAATTCCAACTGGAGC





TGCCGGTGAAATATGCTGTCTACATGGTGGTCACCAGCCATGGGGTCTCCACTAAATATCTCAACTT





CACGGCCTCAGAGAATACCAGTCGGGTCATGCAGCATCAATATCAGGTCAGCAACCTGGGGCAGAG





GAGCCTCCCCATCAGCCTGGTGTTCTTGGTGCCCGTCCGGCTGAACCAGACTGTCATATGGGACCG





CCCCCAGGTCACCTTCTCCGAGAACCTCTCGAGTACGTGCCACACCAAGGAGCGCTTGCCCTCTCA





CTCCGACTTTCTGGCTGAGCTTCGGAAGGCCCCCGTGGTGAACTGCTCCATCGCTGTCTGCCAGAG





AATCCAGTGTGACATCCCGTTCTTTGGCATCCAGGAAGAATTCAATGCTACCCTCAAAGGCAACCTC





TCGTTTGACTGGTACATCAAGACCTCGCATAACCACCTCCTGATCGTGAGCACAGCTGAGATCTTGT





TTAACGATTCCGTGTTCACCCTGCTGCCGGGACAGGGGGCGTTTGTGAGGTCCCAGACGGAGACCA





AAGTGGAGCCGTTCGAGGTCCCCAACCCCCTGCCGCTCATCGTGGGCAGCTCTGTCGGGGGACTG





CTGCTCCTGGCCCTCATCACCGCCGCGCTGTACAAGCTCGGCTTCTTCAAGCGGCAATACAAGGAC





ATGATGAGTGAAGGGGGTCCCCCGGGGGCCGAACCCCAGTAGCGGCTCCTTCCCGACAGAGCTGC





CTCTCGGTGGCCAGCAGGACTCTGCCCAGACCACACGTAGCCCCCAGGCTGCTGGACACGTCGGA





CAGCGAAGTATCCCCGACAGGACGGGCTTGGGCTTCCATTTGTGTGTGTGCAAGTGTGTATGTGCG





TGTGTGCAAGTGTCTGTGTGCAAGTGTGTGCACATGTGTGCGTGTGCGTGCATGTGCACTTGCACG





CCCATGTGTGAGTGTGTGCAAGTATGTGAGTGTGTCCAAGTGTGTGTGCGTGTGTCCATGTGTGTGC





AAGTGTGTGCATGTGTGCGAGTGTGTGCATGTGTGTGCTCAGGGGCGTGTGGCTCACGTGTGTGAC





TCAGATGTCTCTGGCGTGTGGGTAGGTGACGGCAGCGTAGCCTCTCCGGCAGAAGGGAACTGCCT





GGGCTCCCTTGTGCGTGGGTGAAGCCGCTGCTGGGTTTTCCTCCGGGAGAGGGGACGGTCAATCC





TGTGGGTGAAGACAGAGGGAAACACAGCAGCTTCTCTCCACTGAAAGAAGTGGGACTTCCCGTCGC





CTGCGAGCCTGCGGCCTGCTGGAGCCTGCGCAGCTTGGATGGAGACTCCATGAGAAGCCGTGGGT





GGAACCAGGAACCTCCTCCACACCAGCGCTGATGCCCAATAAAGATGCCCACTGAGGAATGATGAA





GCTTCCTTTCTGGATTCATTTATTATTTCAATGTGACTTTAATTTTTTGGATGGATAAGCTTGTCTATGG





TACAAAAATCACAAGGCATTCAAGTGTACAGTGAAAAGTCTCCCTTTCCAGATATTCAAGTCACCTCC





TTAAAGGTAGTCAAGATTGTGTTTTGAGGTTTCCTTCAGACAGATTCCAGGCGATGTGCAAGTGTATG





CACGTGTGCACACACACCACACATACACACACACAAGCTTTTTTACACAAATGGTAGCATACTTTATA





TTGGTCTGTATCTTGCTTTTTTTCACCAATATTTCTCAGACATCGGTTCATATTAAGACATAAATTACTT





TTTCATTCTTTTATACCGCTGCATAGTATTCCATTGTGTGAGTGTACCATAATGTATTTAACCAGTCTT





CTTTTGATATACTATTTTCATTCTCTTGTTATTGCATCAATGCTGAGTTAATAAATCAAATATATGTCAT





TTTTGCATATATGTAAGGATAA






As used herein, the term “ITGAX” refers to the gene encoding Integrin alpha-X. The terms “ITGAX” and “Integrin alpha-X” include wild-type forms of the ITGAX gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type ITGAX. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type ITGAX nucleic acid sequence (e.g., SEQ ID NO: 49, ENA accession number M81695). SEQ ID NO: 49 is a wild-type gene sequence encoding ITGAX protein, and is shown below:










(SEQ ID NO: 49)



GAATTCCTGCCACTCTTCCTGCAACGGCCCAGGAGCTCAGAGCTCCACATCTGACCTTCT






AGTCATGACCAGGACCAGGGCAGCACTCCTCCTGTTCACAGCCTTAGCAACTTCTCTAGG





TTTCAACTTGGACACAGAGGAGCTGACAGCCTTCCGTGTGGACAGCGCTGGGTTTGGAGA





CAGCGTGGTCCAGTATGCCAACTCCTGGGTGGTGGTTGGAGCCCCCCAAAAGATAACAGC





TGCCAACCAAACGGGTGGCCTCTACCAGTGTGGCTACAGCACTGGTGCCTGTGAGCCCAT





CGGCCTGCAGGTGCCCCCGGAGGCCGTGAACATGTCCCTGGGCCTGTCCCTGGCGTCTAC





CACCAGCCCTTCCCAGCTGCTGGCCTGCGGCCCCACCGTGCACCACGAGTGCGGGAGGAA





CATGTACCTCACCGGACTCTGCTTCCTCCTGGGCCCCACCCAGCTCACCCAGAGGCTCCC





GGTGTCCAGGCAGGAGTGCCCAAGACAGGAGCAGGACATTGTGTTCCTGATCGATGGCTC





AGGCAGCATCTCCTCCCGCAACTTTGCCACGATGATGAACTTCGTGAGAGCTGTGATAAG





CCAGTTCCAGAGACCCAGCACCCAGTTTTCCCTGATGCAGTTCTCCAACAAATTCCAAAC





ACACTTCACTTTCGAGGAATTCAGGCGCACGTCAAACCCCCTCAGCCTGTTGGCTTCTGT





TCACCAGCTGCAAGGGTTTACATACACGGCCACCGCCATCCAAAATGTCGTGCACCGATT





GTTCCATGCCTCATATGGGGCCCGTAGGGATGCCACCAAAATTCTCATTGTCATCACTGA





TGGGAAGAAAGAAGGCGACAGCCTGGATTATAAGGATGTCATCCCCATGGCTGATGCAGC





AGGCATCATCCGCTATGCAATTGGGGTTGGATTAGCTTTTCAAAACAGAAATTCTTGGAA





AGAATTAAATGACATTGCATCGAAGCCCTCCCAGGAACACATATTTAAAGTGGAGGACTT





TGATGCTCTGAAAGATATTCAAAACCAACTGAAGGAGAAGATCTTTGCCATTGAGGGTAC





GGAGACCACAAGCAGTAGCTCCTTCGAATTGGAGATGGCACAGGAGGGCTTCAGCGCTGT





GTTCACACCTGATGGCCCCGTTCTGGGGGCTGTGGGGAGCTTCACCTGGTCTGGAGGTGC





CTTCCTGTACCCCCCAAATATGAGCCCTACCTTCATCAACATGTCTCAGGAGAATGTGGA





CATGAGGGACTCTTACCTGGGTTACTCCACCGAGCTGGCCCTCTGGAAAGGGGTGCAGAG





CCTGGTCCTGGGGGCCCCCCGCTACCAGCACACCGGGAAGGCTGTCATCTTCACCCAGGT





GTCCAGGCAATGGAGGATGAAGGCCGAAGTCACGGGGACTCAGATCGGCTCCTACTTCGG





GGCCTCCCTCTGCTCCGTGGACGTAGACACCGACGGCAGCACCGACCTGGTCCTCATCGG





GGCCCCCCATTACTACGAGCAGACCCGAGGGGGCCAGGTGTCTGTGTGTCCCTTGCCCAG





GGGGTGGAGAAGGTGGTGGTGTGATGCTGTTCTCTACGGGGAGCAGGGCCACCCCTGGGG





TCGCTTTGGGGCGGCTCTGACAGTGCTGGGGGATGTGAATGGGGACAAGCTGACAGACGT





GGTCATCGGGGCCCCAGGAGAGGAGGAGAACCGGGGTGCTGTCTACCTGTTTCACGGAGT





CTTGGGACCCAGCATCAGCCCCTCCCACAGCCAGCGGATCGCGGGCTCCCAGCTCTCCTC





CAGGCTGCAGTATTTTGGGCAGGCACTGAGCGGGGGTCAAGACCTCACCCAGGATGGACT





GGTGGACCTGGCTGTGGGGGCCCGGGGCCAGGTGCTCCTGCTCAGGACCAGACCTGTGCT





CTGGGTGGGGGTGAGCATGCAGTTCATACCTGCCGAGATCCCCAGGTCTGCGTTTGAGTG





TCGGGAGCAGGTGGTCTCTGAGCAGACCCTGGTACAGTCCAACATCTGCCTTTACATTGA





CAAACGTTCTAAGAACCTGCTTGGGAGCCGTGACCTCCAAAGCTCTGTGACCTTGGACCT





GGCCCTCGACCCTGGCCGCCTGAGTCCCCGTGCCACCTTCCAGGAAACAAAGAACCGGAG





TCTGAGCCGAGTCCGAGTCCTCGGGCTGAAGGCACACTGTGAAAACTTCAACCTGCTGCT





CCCGAGCTGCGTGGAGGACTCTGTGACCCCCATTACCTTGCGTCTGAACTTCACGCTGGT





GGGCAAGCCCCTCCTTGCCTTCAGAAACCTGCGGCCTATGCTGGCCGCACTGGCTCAGAG





ATACTTCACGGCCTCCCTACCCTTTGAGAAGAACTGTGGAGCCGACCATATCTGCCAGGA





CAATCTCGGCATCTCCTTCAGCTTCCCAGGCTTGAAGTCCCTGCTGGTGGGGAGTAACCT





GGAGCTGAACGCAGAAGTGATGGTGTGGAATGACGGGGAAGACTCCTACGGAACCACCAT





CACCTTCTCCCACCCCGCAGGACTGTCCTACCGCTACGTGGCAGAGGGCCAGAAACAAGG





GCAGCTGCGTTCCCTGCACCTGACATGTGACAGCGCCCCAGTTGGGAGCCAGGGCACCTG





GAGCACCAGCTGCAGAATCAACCACCTCATCTTCCGTGGCGGCGCCCAGATCACCTTCTT





GGCTACCTTTGACGTCTCCCCCAAGGCTGTCCTGGGAGACCGGCTGCTTCTGACAGCCAA





TGTGAGCAGTGAGAACAACACTCCCAGGACCAGCAAGACCACCTTCCAGCTGGAGCTCCC





GGTGAAGTATGCTGTCTACACTGTGGTTAGCAGCCACGAACAATTCACCAAATACCTCAA





CTTCTCAGAGTCTGAGGAGAAGGAAAGCCATGTGGCCATGCACAGATACCAGGTCAATAA





CCTGGGACAGAGGGACCTGCCTGTCAGCATCAACTTCTGGGTGCCTGTGGAGCTGAACCA





GGAGGCTGTGTGGATGGATGTGGAGGTCTCCCACCCCCAGAACCCATCCCTTCGGTGCTC





CTCAGAGAAAATCGCACCCCCAGCATCTGACTTCCTGGCGCACATTCAGAAGAATCCCGT





GCTGGACTGCTCCATTGCTGGCTGCCTGCGGTTCCGCTGTGACGTCCCCTCCTTCAGCGT





CCAGGAGGAGCTGGATTTCACCCTGAAGGGCAACCTCAGCTTTGGCTGGGTCCGCCAGAT





ATTGCAGAAGAAGGTGTCGGTCGTGAGTGTGGCTGAAATTACGTTCGACACATCCGTGTA





CTCCCAGCTTCCAGGACAGGAGGCATTTATGAGAGCTCAGACGACAACGGTGCTGGAGAA





GTACAAGGTCCACAACCCCACCCCCCTCATCGTAGGCAGCTCCATTGGGGGTCTGTTGCT





GCTGGCACTCATCACAGCGGTACTGTACAAAGTTGGCTTCTTCAAGCGTCAGTACAAGGA





AATGATGGAGGAGGCAAATGGACAAATTGCCCCAGAAAACGGGACACAGACCCCCAGCCC





GCCCAGTGAGAAATGATCCCTCTTTGCCTTGGACTTCTTCTCCCGCGATTTTCCCCACTT





ACTTACCCTCACCTGTCAGGCTGACGGGGAGGAACCACTGCACCACCGAGAGAGGCTGGG





ATGGGCCTGCTTCCTGTCTTTGGGAGAAAACGTCTTGCTTGGGAAGGGGCCTTTGTCTTG





TCAAGGTTCCAACTGGAAACCCTTAGGACAGGGTCCCTGCTGTGTTCCCCAAAAGGACTT





GACTTGCAATTTCTACCTAGAAATACATGGACAATACCCCCAGGCCTCAGTCTCCCTTCT





CCCATGAGGCACGAATGATCTTTCTTTCCTTTCCTTTTTTTTTTTTTTCTTTTCTTTTTT





TTTTTTTTTGAGACGGAGTCTCGCTCTGTCACCCAGGCTGGAGTGCAATGGCGTGATCTC





GGCTCGCTGCAACCTCCGCCTCCCGGGTTCAAGTAATTCTGCTGTCTCAGCCTCCTGCGT





AGCTGGGACTACAGGCACACGCCACCTCGCCCGGCCCGATCTTTCTAAAATACAGTTCTG





AATATGCTGCTCATCCCCACCTGTCTTCAACAGCTCCCCATTACCCTCAGGACAATGTCT





GAACTCTCCAGCTTCGCGTGAGAAGTCCCCTTCCATCCCAGAGGGTGGGCTTCAGGGCGC





ACAGCATGAGAGCCTCTGTGCCCCCATCACCCTCGTTTCCAGTGAATTAGTGTCATGTCA





GCATCAGCTCAGGGCTTCATCGTGGGGCTCTCAGTTCCGATTCCCCAGGCTGAATTGGGA





GTGAGATGCCTGCATGCTGGGTTCTGCACAGCTGGCCTCCCGCGGTTGGGTCAACATTGC





TGGCCTGGAAGGGAGGAGCGCCCTCTAGGGAGGGACATGGCCCCGGTGCGGCTGCAGCTC





ACCAGCCCCAGGGGCAGAAGAGACCCAACCACTTCCTATTTTTTGAGGCTATGAATATAG





TACCTGAAAAAATGCCAAGCACTAGATTATTTTTTTAAAAAGCGTACTTTAAATGTTTGT





GTTAATACACATTAAAACATCGCACAAAAACGATGCATCTACCGCTCCTTGGGAAATAAT





CTGAAAGGTCTAAAAATAAAAAAGCCTTCTGTGG






As used herein, the term “LILRB4” refers to the gene encoding Leukocyte immunoglobulin-like receptor subfamily B member 4. The terms “LILRB4” and “Leukocyte immunoglobulin-like receptor subfamily B member 4” include wild-type forms of the LILRB4 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type LILRB4. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type LILRB4 nucleic acid sequence (e.g., SEQ ID NO: 50, ENA accession number U91925). SEQ ID NO: 50 is a wild-type gene sequence encoding LILRB4 protein, and is shown below:










(SEQ ID NO: 50)



TGAGATGAGAGCTGCCGACAGTTGGGGGTCAAGGGAGGAGACGCCATGATCCCCACCTTC






ACGGCTCTGCTCTGCCTCGGGCTGAGTCTGGGCCCCAGGACCCACATGCAGGCAGGGCCC





CTCCCCAAACCCACCCTCTGGGCTGAGCCAGGCTCTGTGATCAGCTGGGGGAACTCTGTG





ACCATCTGGTGTCAGGGGACCCTGGAGGCTCGGGAGTACCGTCTGGATAAAGAGGAAAGC





CCAGCACCCTGGGACAGACAGAACCCACTGGAGCCCAAGAACAAGGCCAGATTCTCCATC





CCATCCATGACAGAGGACTATGCAGGGAGATACCGCTGTTACTATCGCAGCCCTGTAGGC





TGGTCACAGCCCAGTGACCCCCTGGAGCTGGTGATGACAGGAGCCTACAGTAAACCCACC





CTTTCAGCCCTGCCGAGTCCTCTTGTGACCTCAGGAAAGAGCGTGACCCTGCTGTGTCAG





TCACGGAGCCCAATGGACACTTTCCTTCTGATCAAGGAGCGGGCAGCCCATCCCCTACTG





CATCTGAGATCAGAGCACGGAGCTCAGCAGCACCAGGCTGAATTCCCCATGAGTCCTGTG





ACCTCAGTGCACGGGGGGACCTACAGGTGCTTCAGCTCACACGGCTTCTCCCACTACCTG





CTGTCACACCCCAGTGACCCCCTGGAGCTCATAGTCTCAGGATCCTTGGAGGGTCCCAGG





CCCTCACCCACAAGGTCCGTCTCAACAGCTGCAGGCCCTGAGGACCAGCCCCTCATGCCT





ACAGGGTCAGTCCCCCACAGTGGTCTGAGAAGGCACTGGGAGGTACTGATCGGGGTCTTG





GTGGTCTCCATCCTGCTTCTCTCCCTCCTCCTCTTCCTCCTCCTCCAACACTGGCGTCAG





GGAAAACACAGGACATTGGCCCAGAGACAGGCTGATTTCCAACGTCCTCCAGGGGCTGCC





GAGCCAGAGCCCAAGGACGGGGGCCTACAGAGGAGGTCCAGCCCAGCTGCTGACGTCCAG





GGAGAAAACTTCTGTGCTGCCGTGAAGAACACACAGCCTGAGGACGGGGTGGAAATGGAC





ACTCGGCAGAGCCCACACGATGAAGACCCCCAGGCAGTGACGTATGCCAAGGTGAAACAC





TCCAGACCTAGGAGAGAAATGGCCTCTCCTCCCTCCCCACTGTCTGGGGAATTCCTGGAC





ACAAAGGACAGACAGGCAGAAGAGGACAGACAGATGGACACTGAGGCTGCTGCATCTGAA





GCCCCCCAGGATGTGACCTACGCCCAGCTGCACAGCTTTACCCTCAGACAGAAGGCAACT





GAGCCTCCTCCATCCCAGGAAGGGGCCTCTCCAGCTGAGCCCAGTGTCTATGCCACTCTG





GCCATCCACTAATCCAGGGGGGACCCAGACCCCACAAGCCATGGAGACTCAGGACCCCAG





AAGGCATGGAAGCTGCCTCCAGTAGACATCACTGAACCCCAGCCAGCCCAGACCCCTGAC





ACAGACCACTAGAAGATTCCGGGAACGTTGGGAGTCACCTGATTCTGCAAAGATAAATAA





TATCCCTGCATTATCAAAATAAAGTAGCAGACCTCTCAATTCA






As used herein, the term “LPL” refers to the gene encoding Lipoprotein lipase. The terms “LPL” and “Lipoprotein lipase” include wild-type forms of the LPL gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type LPL. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type LPL nucleic acid sequence (e.g., SEQ ID NO: 51, ENA accession number M15856). SEQ ID NO: 51 is a wild-type gene sequence encoding LPL protein, and is shown below:










(SEQ ID NO: 51)



CCCCTCTTCCTCCTCCTCAAGGGAAAGCTGCCCACTTCTAGCTGCCCTGCCATCCCCTTT






AAAGGGCGACTTGCTCAGCGCCAAACCGCGGCTCCAGCCCTCTCCAGCCTCCGGCTCAGC





CGGCTCATCAGTCGGTCCGCGCCTTGCAGCTCCTCCAGAGGGACGCGCCCCGAGATGGAG





AGCAAAGCCCTGCTCGTGCTGACTCTGGCCGTGTGGCTCCAGAGTCTGACCGCCTCCCGC





GGAGGGGTGGCCGCCGCCGACCAAAGAAGAGATTTTATCGACATCGAAAGTAAATTTGCC





CTAAGGACCCCTGAAGACACAGCTGAGGACACTTGCCACCTCATTCCCGGAGTAGCAGAG





TCCGTGGCTACCTGTCATTTCAATCACAGCAGCAAAACCTTCATGGTGATCCATGGCTGG





ACGGTAACAGGAATGTATGAGAGTTGGGTGCCAAAACTTGTGGCCGCCCTGTACAAGAGA





GAACCAGACTCCAATGTCATTGTGGTGGACTGGCTGTCACGGGCTCAGGAGCATTACCCA





GTGTCCGCGGGCTACACCAAACTGGTGGGACAGGATGTGGCCCGGTTTATCAACTGGATG





GAGGAGGAGTTTAACTACCCTCTGGACAATGTCCATCTCTTGGGATACAGCCTTGGAGCC





CATGCTGCTGGCATTGCAGGAAGTCTGACCAATAAGAAAGTCAACAGAATTACTGGCCTC





GATCCAGCTGGACCTAACTTTGAGTATGCAGAAGCCCCGAGTCGTCTTTCTCCTGATGAT





GCAGATTTTGTAGACGTCTTACACACATTCACCAGAGGGTCCCCTGGTCGAAGCATTGGA





ATCCAGAAACCAGTTGGGCATGTTGACATTTACCCGAATGGAGGTACTTTTCAGCCAGGA





TGTAACATTGGAGAAGCTATCCGCGTGATTGCAGAGAGAGGACTTGGAGATGTGGACCAG





CTAGTGAAGTGCTCCCACGAGCGCTCCATTCATCTCTTCATCGACTCTCTGTTGAATGAA





GAAAATCCAAGTAAGGCCTACAGGTGCAGTTCCAAGGAAGCCTTTGAGAAAGGGCTCTGC





TTGAGTTGTAGAAAGAACCGCTGCAACAATCTGGGCTATGAGATCAATAAAGTCAGAGCC





AAAAGAAGCAGCAAAATGTACCTGAAGACTCGTTCTCAGATGCCCTACAAAGTCTTCCAT





TACCAAGTAAAGATTCATTTTTCTGGGACTGAGAGTGAAACCCATACCAATCAGGCCTTT





GAGATTTCTCTGTATGGCACCGTGGCCGAGAGTGAGAACATCCCATTCACTCTGCCTGAA





GTTTCCACAAATAAGACCTACTCCTTCCTAATTTACACAGAGGTAGATATTGGAGAACTA





CTCATGTTGAAGCTCAAATGGAAGAGTGATTCATACTTTAGCTGGTCAGACTGGTGGAGC





AGTCCCGGCTTCGCCATTCAGAAGATCAGAGTAAAAGCAGGAGAGACTCAGAAAAAGGTG





ATCTTCTGTTCTAGGGAGAAAGTGTCTCATTTGCAGAAAGGAAAGGCACCTGCGGTATTT





GTGAAATGCCATGACAAGTCTCTGAATAAGAAGTCAGGCTGAAACTGGGCGAATCTACAG





AACAAAGAACGGCATGTGAATTCTGTGAAGAATGAAGTGGAGGAAGTAACTTTTACAAAA





CATACCCAGTGTTTGGGGTGTTTCAAAAGTGGATTTTCCTGAATATTAATCCCAGCCCTA





CCCTTGTTAGTTATTTTAGGAGACAGTCTCAAGCACTAAAAAGTGGCTAATTCAATTTAT





GGGGTATAGTGGCCAAATAGCACATCCTCCAACGTTAAAAGACAGTGGATCATGAAAAGT





GCTGTTTTGTCCTTTGAGAAAGAAATAATTGTTTGAGCGCAGAGTAAAATAAGGCTCCTT





CATGTGGCGTATTGGGCCATAGCCTATAATTGGTTAGAACCTCCTATTTTAATTGGAATT





CTGGATCTTTCGGACTGAGGCCTTCTCAAACTTTACTCTAAGTCTCCAAGAATACAGAAA





ATGCTTTTCCGCGGCACGAATCAGACTCATCTACACAGCAGTATGAATGATGTTTTAGAA





TGATTCCCTCTTGCTATTGGAATGTGGTCCAGACGTCAACCAGGAACATGTAACTTGGAG





AGGGACGAAGAAAGGGTCTGATAAACACAGAGGTTTTAAACAGTCCCTACCATTGGCCTG





CATCATGACAAAGTTACAAATTCAAGGAGATATAAAATCTAGATCAATTAATTCTTAATA





GGCTTTATCGTTTATTGCTTAATCCCTCTCTCCCCCTTCTTTTTTGTCTCAAGATTATAT





TATAATAATGTTCTCTGGGTAGGTGTTGAAAATGAGCCTGTAATCCTCAGCTGACACATA





ATTTGAATGGTGCAGAAAAAAAAAAGATACCGTAATTTTATTATTAGATTCTCCAAATGA





TTTTCATCAATTTAAAATCATTCAATATCTGACAGTTACTCTTCAGTTTTAGGCTTACCT





TGGTCATGCTTCAGTTGTACTTCCAGTGCGTCTCTTTTGTTCCTGGCTTTGACATGAAAA





GATAGGTTTGAGTTCAAATTTTGCATTGTGTGAGCTTCTACAGATTTTAGACAAGGACCG





TTTTTACTAAGTAAAAGGGTGGAGAGGTTCCTGGGGTGGATTCCTAAGCAGTGCTTGTAA





ACCATCGCGTGCAATGAGCCAGATGGAGTACCATGAGGGTTGTTATTTGTTGTTTTTAAC





AACTAATCAAGAGTGAGTGAACAACTATTTATAAACTAGATCTCCTATTTTTCAGAATGC





TCTTCTACGTATAAATATGAAATGATAAAGATGTCAAATATCTCAGAGGCTATAGCTGGG





AACCCGACTGTGAAAGTATGTGATATCTGAACACATACTAGAAAGCTCTGCATGTGTGTT





GTCCTTCAGCATAATTCGGAAGGGAAAACAGTCGATCAAGGGATGTATTGGAACATGTCG





GAGTAGAAATTGTTCCTGATGTGCCAGAACTTCGACCCTTTCTCTGAGAGAGATGATCGT





GCCTATAAATAGTAGGACCAATGTTGTGATTAACATCATCAGGCTTGGAATGAATTCTCT





CTAAAAATAAAATGATGTATGATTTGTTGTTGGCATCCCCTTTATTAATTCATTAAATTT





CTGGATTTGGGTTGTGACCCAGGGTGCATTAACTTAAAAGATTCACTAAAGCAGCACATA





GCACTGGGAACTCTGGCTCCGAAAAACTTTGTTATATATATCAAGGATGTTCTGGCTTTA





CATTTTATTTATTAGCTGTAAATACATGTGTGGATGTGTAAATGGAGCTTGTACATATTG





GAAAGGTCATTGTGGCTATCTGCATTTATAAATGTGTGGTGCTAACTGTATGTGTCTTTA





TCAGTGATGGTCTCACAGAGCCAACTCACTCTTATGAAATGGGCTTTAACAAAACAAGAA





AGAAACGTACTTAACTGTGTGAAGAAATGGAATCAGCTTTTAATAAAATTGACAACATTT





TATTACCAC






As used herein, the term “MEF2C” refers to the gene encoding Myocyte-specific enhancer factor 2C. The terms “MEF2C” and “Myocyte-specific enhancer factor 2C” include wild-type forms of the MEF2C gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type MEF2C. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type MEF2C nucleic acid sequence (e.g., SEQ ID NO: 52, ENA accession number L08895). SEQ ID NO: 52 is a wild-type gene sequence encoding MEF2C protein, and is shown below:










(SEQ ID NO: 52)



GAATTCCCAGCTCTCTGCTCGCTCTGCTCGCAGTCACAGACACTTGAGCACACGCGTACA






CCCAGACATCTTCGGGCTGCTATTGGATTGACTTTGAAGGTTCTGTGTGGGTCGCCGTGG





CTGCATGTTTGAATCAGGTGGAGAAGCACTTCAACGCTGGACGAAGTAAAGATTATTGTT





GTTATTTTTTTTTTCTCTCTCTCTCTCTOTTAAGAAAGGAAAATATCCCAAGGACTAATC





TGATCGGGTCTTCCTTCATCAGGAACGAATGCAGGAATTTGGGAACTGAGCTGTGCAAGT





GCTGAAGAAGGAGATTTGTTTGGAGGAAACAGGAAAGAGAAAGAAAAGGAAGGAAAAAAT





ACATAATTTCAGGGACGAGAGAGAGAAGAAAAACGGGGACTATGGGGAGAAAAAAGATTC





AGATTACGAGGATTATGGATGAACGTAACAGACAGGTGACATTTACAAAGAGGAAATTTG





GGTTGATGAAGAAGGCTTATGAGCTGAGCGTGCTGTGTGACTGTGAGATTGCGCTGATCA





TCTTCAACAGCACCAACAAGCTGTTCCAGTATGCCAGCACCGACATGGACAAAGTGCTTC





TCAAGTACACGGAGTACAACGAGCCGCATGAGAGCCGGACAAACTCAGACATCGTGGAGA





CGTTGAGAAAGAAGGGCCTTAATGGCTGTGACAGCCCAGACCCCGATGCGGACGATTCCG





TAGGTCACAGCCCTGAGTCTGAGGACAAGTACAGGAAAATTAACGAAGATATTGATCTAA





TGATCAGCAGGCAAAGATTGTGTGCTGTTCCACCTCCCAACTTCGAGATGCCAGTCTCCA





TCCCAGTGTCCAGCCACAACAGTTTGGTGTACAGCAACCCTGTCAGCTCACTGGGAAACC





CCAACCTATTGCCACTGGCTCACCCTTCTCTGCAGAGGAATAGTATGTCTCCTGGTGTAA





CACATCGACCTCCAAGTGCAGGTAACACAGGTGGTCTGATGGGTGGAGACCTCACGTCTG





GTGCAGGCACCAGTGCAGGGAACGGGTATGGCAATCCCCGAAACTCACCAGGTCTGCTGG





TCTCACCTGGTAACTTGAACAAGAATATGCAAGCAAAATCTCCTCCCCCAATGAATTTAG





GAATGAATAACCGTAAACCAGATCTCCGAGTTCTTATTCCACCAGGCAGCAAGAATACGA





TGCCATCAGTGTCTGAGGATGTCGACCTGCTTTTGAATCAAAGGATAAATAACTCCCAGT





CGGCTCAGTCATTGGCTACCCCAGTGGTTTCCGTAGCAACTCCTACTTTACCAGGACAAG





GAATGGGAGGATATCCATCAGCCATTTCAACAACATATGGTACCGAGTACTCTCTGAGTA





GTGCAGACCTGTCATCTCTGTCTGGGTTTAACACCGCCAGCGCTCTTCACCTTGGTTCAG





TAACTGGCTGGCAACAGCAACACCTACATAACATGCCACCATCTGCCCTCAGTCAGTTGG





GAGCTTGCACTAGCACTCATTTATCTCAGAGTTCAAATCTCTCCCTGCCTTCTACTCAAA





GCCTCAACATCAAGTCAGAACCTGTTTCTCCTCCTAGAGACCGTACCACCACCCCTTCGA





GATACCCACAACACACGCGCCACGAGGCGGGGAGATCTCCTGTTGACAGCTTGAGCAGCT





GTAGCAGTTCGTACGACGGGAGCGACCGAGAGGATCACCGGAACGAATTCCACTCCCCCA





TTGGACTCACCAGACCTTCGCCGGACGAAAGGGAAAGTCCCTCAGTCAAGCGCATGCGAC





TTTCTGAAGGATGGGCAACATGATCAGATTATTACTTACTAGTTTTTTTTTTTTTCTTGC





AGTGTGTGTGTGTGCTATACCTTAATGGGGAAGGGGGGTCGATATGCATTATATGTGCCG





TGTGTGGAAAAAAAAAAAGTCAGGTACTCTGTTTTGTAAAAGTACTTTTAAATTGCCTCA





GTGATACAGTATAAAGATAAACAGAAATGCTGAGATAAGCTTAGCACTTGAGTTGTACAA





CAGAACACTTGTACAAAATAGATTTTAAGGCTAACTTCTTTTCACTGTTGTGCTCCTTTG





CAAAATGTATGTTACAATAGATAGTGTCATGTTGCAGGTTCAACGTTATTTACATGTAAA





TAGACAAAAGGAAACATTTGCCAAAAGCGGCAGATCTTTACTGAAAGAGAGAGCAGCTGT





TATGCAACATATAGAAAAATGTATAGATGCTTGGACAGACCCGGTAATGGGTGGCCATTG





GTAAATGTTAGGAACACACCAGGTCACCTGACATCCCAAGAATGCTCACAAACCTGCAGG





CATATCATTGGCGTATGGCACTCATTAAAAAGGATCAGAGACCATTAAAAGAGGACCATA





CCTATTAAAAAAAAATGTGGAGTTGGAGGGCTAACATATTTAATTAAATAAATAAATAAA





TCTGGGTCTGCATCTCTTATTAAATAAAAATATAAAAATATGTACATTACATTTTGCTTA





TTTTCATATAAAAGGTAAGACAGAGTTTGCAAAGCATTTGTGGCTTTTTGTAGTTTACTT





AAGCCAAAATGTGTTTTTTTCCCCTTGATAGCTTCGCTAATATTTTAAACAGTCCTGTAA





AAAACCAAAAAGGACTTTTTGTATAGAAAGCACTACCCTAAGCCATGAAGAACTCCATGC





TTTGCTAACCAAGATAACTGTTTTCTCTTTGTAGAAGTTTTGTTTTTGAAATGTGTATTT





CTAATTATATAAAATATTAAGAATCTTTTAAAAAAATCTGTGAAATTAACATGCTTGTGT





ATAGCTTTCTAATATATATAATATTATGGTAATAGCAGAAGTTTTGTTATCTTAATAGCG





GGAGGGGGGTATATTTGTGCAGTTGCACATTTGAGTAACTATTTTCTTTCTGTTTTCTTT





TACTCTGCTTACATTTTATAAGTTTAAGGTCAGCTGTCAAAAGGATAACCTGTGGGGTTA





GAACATATCACATTGCAACACCCTAAATTGTTTTTAATACATTAGCAATCTATTGGGTCA





ACTGACATCCATTGTATATACTAGTTTCTTTCATGCTATTTTTATTTTGTTTTTTGCATT





TTTATCAAATGCAGGGCCCCTTTCTGATCTCACCATTTCACCATGCATCTTGGAATTCAG





TAAGTGCATATCCTAACTTGCCCATATTCTAAATCATCTGGTTGGTTTTCAGCCTAGAAT





TTGATACGCTTTTTAGAAATATGCCCAGAATAGAAAAGCTATGTTGGGGCACATGTCCTG





CAAATATGGCCCTAGAAACAAGTGATATGGAATTTACTTGGTGAATAAGTTATAAATTCC





CACAGAAGAAAAATGTGAAAGACTGGGTGCTAGACAAGAAGGAAGCAGGTAAAGGGATAG





TTGCTTTGTCATCCGTTTTTAATTATTTTAACTGACCCTTGACAATCTTGTCAGCAATAT





AGGACTGTTGAACAATCCCGGTGTGTCAGGACCCCCAAATGTCACTTCTGCATAAAGCAT





GTATGTCATCTATTTTTTCTTCAATAAAGAGATTTAATAGCCATTTCAAGAAATCCCATA





AAGAACCTCTCTATGTCCCTTTTTTTAATTTAAAAAAATGACTCTTGTCTAATATTCGTC





TATAAGGGATTAATTTTCAGACCCTTTAATAAGTGAGTGCCATAAGAAAGTCAATATATA





TTGTTTAAAAGATATTTCAGTCTAGGAAAGATTTTCCTTCTCTTGGAATGTGAAGATCTG





TCGATTCATCTCCAATCATATGCATTGACATACACAGCAAAGAAGATATAGGCAGTAATA





TCAACACTGCTATATCATGTGTAGGACATTTCTTATCCATTTTTTCTCTTTTACTTGCAT





AGTTGCTATGTGTTTCTCATTGTAAAAGGCTGCCGCTGGGTGGCAGAAGCCAAGAGACCT





TATTAACTAGGCTATATTTTTCTTAACTTGATCTGAAATCCACAATTAGACCACAATGCA





CCTTTGGTTGTATCCATAAAGGATGCTAGCCTGCCTTGTACTAATGTTTTATATATT






As used herein, the term “MMP12” refers to the gene encoding Macrophage metalloelastase. The terms “MMP12” and “Macrophage metalloelastase” include wild-type forms of the MMP12 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type MMP12. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type MMP12 nucleic acid sequence (e.g., SEQ ID NO: 53, ENA accession number L23808). SEQ ID NO: 53 is a wild-type gene sequence encoding MMP12 protein, and is shown below:










(SEQ ID NO: 53)



TAGAAGTTTACAATGAAGTTTCTTCTAATACTGCTCCTGCAGGCCACTGCTTCTGGAGCT






CTTCCCCTGAACAGCTCTACAAGCCTGGAAAAAAATAATGTGCTATTTGGTGAGAGATAC





TTAGAAAAATTTTATGGCCTTGAGATAAACAAACTTCCAGTGACAAAAATGAAATATAGT





GGAAACTTAATGAAGGAAAAAATCCAAGAAATGCAGCACTTCTTGGGTCTGAAAGTGACC





GGGCAACTGGACACATCTACCCTGGAGATGATGCACGCACCTCGATGTGGAGTCCCCGAT





CTCCATCATTTCAGGGAAATGCCAGGGGGGCCCGTATGGAGGAAACATTATATCACCTAC





AGAATCAATAATTACACACCTGACATGAACCGTGAGGATGTTGACTACGCAATCCGGAAA





GCTTTCCAAGTATGGAGTAATGTTACCCCCTTGAAATTCAGCAAGATTAACACAGGCATG





GCTGACATTTTGGTGGTTTTTGCCCGTGGAGCTCATGGAGACTTCCATGCTTTTGATGGC





AAAGGTGGAATCCTAGCCCATGCTTTTGGACCTGGATCTGGCATTGGAGGGGATGCACAT





TTCGATGAGGACGAATTCTGGACTACACATTCAGGAGGCACAAACTTGTTCCTCACTGCT





GTTCACGAGATTGGCCATTCCTTAGGTCTTGGCCATTCTAGTGATCCAAAGGCTGTAATG





TTCCCCACCTACAAATATGTCGACATCAACACATTTCGCCTCTCTGCTGATGACATACGT





GGCATTCAGTCCCTGTATGGAGACCCAAAAGAGAACCAACGCTTGCCAAATCCTGACAAT





TCAGAACCAGCTCTCTGTGACCCCAATTTGAGTTTTGATGCTGTCACTACCGTGGGAAAT





AAGATCTTTTTCTTCAAAGACAGGTTCTTCTGGCTGAAGGTTTCTGAGAGACCAAAGACC





AGTGTTAATTTAATTTCTTCCTTATGGCCAACCTTGCCATCTGGCATTGAAGCTGCTTAT





GAAATTGAAGCCAGAAATCAAGTTTTTCTTTTTAAAGATGACAAATACTGGTTAATTAGC





AATTTAAGACCAGAGCCAAATTATCCCAAGAGCATACATTCTTTTGGTTTTCCTAACTTT





GTGAAAAAAATTGATGCAGCTGTTTTTAACCCACGTTTTTATAGGACCTACTTCTTTGTA





GATAACCAGTATTGGAGGTATGATGAAAGGAGACAGATGATGGACCCTGGTTATCCCAAA





CTGATTACCAAGAACTTCCAAGGAATCGGGCCTAAAATTGATGCAGTCTTCTATTCTAAA





AACAAATACTACTATTTCTTCCAAGGATCTAACCAATTTGAATATGACTTCCTACTCCAA





CGTATCACCAAAACACTGAAAAGCAATAGCTGGTTTGGTTGTTAGAAATGGTGTAATTAA





TGGTTTTTGTTAGTTCACTTCAGCTTAATAAGTATTTATTGCATATTTGCTATGTCCTCA





GTGTACCACTACTTAGAGATATGTATCATAAAAATAAAATCTGTAAACCATAGGTAATGA





TTATATAAAATACATAATATTTTTCAATTTTGAAAACTCTAATTGTCCATTCTTGCTTGA





CTCTACTATTAAGTTTGAAAATAGTTACCTTCAAAGCAAGATAATTCTATTTGAAGCATG





CTCTGTAAGTTGCTTCCTAACATCCTTGGACTGAGAAATTATACTTACTTCTGGCATAAC





TAAAATTAAGTATATATATTTTGGCTCAAATAAAATTG






As used herein, the term “MS4A4A” refers to the gene encoding Membrane Spanning 4-Domains A4A. The terms “MS4A4A” and “Membrane Spanning 4-Domains A4A” include wild-type forms of the MS4A4A gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type MS4A4A. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type MS4A4A nucleic acid sequence (e.g., SEQ ID NO: 54, NCBI Reference Sequence: NM_148975.2). SEQ ID NO: 54 is a wild-type gene sequence encoding MS4A4A protein, and is shown below:










(SEQ ID NO: 54)



ATTCTCAGCACAGCCTTTAAGGTTCCAAACATCTGCTAGAAGAGGAATGCAGATTTAAACTGAGTGAG






GTGTGGAGTGGGGGAAGTTGATTGGGTCTAGACCAAAGAACTTTGAGGAACTTGCCCAGAGCCCTG





CATGCATCAGACCTACAGCAGACATTGCAGGCCTGAAGAAAGCACCTTTTCTGCTGCCATGACAACC





ATGCAAGGAATGGAACAGGCCATGCCAGGGGCTGGCCCTGGTGTGCCCCAGCTGGGAAACATGGC





TGTCATACATTCACATCTGTGGAAAGGATTGCAAGAGAAGTTCTTGAAGGGAGAACCCAAAGTCCTT





GGGGTTGTGCAGATTCTGACTGCCCTGATGAGCCTTAGCATGGGAATAACAATGATGTGTATGGCAT





CTAATACTTATGGAAGTAACCCTATTTCCGTGTATATCGGGTACACAATTTGGGGGTCAGTAATGTTT





ATTATTTCAGGATCCTTGTCAATTGCAGCAGGAATTAGAACTACAAAAGGCCTGGTCCGAGGTAGTCT





AGGAATGAATATCACCAGCTCTGTACTGGCTGCATCAGGGATCTTAATCAACACATTTAGCTTGGCGT





TTTATTCATTCCATCACCCTTACTGTAACTACTATGGCAACTCAAATAATTGTCATGGGACTATGTCCA





TCTTAATGGGTCTGGATGGCATGGTGCTCCTCTTAAGTGTGCTGGAATTCTGCATTGCTGTGTCCCT





CTCTGCCTTTGGATGTAAAGTGCTCTGTTGTACCCCTGGTGGGGTTGTGTTAATTCTGCCATCACATT





CTCACATGGCAGAAACAGCATCTCCCACACCACTTAATGAGGTTTGAGGCCACCAAAAGATCAACAG





ACAAATGCTCCAGAAATCTATGCTGACTGTGACACAAGAGCCTCACATGAGAAATTACCAGTATCCAA





CTTCGATACTGATAGACTTGTTGATATTATTATTATATGTAATCCAATTATGAACTGTGTGTGTATAGA





GAGATAATAAATTCAAAATTATGTTCTCATTTTTTTCCCTGGAACTCAATAACTCATTTCACTGGCTCTT





TATCGAGAGTACTAGAAGTTAAATTAATAAATAATGCATTTAATGAGGCAACAGCACTTGAAAGTTTTT





CATTCATCATAAGAACTTTATATAAAGGCATTACATTGGCAAATAAGGTTTGGAAGCAGAAGAGCAAA





AAAAAGATATTGTTAAAATGAGGCCTCCATGCAAAACACATACTTCCCTCCCATTTATTTAACTTTTTTT





TTCTCCTACCTATGGGGACCAAAGTGCTTTTTCCTTCAGGAAGTGGAGATGCATGGCCATCTCCCCC





TCCCTTTTTCCTTCTCCTGCTTTTCTTTCCCCATAGAAAGTACCTTGAAGTAGCACAGTCCGTCCTTG





CATGTGCACGAGCTATCATTTGAGTAAAAGTATACATGGAGTAAAAATCATATTAAGCATCAGATTCA





ACTTATATTTTCTATTTCATCTTCTTCCTTTCCCTTCTCCCACCTTCTACTGGGCATAATTATATCTTAA





TCATATATGGAAATGTGCAACATATGGTATTTGTTAAATACGTTTGTTTTTATTGCAGAGCAAAAATAA





ATCAAATTAGAAGCAATAAAAAAAAAAAAAAAAAAAA






As used herein, the term “MS4A6A” refers to the gene encoding Membrane-spanning 4-domains subfamily A member 6A. The terms “MS4A6A” and “Membrane-spanning 4-domains subfamily A member 6A” include wild-type forms of the MS4A6A gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type MS4A6A. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type MS4A6A nucleic acid sequence (e.g., SEQ ID NO: 55, ENA accession number AB013104). SEQ ID NO: 55 is a wild-type gene sequence encoding MS4A6A protein, and is shown below:










(SEQ ID NO: 55)



GAGAACCAGAGTTAAAACCTCTTTGGAGCTTCTGAGGACTCAGCTGGAACCAACGGGCAC






AGTTGGCAACACCATCATGACATCACAACCTGTTCCCAATGAGACCATCATAGTGCTCCC





ATCAAATGTCATCAACTTCTCCCAAGCAGAGAAACCCGAACCCACCAACCAGGGGCAGGA





TAGCCTGAAGAAACATCTACACGCAGAAATCAAAGTTATTGGGACTATCCAGATCTTGTG





TGGCATGATGGTATTGAGCTTGGGGATCATTTTGGCATCTGCTTCCTTCTCTCCAAATTT





TACCCAAGTGACTTCTACACTGTTGAACTCTGCTTACCCATTCATAGGACCCTTTTTTTT





TATCATCTCTGGCTCTCTATCAATCGCCACAGAGAAAAGGTTAACCAAGCTTTTGGTGCA





TAGCAGCCTGGTTGGAAGCATTCTGAGTGCTCTGTCTGCCCTGGTGGGTTTCATTATCCT





GTCTGTCAAACAGGCCACCTTAAATCCTGCCTCACTGCAGTGGAACTCTCTCTCTGATGC





TGATTTGCACTCTGCTGGAATTCTGCCTAGCTGTGCTCACTGCTGTGCTGCGGTGGAAAC





AGGCTTACTCTGACTTCCCTGGGAGTGGACTTTTCCTGCCTCACAGTTACATTGGTAATT





CTGGCATGTCCTCAAAAATGACTCATGACTGTGGATATGAAGAACTATTGACTTCTTAAG





AAAAAAGGGAGAAATATTAATCAGAAAGTTGATTCTTATGATAATATGGAAAAGTTAACC





ATTATAGAAAAGCAAAGCTTGAGTTTCCTAAATGTAAGCTTTTAAAGTAATGAACATTAA





AAAAAACCATTATTTCACTGTC






As used herein, the term “NLRP3” refers to the gene encoding NACHT, LRR and PYD domains-containing protein 3. The terms “NLRP3” and “NACHT, LRR and PYD domains-containing protein 3” include wild-type forms of the NLRP3 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type NLRP3. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type NLRP3 nucleic acid sequence (e.g., SEQ ID NO: 56, ENA accession number AF410477). SEQ ID NO: 56 is a wild-type gene sequence encoding NLRP3 protein, and is shown below:










(SEQ ID NO: 56)



GTAGATGAGGAAACTGAAGTTGAGGAATAGTGAAGAGTTTGTCCAATGTCATAGCCCCGT






AATCAACGGGACAAAAATTTTCTTGCTGATGGGTCAAGATGGCATCGTGAAGTGGTTGTT





CACCGTAAACTGTAATACAATCCTGTTTATGGATTTGTTTGCATATTTTTCCCCCCATAG





GGAAACCTTTTTTCCATGGCTCAGGACACACTCCTGGATCGAGCCAACAGGAGAACTTTC





TGGTAAGCATTTGGCTAACTTTTTTTTTTTTGAGATGGAGTCTTGCTGTGTCGCCTAGGC





TGGAGTGCAGTGGCGTGATCTTGGCTCACTGCAGCCTCCACCTCCCGGGTTCAATCAATT





CTCCTACCTCAACTTCCTGAGTAGCTGGGATTACAGGCGCCCGCCACCACACCCGGCTCA





TTTTTGTACTTTTAGTAGAGACACAGTTTTGCCATGTTGGCCAGGCTGGTCTTGAATTCC





TCAGCTCAGGTGATATGCCTGCCTTGGCCTCTCAAAGTGCTGGGATTACAGGCGTGAGCC





ACTGTGCCCGGCCTTGGCTAACTTTTCAAAATTAAAGATTTTGACTTGTTACAGTCATGT





GACATTTTTTTCTTTCTGTTTGGTGAGTTTTTGATAATTTATATCTCTCAAAGTGGAGAC





TTTAAAAAAGACTCATCTGTGTGCCGTGTTCACTGCCTGGTATCTTAGTGTGGACCGAAG





CCTAAGGACCCTGAAAACAGCTGCAGATGAAGATGGCAAGCACCCGCTGCAAGCTGGCCA





GGTACCTGGAGGACCTGGAGGATGTGGACTTGAAGAAATTTAAGATGCACTTAGAGGACT





ATCCTCCCCAGAAGGGCTGCATCCCCCTCCCGAGGGGTCAGACAGAGAAGGCAGACCATG





TGGATCTAGCCACGCTAATGATCGACTTCAATGGGGAGGAGAAGGCGTGGGCCATGGCCG





TGTGGATCTTCGCTGCGATCAACAGGAGAGACCTTTATGAGAAAGCAAAAAGAGATGAGC





CGAAGTGGGGTTCAGATAATGCACGTGTTTCGAATCCCACTGTGATATGCCAGGAAGACA





GCATTGAAGAGGAGTGGATGGGTTTACTGGAGTACCTTTCGAGAATCTCTATTTGTAAAA





TGAAGAAAGATTACCGTAAGAAGTACAGAAAGTACGTGAGAAGCAGATTCCAGTGCATTG





AAGACAGGAATGCCCGTCTGGGTGAGAGTGTGAGCCTCAACAAACGCTACACACGACTGC





GTCTCATCAAGGAGCACCGGAGCCAGCAGGAGAGGGAGCAGGAGCTTCTGGCCATCGGCA





AGACCAAGACGTGTGAGAGCCCCGTGAGTCCCATTAAGATGGAGTTGCTGTTTGACCCCG





ATGATGAGCATTCTGAGCCTGTGCACACCGTGGTGTTCCAGGGGGGGGCAGGGATTGGGA





AAACAATCCTGGCCAGGAAGATGATGTTGGACTGGGCGTCGGGGACACTCTACCAAGACA





GGTTTGACTATCTGTTCTATATCCACTGTCGGGAGGTGAGCCTTGTGACACAGAGGAGCC





TGGGGGACCTGATCATGAGCTGCTGCCCCGACCCAAACCCACCCATCCACAAGATCGTGA





GAAAACCCTCCAGAATCCTCTTCCTCATGGACGGCTTCGATGAGCTGCAAGGTGCCTTTG





ACGAGCACATAGGACCGCTCTGCACTGACTGGCAGAAGGCCGAGCGGGGAGACATTCTCC





TGAGCAGCCTCATCAGAAAGAAGCTGCTTCCCGAGGCCTCTCTGCTCATCACCACGAGAC





CTGTGGCCCTGGAGAAACTGCAGCACTTGCTGGACCATCCTCGGCATGTGGAGATCCTGG





GTTTCTCCGAGGCCAAAAGGAAAGAGTACTTCTTCAAGTACTTCTCTGATGAGGCCCAAG





CCAGGGCAGCCTTCAGTCTGATTCAGGAGAACGAGGTCCTCTTCACCATGTGCTTCATCC





CCCTGGTCTGCTGGATCGTGTGCACTGGACTGAAACAGCAGATGGAGAGTGGCAAGAGCC





TTGCCCAGACATCCAAGACCACCACCGCGGTGTACGTCTTCTTCCTTTCCAGTTTGCTGC





AGCCCCGGGGAGGGAGCCAGGAGCACGGCCTCTGCGCCCACCTCTGGGGGCTCTGCTCTT





TGGCTGCAGATGGAATCTGGAACCAGAAAATCCTGTTTGAGGAGTCCGACCTCAGGAATC





ATGGACTGCAGAAGGCGGATGTGTCTGCTTTCCTGAGGATGAACCTGTTCCAAAAGGAAG





TGGACTGCGAGAAGTTCTACAGCTTCATCCACATGACTTTCCAGGAGTTCTTTGCCGCCA





TGTACTACCTGCTGGAAGAGGAAAAGGAAGGAAGGACGAACGTTCCAGGGAGTCGTTTGA





AGCTTCCCAGCCGAGACGTGACAGTCCTTCTGGAAAACTATGGCAAATTCGAAAAGGGGT





ATTTGATTTTTGTTGTACGTTTCCTCTTTGGCCTGGTAAACCAGGAGAGGACCTCCTACT





TGGAGAAGAAATTAAGTTGCAAGATCTCTCAGCAAATCAGGCTGGAGCTGCTGAAATGGA





TTGAAGTGAAAGCCAAAGCTAAAAAGCTGCAGATCCAGCCCAGCCAGCTGGAATTGTTCT





ACTGTTTGTACGAGATGCAGGAGGAGGACTTCGTGCAAAGGGCCATGGACTATTTCCCCA





AGATTGAGATCAATCTCTCCACCAGAATGGACCACATGGTTTCTTCCTTTTGCATTGAGA





ACTGTCATCGGGTGGAGTCACTGTCCCTGGGGTTTCTCCATAACATGCCCAAGGAGGAAG





AGGAGGAGGAAAAGGAAGGCCGACACCTTGATATGGTGCAGTGTGTCCTCCCAAGCTCCT





CTCATGCTGCCTGTTCTCATGGATTGGTGAACAGCCACCTCACTTCCAGTTTTTGCCGGG





GCCTCTTTTCAGTTCTGAGCACCAGCCAGAGTCTAACTGAATTGGACCTCAGTGACAATT





CTCTGGGGGACCCAGGGATGAGAGTGTTGTGTGAAACGCTCCAGCATCCTGGCTGTAACA





TTCGGAGATTGTGGTTGGGGCGCTGTGGCCTCTCGCATGAGTGCTGCTTCGACATCTCCT





TGGTCCTCAGCAGCAACCAGAAGCTGGTGGAGCTGGACCTGAGTGACAACGCCCTCGGTG





ACTTCGGAATCAGACTTCTGTGTGTGGGACTGAAGCACCTGTTGTGCAATCTGAAGAAGC





TCTGGTTGGTCAGCTGCTGCCTCACATCAGCATGTTGTCAGGATCTTGCATCAGTATTGA





GCACCAGCCATTCCCTGACCAGACTCTATGTGGGGGAGAATGCCTTGGGAGACTCAGGAG





TCGCAATTTTATGTGAAAAAGCCAAGAATCCACAGTGTAACCTGCAGAAACTGGGGTTGG





TGAATTCTGGCCTTACGTCAGTCTGTTGTTCAGCTTTGTCCTCGGTACTCAGCACTAATC





AGAATCTCACGCACCTTTACCTGCGAGGCAACACTCTCGGAGACAAGGGGATCAAACTAC





TCTGTGAGGGACTCTTGCACCCCGACTGCAAGCTTCAGGTGTTGGAATTAGACAACTGCA





ACCTCACGTCACACTGCTGCTGGGATCTTTCCACACTTCTGACCTCCAGCCAGAGCCTGC





GAAAGCTGAGCCTGGGCAACAATGACCTGGGCGACCTGGGGGTCATGATGTTCTGTGAAG





TGCTGAAACAGCAGAGCTGCCTCCTGCAGAACCTGGGGTTGTCTGAAATGTATTTCAATT





ATGAGACAAAAAGTGCGTTAGAAACACTTCAAGAAGAAAAGCCTGAGCTGACCGTCGTCT





TTGAGCCTTCTTGGTAGGAGTGGAAACGGGGCTGCCAGACGCCAGTGTTCTCCGGTCCCT





CCAGCTGGGGGCCCTCAGGTGGAGAGAGCTGCGATCCATCCAGGCCAAGACCACAGCTCT





GTGATCCTTCCGGTGGAGTGTCGGAGAAGAGAGCTTGCCGACGATGCCTTCCTGTGCAGA





GCTTGGGCATCTCCTTTACGCCAGGGTGAGGAAGACACCAGGACAATGACAGCATCGGGT





GTTGTTGTCATCACAGCGCCTCAGTTAGAGGATGTTCCTCTTGGTGACCTCATGTAATTA





GCTCATTCAATAAAGCACTTTCTTTATTTT






As used herein, the term “NME8” refers to the gene encoding Thioredoxin domain-containing protein 3. The terms “NME8” and “Thioredoxin domain-containing protein 3” include wild-type forms of the NME8 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type NME8. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type NME8 nucleic acid sequence (e.g., SEQ ID NO: 57, ENA accession number AF202051). SEQ ID NO: 57 is a wild-type gene sequence encoding NME8 protein, and is shown below:










(SEQ ID NO: 57)



CGGCCACAACGAGGGAGCCGATTTAGATCCTCTGGGCCTGTTCCTTCCTTTTCTTTAAAC






GTCCCAGTCTAGCTTAGAGGAGGACCTGTTTTGTTAGATAAATGGCAAGCAAAAAACGAG





AAGTCCAGTTACAGACAGTCATCAATAATCAAAGCCTGTGGGATGAGATGTTGCAGAACA





AAGGCTTAACAGTGATTGATGTTTACCAAGCCTGGTGTGGACCTTGCAGAGCAATGCAAC





CTTTATTCAGAAAATTGAAAAATGAACTGAACGAAGACGAAATTCTGCATTTTGCTGTCG





CAGAAGCTGACAACATTGTGACTTTGCAGCCATTTAGAGATAAATGTGAACCTGTTTTTC





TCTTTAGTGTTAATGGCAAAATTATCGAAAAGATTCAGGGTGCAAATGCACCGCTTGTTA





ATAAAAAAGTTATTAATTTGATCGATGAGGAGAGAAAAATTGCAGCAGGTGAAATGGCTC





GACCTCAGTATCCTGAAATTCCATTAGTAGACTCAGATTCAGAAGTTAGTGAAGAATCAC





CATGTGAAAGTGTTCAGGAATTATACAGTATTGCTATTATCAAACCGGATGCTGTGATTA





GTAAAAAAGTTCTAGAAATTAAAAGAAAAATTACCAAAGCTGGATTTATTATAGAAGCAG





AGCATAAGACAGTGCTCACTGAAGAACAAGTTGTCAACTTCTATAGTCGAATAGCAGACC





AGTGTGACTTCGAAGAGTTTGTCTCTTTTATGACAAGTGGCTTAAGCTATATTCTAGTTG





TATCTCAAGGAAGTAAACACAATCCTCCCTCTGAAGAAACCGAACCACAGACTGACACCG





AACCTAACGAACGATCTGAGGATCAACCTGAGGTCGAAGCCCAGGTTACACCTGGAATGA





TGAAGAACAAACAAGACAGTTTACAAGAATATCTGGAAAGACAACATTTAGCTCAGCTCT





GTGACATTGAAGAGGATGCAGCTAATGTTGCTAAGTTCATGGATGCTTTCTTCCCCGATT





TTAAAAAAATGAAAAGCATGAAATTAGAAAAGACATTGGCATTACTTCGACCAAATCTCT





TTCATGAAAGGAAAGATGATGTTTTGCGTATTATTAAAGATGAAGACTTCAAAATACTGG





AGCAAAGACAAGTAGTATTATCGGAAAAAGAAGCACAAGCACTGTGCAAGGAATATGAAA





ATGAAGACTATTTTAATAAACTTATAGAAAACATGACCAGTGGTCCATCTCTAGCCCTTG





TTTTATTGAGAGACAATGGCTTGCAATACTGGAAACAATTACTGGGACCAAGAACTGTTG





AAGAAGCCATTGAATATTTTCCAGAGAGTTTATGTGCACAGTTTGCGATGGACAGTTTGC





CGGTCAACCAGTTGTATGGCAGCGATTCATTAGAAACCGCTGAAAGGGAAATACAGCATT





TCTTTCCTCTTCAAAGCACTTTAGGCTTGATTAAACCTCATGCAACAAGTGAACAAAGAG





AGCAGATCCTGAAGATAGTTAAGGAGGCTGGATTTGATCTGACACAGGTGAAGAAAATGT





TCCTAACTCCTGAGCAAATAGAGAAAATTTATCCAAAAGTAACAGGAAAAGACTTTTATA





AAGATTTATTGGAAATGTTATCTGTGGGTCCATCTATGGTCATGATTCTGACCAAGTGGA





ATGCTGTTGCAGAATGGAGACGATTGATGGGCCCAACAGACCCAGAAGAAGCAAAATTAC





TTTCCCCTGACTCCATCCGAGCCCAGTTTGGAATAAGTAAATTGAAAAACATTGTCCATG





GAGCATCTAACGCCTATGAAGCAAAAGAGGTTGTTAATAGACTCTTTGAGGATCCTGAGG





AAAACTAAAGTATATACTGTGAAAACTTTGAGAAGATAATACATATGTTCACGTCAATAT





ACAACCATTTGGCACAGCTTCCTGGGAGGAATAATAAGAAAAACATGCTTTGGAGGAAAA





CTCAAGATACAAAAATGAATGGCTATGCATAATAACAATAAAAATGTATTCCCCAAAC






As used herein, the term “NOS2” refers to the gene encoding Nitric oxide synthase, inducible. The terms “NOS2” and “Nitric oxide synthase, inducible” include wild-type forms of the NOS2 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type NOS2. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type NOS2 nucleic acid sequence (e.g., SEQ ID NO: 58, ENA accession number L24553). SEQ ID NO: 58 is a wild-type gene sequence encoding NOS2 protein, and is shown below:










(SEQ ID NO: 58)



AAGCCCCACAGTGAAGAACATCTGAGCTCAAATCCAGATAAGTGACATAAGTGACCTGCT






TTGTAAAGCCATAGAGATGGCCTGTCCTTGGAAATTTCTGTTCAAGACCAAATTCCACCA





GTATGCAATGAATGGGGAAAAAGACATCAACAACAATGTGGAGAAAGCCCCCTGTGCCAC





CTCCAGTCCAGTGACACAGGATGACCTTCAGTATCACAACCTCAGCAAGCAGCAGAATGA





GTCCCCGCAGCCCCTCGTGGAGACGGGAAAGAAGTCTCCAGAATCTCTGGTCAAGCTGGA





TGCAACCCCATTGTCCTCCCCACGGCATGTGAGGATCAAAAACTGGGGCAGCGGGATGAC





TTTCCAAGACACACTTCACCATAAGGCCAAAGGGATTTTAACTTGCAGGTCCAAATCTTG





CCTGGGGTCCATTATGACTCCCAAAAGTTTGACCAGAGGACCCAGGGACAAGCCTACCCC





TCCAGATGAGCTTCTACCTCAAGCTATCGAATTTGTCAACCAATATTACGGCTCCTTCAA





AGAGGCAAAAATAGAGGAACATCTGGCCAGGGTGGAAGCGGTAACAAAGGAGATAGAAAC





AACAGGAACCTACCAACTGACGGGAGATGAGCTCATCTTCGCCACCAAGCAGGCCTGGCG





CAATGCCCCACGCTGCATTGGGAGGATCCAGTGGTCCAACCTGCAGGTCTTCGATGCCCG





CAGCTGTTCCACTGCCCGGGAAATGTTTGAACACATCTGCAGACACGTGCGTTACTCCAC





CAACAATGGCAACATCAGGTCGGCCATCACCGTGTTCCCCCAGCGGAGTGATGGCAAGCA





CGACTTCCGGGTGTGGAATGCTCAGCTCATCCGCTATGCTGGCTACCAGATGCCAGATGG





CAGCATCAGAGGGGACCCTGCCAACGTGGAATTCACTCAGCTGTGCATCGACCTGGGCTG





GAAGCCCAAGTACGGCCGCTTCGATGTGGTCCCCCTGGTCCTGCAGGCCAATGGCCGTGA





CCCTGAGCTCTTCGAAATCCCACCTGACCTTGTGCTTGAGGTGGCCATGGAACATCCCAA





ATACGAGTGGTTTCGGGAACTGGAGCTAAAGTGGTACGCCCTGCCTGCAGTGGCCAACAT





GCTGCTTGAGGTGGGCGGCCTGGAGTTCCCAGGGTGCCCCTTCAATGGCTGGTACATGGG





CACAGAGATCGGAGTCCGGGACTTCTGTGACGTCCAGCGCTACAACATCCTGGAGGAAGT





GGGCAGGAGAATGGGCCTGGAAACGCACAAGCTGGCCTCGCTCTGGAAAGACCAGGCTGT





CGTTGAGATCAACATTGCTGTGCTCCATAGTTTCCAGAAGCAGAATGTGACCATCATGGA





CCACCACTCGGCTGCAGAATCCTTCATGAAGTACATGCAGAATGAATACCGGTCCCGTGG





GGGCTGCCCGGCAGACTGGATTTGGCTGGTCCCTCCCATGTCTGGGAGCATCACCCCCGT





GTTTCACCAGGAGATGCTGAACTACGTCCTGTCCCCTTTCTACTACTATCAGGTAGAGGC





CTGGAAAACCCATGTCTGGCAGGACGAGAAGCGGAGACCCAAGAGAAGAGAGATTCCATT





GAAAGTCTTGGTCAAAGCTGTGCTCTTTGCCTGTATGCTGATGCGCAAGACAATGGCGTC





CCGAGTCAGAGTCACCATCCTCTTTGCGACAGAGACAGGAAAATCAGAGGCGCTGGCCTG





GGACCTGGGGGCCTTATTCAGCTGTGCCTTCAACCCCAAGGTTGTCTGCATGGATAAGTA





CAGGCTGAGCTGCCTGGAGGAGGAACGGCTGCTGTTGGTGGTGACCAGTACGTTTGGCAA





TGGAGACTGCCCTGGCAATGGAGAGAAACTGAAGAAATCGCTCTTCATGCTGAAAGAGCT





CAACAACAAATTCAGGTACGCTGTGTTTGGCCTCGGCTCCAGCATGTACCCTCGGTTCTG





CGCCTTTGCTCATGACATTGATCAGAAGCTGTCCCACCTGGGGGCCTCTCAGCTCACCCC





GATGGGAGAAGGGGATGAGCTCAGTGGGCAGGAGGACGCCTTCCGCAGCTGGGCCGTGCA





AACCTTCAAGGCAGCCTGTGAGACGTTTGATGTCCGAGGCAAACAGCACATTCAGATCCC





CAAGCTCTACACCTCCAATGTGACCTGGGACCCGCACCACTACAGGCTCGTGCAGGACTC





ACAGCCTTTGGACCTCAGCAAAGCCCTCAGCAGCATGCATGCCAAGAACGTGTTCACCAT





GAGGCTCAAATCTCGGCAGAATCTACAAAGTCCGACATCCAGCCGTGCCACCATCCTGGT





GGAACTCTCCTGTGAGGATGGCCAAGGCCTGAACTACCTGCCGGGGGAGCACCTTGGGGT





TTGCCCAGGCAACCAGCCGGCCCTGGTCCAAGGCATCCTGGAGCGAGTGGTGGATGGCCC





CACACCCCACCAGACAGTGCGCCTGGAGGCCCTGGATGAGAGTGGCAGCTACTGGGTCAG





TGACAAGAGGCTGCCCCCCTGCTCACTCAGCCAGGCCCTCACCTACTTCCTGGACATCAC





CACACCCCCAACCCAGCTGCTGCTCCAAAAGCTGGCCCAGGTGGCCACAGAAGAGCCTGA





GAGACAGAGGCTGGAGGCCCTGTGCCAGCCCTCAGAGTACAGCAAGTGGAAGTTCACCAA





CAGCCCCACATTCCTGGAGGTGCTAGAGGAGTTCCCGTCCCTGCGGGTGTCTGCTGGCTT





CCTGCTTTCCCAGCTCCCCATTCTGAAGCCCAGGTTCTACTCCATCAGCTCCTCCCGGGA





TCACACGCCCACGGAGATCCACCTGACTGTGGCCGTGGTCACCTACCACACCCGAGATGG





CCAGGGTCCCCTGCACCACGGCGTCTGCAGCACATGGCTCAACAGCCTGAAGCCCCAAGA





CCCAGTGCCCTGCTTTGTGCGGAATGCCAGCGGCTTCCACCTCCCCGAGGATCCCTOCCA





TCCTTGCATCCTCATCGGGCCTGGCACAGGCATCGCGCCCTTCCGCAGTTTCTGGCAGCA





ACGGCTCCATGACTCCCAGCACAAGGGAGTGCGGGGAGGCCGCATGACCTTGGTGTTTGG





GTGCCGCCGCCCAGATGAGGACCACATCTACCAGGAGGAGATGCTGGAGATGGCCCAGAA





GGGGGTGCTGCATGCGGTGCACACAGCCTATTCCCGCCTGCCTGGCAAGCCCAAGGTCTA





TGTTCAGGACATCCTGCGGCAGCAGCTGGCCAGCGAGGTGCTCCGTGTGCTCCACAAGGA





GCCAGGCCACCTCTATGTTTGCGGGGATGTGCGCATGGCCCGGGACGTGGCCCACACCCT





GAAGCAGCTGGTGGCTGCCAAGCTGAAATTGAATGAGGAGCAGGTCGAGGACTATTTCTT





TCAGCTCAAGAGCCAGAAGCGCTATCACGAAGATATCTTTGGTGCTGTATTTCCTTACGA





GGCGAAGAAGGACAGGGTGGCGGTGCAGCCCAGCAGCCTGGAGATGTCAGCGCTCTGAGG





GCCTACAGGAGGGGTTAAAGCTGCCGGCACAGAACTTAAGGATGGAGCCAGCTCT






As used herein, the term “PICALM” refers to the gene encoding Phosphatidylinositol-binding clathrin assembly protein. The terms “PICALM” and “Phosphatidylinositol-binding clathrin assembly protein” include wild-type forms of the PICALM gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type PICALM. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type PICALM nucleic acid sequence (e.g., SEQ ID NO: 59, ENA accession number U45976). SEQ ID NO: 59 is a wild-type gene sequence encoding PICALM protein, and is shown below:










(SEQ ID NO: 59)



GCGCGGCCCCGAACCGCCGCCAGGCCGGCACGGGGGAAGGAGCCGGTGGGGGTAGGGGGT






GCGGTGGGGGGTGGGGACCCTCCGGCTCTTGGGGGTCCCAGTCCCCGCCGGCTGCTGAGC





GGGTGGGGTGGTGGAGGAGCTGCAGAGATGTCCGGCCAGAGCCTGACGGACCGAATCACT





GCCGCCCAGCACAGTGTCACCGGCTCTGCCGTATCCAAGACAGTATGCAAGGCCACGACC





CACGAGATCATGGGGCCCAAGAAAAAGCACCTGGACTACTTAATTCAGTGCACAAATGAG





ATGAATGTGAACATCCCACAGTTGGCAGACAGTTTATTTGAAAGAACTACTAATAGTAGT





TGGGTGGTGGTCTTCAAATCTCTCATTACAACTCATCATTTGATGGTGTATGGAAATGAG





CGTTTTATTCAGTATTTGGCTTCAAGAAACACGTTGTTTAACTTAAGCAATTTTTTGGAT





AAAAGTGGATTGCAAGGATATGACATGTCTACATTTATTAGGCGGTATAGTAGATATTTA





AATGAGAAAGCAGTTTCATACAGACAAGTTGCATTTGATTTCACAAAAGTGAAGAGAGGG





GCTGATGGAGTTATGAGAACAATGAACACAGAAAAACTCCTAAAAACTGTACCAATTATT





CAGAATCAAATGGATGCACTTCTTGATTTTAATGTTAATAGCAATGAACTTACAAATGGG





GTAATAAATGCTGCCTTCATGCTCCTGTTCAAAGATGCCATTAGACTGTTTGCAGCATAC





CATGAAGGAATTATTAATTTGTTGGAAAAATATTTTGATATGAAAAAGAACCAATGCAAA





GAAGGTCTTGACATCTATAAGAAGTTCCTAACTAGGATGACAAGAATCTCAGAGTTCCTC





AAAGTTGCAGAGCAAGTTGGAATTGACAGAGGTGATATACCAGACCTTTCACAGGCCCCT





AGCAGTCTTCTTGATGCTTTGGAACAACATTTAGCTTCCTTGGAAGGAAAGAAAATCAAA





GATTCTACAGCTGCAAGCAGGGCAACTACACTTTCCAATGCAGTGTCTTCCCTGGCAAGC





ACTGGTCTATCTCTGACCAAAGTGGATGAAAGGGAAAAGCAGGCAGCATTAGAGGAAGAA





CAGGCACGTTTGAAAGCTTTAAAGGAACAGCGCCTAAAAGAACTTGCAAAGAAACCTCAT





ACCTCTTTAACAACTGCAGCCTCTCCTGTATCCACCTCAGCAGGAGGGATAATGACTGCA





CCAGCCATTGACATATTTTCTACCCCTAGTTCTTCTAACAGCACATCAAAGCTGCCCAAT





GATCTGCTTGATTTGCAGCAGCCAACTTTTCACCCATCTGTACATCCTATGTCAACTGCT





TCTCAGGTAGCAAGTACATGGGGAGATCCTTTCTCTGCTACTGTAGATGCTGTTGATGAT





GCCATTCCAAGCTTAAATCCTTTCCTCACAAAAAGTAGTGGTGATGTTCACCTTTCCATT





TCTTCAGATGTATCTACTTTTACTACTAGGACACCTACTCATGAAATGTTTGTTGGATTC





ACTCCTTCTCCAGTTGCACAGCCACACCCTTCAGCTGGCCTTAATGTTGACTTTGAATCT





GTGTTTGGAAATAAATCTACAAATGTTATTGTAGATTCTGGGGGCTTTGATGAACTAGGT





GGACTTCTCAAACCAACAGTGGCCTCTCAGAACCAGAACCTTCCTGTTGCCAAACTCCCA





CCTAGCAAGTTAGTATCTGATGACTTGGATTCATCTTTAGCCAACCTTGTGGGCAATCTT





GGCATCGGAAATGGAACCACTAAGAATGATGTAAATTGGAGTCAACCAGGTGAAAAGAAG





TTAACTGGGGGATCTAACTGCGAACCAAAGGTTGCACCAACAACCGCTTGGAATGCTGCA





ACAATGGCACCCCCTGTAATGGCCTATCCTGCTACTACACCAACAGGCATGATAGGATAT





GGAATTCCTCCACAAATGGGAAGTGTTCCTGTAATGACGCAACCAACCTTAATATACAGC





CAGCCTGTCATGAGACCTCCAAACCCCTTTGGCCCTGTATCAGGAGCACAGATACAGTTT





ATGTAACTTGATGGAAGAAAATGGAATTACTCCAAAAAGACAAGTGCTCAAGCAGCAAAA





TCCTTACTTCCAGCAAAATCCAAACTGCTGTCTCTTAAATCTCTTAAACTCTCTTCTTCC





ATTAGGATGCTACAAGTANCTCAGTGAAGGCCCATGAAGGGAATTGGGGACTAGTTTATA





GGGNGAACGTATTCATTACAGTTTATAAAGGCCAGGATTGGNTTGGATTTTAGGATTANG





TTC






As used herein, the term “PILRA” refers to the gene encoding Paired Immunoglobin Like Type 2 Receptor Alpha. The terms “PILRA” and “Paired Immunoglobin Like Type 2 Receptor Alpha” include wild-type forms of the PILRA gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type PILRA. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type PILRA nucleic acid sequence (e.g., SEQ ID NO: 60, NCBI Reference Sequence: NM_013439.2). SEQ ID NO: 60 is a wild-type gene sequence encoding PILRA protein, and is shown below:










(SEQ ID NO: 60)



AATAGGGGAAAATAAGCCAGATGGATAAAGGAAGTGCTGGTCACCCTGGAGGTGCACTGGTTTGGG






GAAGGCTCCTGGCCCCCACAGCCCTCTTCGGAGCCTGAGCCCGGCTCTCCTCACTCACCTCAACCC





CCAGGCGGCCCCTCCACAGGGCCCCTCTCCTGCCTGGACGGCTCTGCTGGTCTCCCCGTCCCCTG





GAGAAGAACAAGGCCATGGGTCGGCCCCTGCTGCTGCCCCTACTGCCCTTGCTGCTGCCGCCAGC





ATTTCTGCAGCCTAGTGGCTCCACAGGATCTGGTCCAAGCTACCTTTATGGGGTCACTCAACCAAAA





CACCTCTCAGCCTCCATGGGTGGCTCTGTGGAAATCCCCTTCTCCTTCTATTACCCCTGGGAGTTAG





CCACAGCTCCCGACGTGAGAATATCCTGGAGACGGGGCCACTTCCACAGGCAGTCCTTCTACAGCA





CAAGGCCGCCTTCCATTCACAAGGATTATGTGAACCGGCTCTTTCTGAACTGGACAGAGGGTCAGAA





GAGCGGCTTCCTCAGGATCTCCAACCTGCAGAAGCAGGACCAGTCTGTGTATTTCTGCCGAGTTGA





GCTGGACACACGGAGCTCAGGGAGGCAGCAGTGGCAGTCCATCGAGGGGACCAAACTCTCCATCA





CCCAGGCTGTCACGACCACCACCCAGAGGCCCAGCAGCATGACTACCACCTGGAGGCTCAGTAGC





ACAACCACCACAACCGGCCTCAGGGTCACACAGGGCAAACGACGCTCAGACTCTTGGCACATAAGT





CTGGAGACTGCTGTGGGGGTGGCAGTGGCTGTCACTGTGCTCGGAATCATGATTTTGGGACTGATC





TGCCTCCTCAGGTGGAGGAGAAGGAAAGGTCAGCAGCGGACTAAAGCCACAACCCCAGCCAGGGA





ACCCTTCCAAAACACAGAGGAGCCATATGAGAATATCAGGAATGAAGGACAAAATACAGATCCCAAG





CTAAATCCCAAGGATGACGGCATCGTCTATGCTTCCCTTGCCCTCTCCAGCTCCACCTCACCCAGAG





CACCTCCCAGCCACCGTCCCCTCAAGAGCCCCCAGAACGAGACCCTGTACTCTGTCTTAAAGGCCT





AACCAATGGACAGCCCTCTCAAGACTGAATGGTGAGGCCAGGTACAGTGGCGCACACCTGTAATCC





CAGCTACTCTGAAGCCTGAGGCAGAATCAAGTGAGCCCAGGAGTTCAGGGCCAGCTTTGATAATGG





AGCGAGATGCCATCTCTAGTTAAAAATATATATTAACAATAAAGTAACAAATTTAAAAAGATAAAAAAA






As used herein, the term “PLCG2” refers to the gene encoding 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2. The terms “PLCG2” and “1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2” include wild-type forms of the PLCG2 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type PLCG2. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type PLCG2 nucleic acid sequence (e.g., SEQ ID NO: 61, ENA accession number M37238). SEQ ID NO: 61 is a wild-type gene sequence encoding PLCG2 protein, and is shown below:










(SEQ ID NO: 61)



GAATTCGGCGCTGAGTGACCCGAGTCGGGACGCGGGCTGCGCGCGCGGGACCCCGGAGCC






CAAACCCGGGGCAGGCGGGCAGCTGTGCCCGGGCGGCACGGCCAGCTTCCTGATTTCTCC





CGATTCCTTCCTTCTCCCTGGAGCGGCCGACAATGTCCACCACGGTCAATGTAGATTCCC





TTGCGGAATATGAGAAGAGCCAGATCAAGAGAGCCCTGGAGCTGGGGACGGTGATGACTG





TGTTCAGCTTCCGCAAGTCCACCCCCGAGCGGAGAACCGTCCAGGTGATCATGGAGACGC





GGCAGGTGGCCTGGAGCAAGACCGCCGACAAGATCGAGGGCTTCTTGGATATCATGGAAA





TAAAAGAAATCCGCCCAGGGAAGAACTCCAAAGATTTCGAGCGAGCAAAAGCAGTTCGCC





AGAAAGAAGACTGCTGCTTCACCATCCTATATGGCACTCAGTTCGTCCTCAGCACGCTCA





GCTTGGCAGCTGACTCTAAAGAGGATGCAGTTAACTGGCTCTCTGGCTTGAAAATCTTAC





ACCAGGAAGCGATGAATGCGTCCACGCCCACCATTATCGAGAGTTGGCTGAGAAAGCAGA





TATATTCTGTGGATCAAACCAGAAGAAACAGCATCAGTCTCCGAGAGTTGAAGACCATCT





TGCCCCTGATCAACTTTAAAGTGAGCAGTGCCAAGTTCCTTAAAGATAAGTTTGTGGAAA





TAGGAGCACACAAAGATGAGCTCAGCTTTGAACAGTTCCATCTCTTCTATAAAAAACTTA





TGTTTGAACAGCAAAAATCGATTCTCGATGAATTCAAAAAGGATTCGTCCGTGTTCATCC





TGGGGAACACTGACAGGCCGGATGCCTCTGCTGTTTACCTGCATGACTTCCAGAGGTTTC





TCATACATGAACAGCAGGAGCATTGGGCTCAGGATCTGAACAAAGTCCGTGAGCGGATGA





CAAAGTTCATTGATGACACCATGCGTGAAACTGCTGAGCCTTTCTTGTTTGTGGATGAGT





TCCTCACGTACCTGTTTTCACGAGAAAACAGCATCTGGGATGAGAAGTATGACGCGGTGG





ACATGCAGGACATGAACAACCCCCTGTCTCATTACTGGATCTCCTCGTCACATAACACGT





ACCTTACAGGTGACCAGCTGCGGAGCGAGTCGTCCCCAGAAGCTTACATCCGCTGCCTGC





GCATGGGCTGTCGCTGCATTGAACTGGACTGCTGGGACGGGCCCGATGGGAAGCCGGTCA





TCTACCATGGCTGGACGCGGACTACCAAGATCAAGTTTGATGACGTCGTGCAGGCCATCA





AAGACCACGCCTTTGTTACCTCGAGCTTCCCAGTGATCCTGTCCATCGAGGAGCACTGCA





GCGTGGAGCAACAGCGTCACATGGCCAAGGCCTTCAAGGAAGTATTTGGCGACCTGCTGT





TGACGAAGCCCACGGAGGCCAGTGCTGACCAGCTGCCCTCGCCCAGCCAGCTGCGGGAGA





AGATCATCATCAAGCATAAGAAGCTGGGCCCCCGAGGCGATGTGGATGTCAACATGGAGG





ACAAGAAGGACGAACACAAGCAACAGGGGGAGCTGTACATGTGGGATTCCATTGACCAGA





AATGGACTCGGCACTACTGCGCCATTGCTGATGCCAAGCTGTCCTTCAGTGATGACATTG





AACAGACTATGGAGGAGGAAGTGCCCCAGGATATACCCCCTACAGAACTACATTTTGGGG





AGAAATGGTTCCACAAGAAGGTGGAGAAGAGGACGAGTGCCGAGAAGTTGCTGCAGGAAT





ACTGCATGGAGACGGGGGGCAAGGATGGCACCTTCCTGGTTCGGGAGAGCGAGACCTTCC





CCAATGACTACACCCTGTCCTTCTGGCGGTCAGGCCGGGTCCAGCACTGCCGGATCCGCT





CCACCATGGAGGGCGGGACCCTGAAATACTACTTGACTGACAACCTGAGGTTCAGGAGGA





TGTATGCCCTCATCCAGCACTACCGCGAGACGCACCTGCCGTGCGCCGAGTTCGAGCTGC





GGCTCACGGACCCTGTGCCCAACCCCAACCCCCACGAGTCCAAGCCGTGGTACTATGACA





GCCTGAGCCGCGGAGAGGCAGAGGACATGCTGATGAGGATTCCCCGGGACGGGGCCTTCC





TGATCCGGAAGCGAGAGGGGAGCGACTCCTATGCCATCACCTTCAGGGCTAGGGGCAAGG





TAAAGCATTGTCGCATCAACCGGGACGGCCGGCACTTTGTGCTGGGGACCTCCGCCTATT





TTGAGAGTCTGGTGGAGCTCGTCAGTTACTACGAGAAGCATTCACTCTACCGAAAGATGA





GACTGCGCTACCCCGTGACCCCCGAGCTCCTGGAGCGCTACAATACGGAAAGAGATATAA





ACTCCCTCTACGACGTCAGCAGAATGTATGTGGATCCCAGTGAAATCAATCCGTCCATGC





CTCAGAGAACCGTGAAAGCTCTGTATGACTACAAAGCCAAGCGAAGCGATGAGCTGAGCT





TCTGCCGTGGTGCCCTCATCCACAATGTCTCCAAGGAGCCCGGGGGCTGGTGGAAAGGAG





ACTATGGAACCAGGATCCAGCAGTACTTCCCATCCAACTACGTCGAGGACATCTCAACTG





CAGACTTCGAGGAGCTAGAAAAGCAGATTATTGAAGACAATCCCTTAGGGTCTCTTTGCA





GAGGAATATTGGACCTCAATACCTATAACGTCGTGAAAGCCCCTCAGGGAAAAAACCAGA





AGTCCTTTGTCTTCATCCTGGAGCCCAAGGAGCAGGGCGATCCTCCGGTGGAGTTTGCCA





CAGACAGGGTGGAGGAGCTCTTTGAGTGGTTTCAGAGCATCCGAGAGATCACGTGGAAGA





TTGACAGCAAGGAGAACAACATGAAGTACTGGGAGAAGAACCAGTCCATCGCCATCGAGC





TCTCTGACCTGGTTGTCTACTGCAAACCAACCAGCAAAACCAAGGACAACTTAGAAAATC





CTGACTTCCGAGAAATCCGCTCCTTTGTGGAGACGAAGGCTGACAGCATCATCAGACAGA





AGCCCGTCGACCTCCTGAAGTACAATCAAAAGGGCCTGACCCGCGTCTACCCAAAGGGAC





AAAGAGTTGACTCTTCAAACTACGACCCCTTCCGCCTCTGGCTGTGCGGTTCTCAGATGG





TGGCACTCAATTTCCAGACGGCAGATAAGTACATGCAGATGAATCACGCATTGTTTTCTC





TCAACGGGCGCACGGGCTACGTTCTGCAGCCTGAGAGCATGAGGACAGAGAAATATGACC





CGATGCCACCCGAGTCCCAGAGGAAGATCCTGATGACGCTGACAGTCAAGGTTCTCGGTG





CTCGCCATCTCCCCAAACTTGGACGAAGTATTGCCTGTCCCTTTGTAGAAGTGGAGATCT





GTGGAGCCGAGTATGGCAACAACAAGTTCAAGACGACGGTTGTGAATGATAATGGCCTCA





GCCCTATCTGGGCTCCAACACAGGAGAAGGTGACATTTGAAATTTATGACCCAAACCTGG





CATTTCTGCGCTTTGTGGTTTATGAAGAAGATATGTTCAGCGATCCCAACTTTCTTGCTC





ATGCCACTTACCCCATTAAAGCAGTCAAATCAGGATTCAGGTCCGTTCCTCTGAAGAATG





GGTACAGCGAGGACATAGAGCTGGCTTCCCTCCTGGTTTTCTGTGAGATGCGGCCAGTCC





TGGAGAGCGAAGAGGAACTTTACTCCTCCTGTCGCCAGCTGAGGAGGCGGCAAGAAGAAC





TGAACAACCAGCTCTTTCTGTATGACACACACCAGAACTTGCGCAATGCCAACCGGGATG





CCCTGGTTAAAGAGTTCAGTGTTAATGAGAACCACTCCAGCTGTACCAGGAGAAATGCAA





CAAGAGGTTAAGAGAGAAGAGAGTCAGCAACAGCAAGTTTTACTCATAGAAGCTGGGGTA





TGTGTGTAAGGGTATTGTGTGTGTGCGCATGTGTGTTTGCATGTAGGAGAACGTGCCCTA





TTCACACTCTGGGAAGACGCTAATCTGTGACATCTTTTCTTCAAGCCTGCCATCAAGGAC





ATTTCTTAAGACCCAACTGGCATGAGTTGGGGTAATTTCCTATTATTTTCATCTTGGACA





ACTTCTAACTTATATCTTTATAGAGGATTCCCCAAAATGTGCTCCTCATTTTTGGCCTCT





CATGTTCCAAACCTCATTGAATAAAAAGCAATGAAAACCTTG






As used herein, the term “PTK2B” refers to the gene encoding Protein-tyrosine kinase 2-beta. The terms “PTK2B” and “Protein-tyrosine kinase 2-beta” include wild-type forms of the PTK2B gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type PTK2B. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type PTK2B nucleic acid sequence (e.g., SEQ ID NO: 62, ENA accession number U33284). SEQ ID NO: 62 is a wild-type gene sequence encoding PTK2B protein, and is shown below:










(SEQ ID NO: 62)



CGGTACAGGTAAGTCGGCCGGGCAGGTAGGGGTGCCCGAGGAGTAGTCGCTGGAGTCCGC






GCCTCCCTGGGACTGCAATGTGCCGGTCTTAGCTGCTGCCTGAGAGGATGTCTGGGGTGT





CCGAGCCCCTGAGCCGAGTAAAGTTGGGCACATTACGCCGGCCTGAAGGCCCTGCAGAGC





CCATGGTGGTGGTACCAGTAGATGTGGAAAAGGAGGACGTGCGTATCCTCAAGGTCTGCT





TCTATAGCAACAGCTTCAATCCTGGGAAGAACTTCAAACTGGTCAAATGCACTGTCCAGA





CGGAGATCCGGGAGATCATCACCTCCATCCTGCTGAGCGGGCGGATCGGGCCCAACATCC





GGTTGGCTGAGTGCTATGGGCTGAGGCTGAAGCACATGAAGTCCGATGAGATCCACTGGC





TGCACCCACAGATGACGGTGGGTGAGGTGCAGGACAAGTATGAGTGTCTGCACGTGGAAG





CCGAGTGGAGGTATGACCTTCAAATCCGCTACTTGCCAGAAGACTTCATGGAGAGCCTGA





AGGAGGACAGGACCACGCTGCTCTATTTTTACCAACAGCTCCGGAACGACTACATGCAGC





GCTACGCCAGCAAGGTCAGCGAGGGCATGGCCCTGCAGCTGGGCTGCCTGGAGCTCAGGC





GGTTCTTCAAGGATATGCCCCACAATGCACTTGACAAGAAGTCCAACTTCGAGCTCCTAG





AAAAGGAAGTGGGGCTGGACTTGTTTTTCCCAAAGCAGATGCAGGAGAACTTAAAGCCCA





AACAGTTCCGGAAGATGATCCAGCAGACCTTCCAGCAGTACGCCTCGCTCAGGGAGGAGG





AGTGCGTCATGAAGTTCTTCAACACTCTCGCCGGCTTCGCCAACATCGACCAGGAGACCT





ACCGCTGTGAACTCATTCAAGGATGGAACATTACTGTGGACCTGGTCATTGGCCCTAAAG





GGATCCGCCAGCTGACTAGTCAGGACGCAAAGCCCACCTGCCTGGCCGAGTTCAAGCAGA





TCAGGTCCATCAGGTGCCTCCCGCTGGAGGAGGGCCAGGCAGTACTTCAGCTGGGCATTG





AAGGTGCCCCCCAGGCCTTGTCCATCAAAACCTCATCCCTAGCAGAGGCTGAGAACATGG





CTGACCTCATAGACGGCTACTGCCGGCTGCAGGGTGAGCACCAAGGCTCTCTCATCATCC





ATCCTAGGAAAGATGGTGAGAAGCGGAACAGCCTGCCCCAGATCCCCATGCTAAACCTGG





AGGCCCGGCGGTCCCACCTCTCAGAGAGCTGCAGCATAGAGTCAGACATCTACGCAGAGA





TTCCCGACGAAACCCTGCGAAGGCCCGGAGGTCCACAGTATGGCATTGCCCGTGAAGATG





TGGTCCTGAATCGTATTCTTGGGGAAGGCTTTTTTGGGGAGGTCTATGAAGGTGTCTACA





CAAATCACAAAGGGGAGAAAATCAATGTAGCTGTCAAGACCTGCAAGAAAGACTGCACTC





TGGACAACAAGGAGAAGTTCATGAGCGAGGCAGTGATCATGAAGAACCTCGACCACCCGC





ACATCGTGAAGCTGATCGGCATCATTGAAGAGGAGCCCACCTGGATCATCATGGAATTGT





ATCCCTATGGGGAGCTGGGCCACTACCTGGAGCGGAACAAGAACTCCCTGAAGGTGCTCA





CCCTCGTGCTGTACTCACTGCAGATATGCAAAGCCATGGCCTACCTGGAGAGCATCAACT





GCGTGCACAGGGACATTGCTGTCCGGAACATCCTGGTGGCCTCCCCTGAGTGTGTGAAGC





TGGGGGACTTTGGTCTTTCCCGGTACATTGAGGACGAGGACTATTACAAAGCCTCTGTGA





CTCGTCTCCCCATCAAATGGATGTCCCCAGAGTCCATTAACTTCCGACGCTTCACGACAG





CCAGTGACGTCTGGATGTTCGCCGTGTGCATGTGGGAGATCCTGAGCTTTGGGAAGCAGC





CCTTCTTCTGGCTGGAGAACAAGGATGTCATCGGGGTGCTGGAGAAAGGAGACCGGCTGC





CCAAGCCTGATCTCTGTCCACCGGTCCTTTATACCCTCATGACCCGCTGCTGGGACTACG





ACCCCAGTGACCGGCCCCGCTTCACCGAGCTGGTGTGCAGCCTCAGTGACGTTTATCAGA





TGGAGAAGGACATTGCCATGGAGCAAGAGAGGAATGCTCGCTACCGAACCCCCAAAATCT





TGGAGCCCACAGCCTTCCAGGAACCCCCACCCAAGCCCAGCCGACCTAAGTACAGACCCC





CTCCGCAAACCAACCTCCTGGCTCCAAAGCTGCAGTTCCAGGTTCCTGAGGGTCTGTGTG





CCAGCTCTCCTACGCTCACCAGCCCTATGGAGTATCCATCTCCCGTTAACTCACTGCACA





CCCCACCTCTCCACCGGCACAATGTCTTCAAACGCCACAGCATGCGGGAGGAGGACTTCA





TCCAACCCAGCAGCCGAGAAGAGGCCCAGCAGCTGTGGGAGGCTGAAAAGGTCAAAATGC





GGCAAATCCTGGACAAACAGCAGAAGCAGATGGTGGAGGACTACCAGTGGCTCAGGCAGG





AGGAGAAGTCCCTGGACCCCATGGTTTATATGAATGATAAGTCCCCATTGACGCCAGAGA





AGGAGGTCGGCTACCTGGAGTTCACAGGGCCCCCACAGAAGCCCCCGAGGCTGGGCGCAC





AGTCCATCCAGCCCACAGCTAACCTGGACCGGACCGATGACCTGGTGTACCTCAATGTCA





TGGAGCTGGTGCGGGCCGTGCTGGAGCTCAAGAATGAGCTCTGTCAGCTGCCCCCCGAGG





GCTACGTGGTGGTGGTGAAGAATGTGGGGCTGACCCTGCGGAAGCTCATCGGGAGCGTGG





ATGATCTCCTGCCTTCCTTGCCGTCATCTTCACGGACAGAGATCGAGGGCACCCAGAAAC





TGCTCAACAAAGACCTGGCAGAGCTCATCAACAAGATGCGGCTGGCGCAGCAGAACGCCG





TGACCTCCCTGAGTGAGGAGTGCAAGAGGCAGATGCTGACGGCTTCACACACCCTGGCTG





TGGACGCCAAGAACCTGCTCGACGCTGTGGACCAGGCCAAGGTTCTGGCCAATCTGGCCC





ACCCACCTGCAGAGTGACGGAGGGTGGGGGCCACCTGCCTGCGTCTTCCGCCCCTGCCTG





CCATGTACCTCCCCTGCCTTGCTGTTGGTCATGTGGGTCTTCCAGGGAGAAGGCCAAGGG





GAGTCACCTTCCCTTGCCACTTTGCACGACGCCCTCTCCCCACCCCTACCCCTGGCTGTA





CTGCTCAGGCTGCAGCTGGACAGAGGGGACTCTGGGCTATGGACACAGGGTGACGGTGAC





AAAGATGGCTCAGAGGGGGACTGCTGCTGCCTGGCCACTGCTCCCTAAGCCAGCCT






As used herein, the term “SCIMP” refers to the gene encoding SLP Adaptor and CSK Interacting Membrane Protein. The terms “SCIMP” and “SLP Adaptor and CSK Interacting Membrane Protein” include wild-type forms of the SCIMP gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type SCIMP. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type SCIMP nucleic acid sequence (e.g., SEQ ID NO: 63, NCBI Reference Sequence: NM_207103.3). SEQ ID NO: 63 is a wild-type gene sequence encoding SCIMP protein, and is shown below:










(SEQ ID NO: 63)



ACTGTCTCTAGCAGTGGGTGAAGGCCTGTGAGTGAGGAATGCCTCTCACCAGCTGTGCCTGAGCTG






CAGCACTCCAGCCACTGCTGTCTCCTTAGCTGCTCACATATGGATACTTTCACAGTTCAGGATTCCAC





TGCAATGAGCTGGTGGAGGAATAATTTCTGGATCATCTTAGCTGTGGCCATCATCGTTGTCTCTGTG





GGTCTGGGCCTCATCCTGTACTGTGTCTGTAAGTGGCAGCTTAGACGAGGCAAGAAATGGGAAATT





GCCAAGCCCCTGAAACACAAGCAAGTAGATGAAGAAAAGATGTATGAGAATGTTCTTAATGAGTCGC





CAGTTCAATTACCGCCTCTGCCACCGAGGAATTGGCCTTCTCTAGAAGACTCTTCCCCACAGGAAGC





CCCAAGTCAGCCGCCCGCTACATACTCACTGGTAAATAAAGTTAAAAATAAGAAGACTGTTTCCATCC





CAAGCTACATTGAGCCTGAAGATGACTATGACGATGTTGAAATCCCTGCAAATACTGAAAAAGCATCA





TTTTGAAACAGCCATTTCTTCTTTTTGGCAAAACTGAAGAGGGTTCACACAACTTATTTTAAAACAATC





AAGAATGGTTGAACTTCAGTAGGTCTCTGGGCCCTGAAAGCCAGTGGTGATTTTATGAAGCTCTATA





AGATAAAGCACTTCCCAAACCTTAGATGAAGACACCCCTGCGATCGGATGACTGCAGCCAGAGGAG





ACACATGGGTGCTCGGCTCTGAGGACTTAGAGGGGTCAGCCTTGTGCTGTTGAGGAAACTTTCCAT





GGGAAGGACCACGGGGCTCCATGGCTCCCACCTGTGGGAAACTACTCATTTCTTGGCATTCTTTCCC





CCTTCATTCCCTTTGGTTTGCATGGTTCTGAGTGATATTAAATCTCAGCATTTGGTTGTGCAGACCCT





CCCAGGCTCCCATCCCCAGCAAGGCCCTCACCAAGCATGCTGGTCTTTACCCTCTCACCCCACCCA





CCTCCTGCACTGTGAGGCTGTGGGTGAGTTACAGCTGAGTGCTCTCGTGCCCAGGTTCCCACACCA





CATCTCGCGAGTTTGCAAGGGCAGGGAGTACCTTTTGTTCTCGTGAACCCTCCCCACCTAGACACCC





TGCAAACCCCAGTGCCTTTATATGATGTAGGCCAAATTGACCATAGAGATTTGAGTTTTCACCTAGGT





TTTCTCCCCGTGCTTGCAAGTTGTACTGTAACAATGGACAAAGGACAAAAGTTACCTTCTGATTTACA





CCTAGAAGCATCATTTTGCAATAGGTGTGTTGGGGGTGCTACAGGAAAAATACATTTCCCCCAGGAC





AAATCATGGGGAACAGGAAAGAAAAGGGGCATGTAACAATGGCATATACAAGATGAGAGTTCAGGG





GGCTTAATATCCCCTGTCCATCATTTTCATCAGTACTTACTCGAGTTCTAGGAAAACAGCCTCAAGCC





CCTTCCTTCCAGATCACTGTCCCTGGGCATCTGGGAGGAGGCAGAAGGTCCACTGTGATGTGCTGC





AGCCAATGAGATGGGCCAGGGACATGGGCAGATGTCTTGTTAAACAAGTGTCCTAATGGGGTCAAC





AAGGCCCGAGTCAGCTTTATAGGCTCTTAGACCTCATCAATTCCTTCTAGCTGATCGCCAGAGCCCT





AGGACTTGACTCATTCTAACTATACTCACAAGATGCTGGTTTCTAAGTGACCTCTGGGAAATCTGGCA





AATGAACAGCCTTGCAGAGAGAGCACTGTGAACCTGGAAAGGCCTGAGAGTGACTCAGATTTCCCT





CAAGAGATGGGAAAATGTGTTCCTCCCATTTTCAAGCTTTCTCCCTCAATCAACGCTGGAGCACTGG





GGACCTGGGCTTCCTCCCTGGTTCTCTCTTTCCAGACTCTATGAAGGCTTCCACCTTGCTATTAATAC





CTCCTTGGGAGGCCAAGGTGGGCGGATCACCTGAGGTCGGGAGTTCGAGACCAGCCTGACCAACA





TGGAGAAACCCCATTTCTACTAAAAATACAAAATTAGTCAGGCATGGTCGCGCATGCCTGTAATCCCA





GCTACTTGGGAGGCTGAGGCAGAAGAATCGCTTGAAACTGGGAGGCGGAGGTTGCGGTGAGCCGA





GAACATGCCATTGCACTCCAGCCTGGACAACAAGAGTGAAACTCCATCTAAAAATAAATAAATAAATA





AATAAATAAACCCTCCTTATGTTAGGCCAGTAGTTATCTAACTATGGCCTTATGGGACTCTGGTATCC





CACCAGCCAAAGAGAGGACTCTTCCCAAATTATAGAACAAAAATAAGCCAAAGGATTGGAGTGTTTC





AAACACATGCTTTCGTCTTATAAATGTTCTGTAAACCCTCCATGACTATGACAAAAGTTAAAAACAAAT





GCCAGACAAA






As used herein, the term “SLC24A4” refers to the gene encoding Solute Carrier Family 24 Member 4. The terms “SLC24A4” and “Solute Carrier Family 24 Member 4” include wild-type forms of the SLC24A4 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type SLC24A4. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type SLC24A4 nucleic acid sequence (e.g., SEQ ID NO: 64, NCBI Reference Sequence: NM_153646.3). SEQ ID NO: 64 is a wild-type gene sequence encoding SLC24A4 protein, and is shown below:










(SEQ ID NO: 64)



AGACGGCACCCAGGCGCTCCGGGATGGCGCTCCGCGGGACCCTCCGGCCGCTCAAAGTTCGCAG






GAGGCGAGAGATGCTGCCGCAGCAAGTCGGCTTCGTGTGCGCGGTGCTGGCCCTGGTGTGCTGTG





CGTCCGGCCTCTTCGGCAGCTTGGGGCACAAAACAGCTTCTGCTAGCAAACGTGTCCTGCCAGACA





CGTGGAGAAATAGAAAGTTGATGGCCCCAGTGAATGGGACACAGACAGCCAAGAACTGCACAGATC





CTGCGATTCACGAGTTCCCCACAGATCTGTTCTCCAATAAGGAGCGACAGCACGGAGCCGTCCTGC





TGCACATCCTTGGTGCTCTGTATATGTTCTATGCCTTGGCCATAGTGTGCGATGACTTCTTTGTTCCG





TCTCTAGAGAAGATCTGTGAGAGACTCCATCTGAGCGAAGATGTGGCTGGAGCCACCTTCATGGCT





GCAGGAAGCTCAACGCCAGAGCTGTTTGCGTCTGTTATTGGGGTGTTCATCACCCATGGGGACGTC





GGGGTGGGCACCATCGTGGGCTCTGCTGTGTTCAACATCCTGTGCATAATTGGAGTGTGCGGACTG





TTTGCTGGCCAGGTGGTCCGTCTGACGTGGTGGGCCGTGTGCCGAGACTCCGTGTACTACACCATC





TCTGTCATCGTGCTCATCGTGTTCATATATGATGAACAAATTGTGTGGTGGGAAGGCCTGGTGCTCA





TCATCTTGTATGTGTTTTATATTCTGATCATGAAGTACAATGTGAAGATGCAAGCCTTTTTCACAGTCA





AACAAAAGAGCATTGCAAACGGTAACCCGGTCAACAGTGAGCTGGAGGCTGGTAATGATTTCTATGA





CGGTAGCTATGATGACCCTTCCGTGCCATTGCTGGGGCAAGTGAAGGAGAAGCCACAGTATGGCAA





GAACCCCGTGGTGATGGTGGACGAGATTATGAGCTCCAGCCCTCCCAAGTTCACCTTCCCTGAAGC





AGGCTTACGAATCATGATCACCAATAAGTTTGGACCCAGGACCCGACTACGGATGGCCAGCAGGAT





CATCATTAATGAGCGGCAGAGACTGATCAACTCGGCCAATGGTGTGAGCAGTAAGCCGCTTCAAAAC





GGGAGGCACGAGAACATTGAGAACGGGAATGTTCCTGTGGAAAACCCCGAAGACCCTCAGCAGAAT





CAGGAGCAGCAGCCGCCGCCACAGCCACCACCGCCAGAGCCAGAGCCGGTGGAGGCTGACTTCCT





GTCCCCCTTCTCCGTGCCGGAGGCCAGAGGGGACAAGGTCAAGTGGGTGTTCACCTGGCCCCTCA





TCTTCCTCCTGTGCGTCACCATTCCCAACTGCAGCAAGCCCCGCTGGGAGAAGTTCTTCATGGTCAC





CTTCATCACCGCCACGCTGTGGATCGCTGTGTTCTCCTACATCATGGTGTGGCTGGTGACTATTATC





GGATACACACTTGGGATCCCGGATGTCATCATGGGCATTACTTTCCTGGCAGCAGGGACAAGTGTTC





CAGACTGCATGGCCAGCCTAATTGTGGCGAGACAAGGCCTTGGGGACATGGCAGTCTCCAACACCA





TAGGAAGCAACGTGTTTGACATCCTGGTAGGACTTGGTGTACCGTGGGGCCTGCAGACCATGGTTG





TTAATTATGGATCAACAGTGAAGATCAACAGCCGGGGGCTGGTCTATTCCGTGGTCCTGTTGCTGGG





CTCTGTCGCTCTCACCGTCCTCGGCATCCACCTAAACAAGTGGCGACTGGACCGGAAGCTGGGTGT





CTACGTGCTGGTTCTCTACGCCATCTTCTTGTGCTTCTCCATAATGATAGAGTTTAACGTCTTTACCTT





CGTCAACTTGCCGATGTGCCGGGAAGACGATTAGCGCTGAGTCGCGGCCCCTGGGAGCTGATCTG





GACACCCTGTGACACTGGCGTTCTCCTCTCCCCTCCTTCCCCCACCACAGGTCTCTCCTGCATAGGC





AGCCACTGTCCGTTCTTTCACACACTGGAAGGAAGAGCCATCGTGGTCTTTGTCTGGCCACAGGCCA





GGCTGCTGGGCATCCTCCTCCTCCTTGGAGTTCCGCCCCTGCAAGGCTGGATTTGGGGGCCATTAT





CTGAGCAGCTTCAAAGACCCCTGAGCTGCCAACCACGGAGATGTGCCAAGCATCTCATCTCTCCTG





CACACTTTAGTCAGAAGGACTTCTGCATGCAGTTTGTCTTTCTGTTCTGCAGGCAGCTTCAGAATTGA





GGTCATTTGTGAGCACAAGATCTCATAGGGCAGGTGCAAAATAGGAATGTTGTTCTCAAGTGTCACC





TCCAGCCCAGAGGTGGTTCCTTAGGCAGCATGTGCTCCTGGGAGCCTCTGACTTTTGCTGGAAGCA





GCCACAGTTTGGAAGGGGCAAGACCTCAACCTGTTGGGGTTTAGGGCCCATGATGGCAGACATTCT





ACCCCTTTTCCTGGAAAAACTGGAAGAATGAAAATAATTTTTTTCTGTGGAAGAGAGAAAATGAGTGA





ATATTCTTCTCACTTTTATTGATGCATTCAGAGAATAAGCAATGAAATATTAAAAAATGAAACATCATAT





AGGTCATCATACTTGAAAATTATCATTCCATATGAAAGGATCATGATACACACCAAAAAAGTAATGATC





GTAAAGACACAAATCCTCTGTATGCCATCTTGCATTGGCACTGAGGTGTTTGGTTTGGAATAGGGAA





AAAGGTAAGAGACTAACGTGGAAAGGTGCTAACTCAGAGACTGGAGATTATAGTTTACAGCTGTACT





TTCCAGATCTTCTATGTGACACAATGCACTGTCCTTGTGGGTTTGTCATTTATTGGTTAATGCTCTAGT





TTCAAAACCACCCTGTTGAAAGTTCCAGTTATTTATATGCCCAACAAATTTCATAGCCTGCTGAACTGA





ACTGAGTGTGTCAGAAGTGCTGGTTAATGACGAGAAGAGATTGCCTGAAAAACAACAAACTGCTTTC





TGGTTAGCTGAAGGCAAGTGTGAAAATCAGAATTTAGAATATTTAGAGCTAAGCTTCTGGAACCACGT





AGTTTCTACACGTGGCAGGCCAAGAATGGGAGGCTGACTCAAAACTAGATAGAAAAATATAAAATAAT





CTTCGACCACTTGATAGCTCTCAAATATATATTTAAAAGATTTATGAATACAAACCATTTATGGTTTATG





ATTTCTAAAAAGAAAGCACAATTAATTTTATAGAGAGGTTTTTTATTTTTTTAATATTTCTATTGCAAAAG





TCTATCCGATTTGATGCACTTTGAATATTGAGATATTTTGCACGGATGAATGTATGGGAACTACCCAT





GATGATGTAAGAGGAAAGAACATTTTTTTGTGATTCACCAGACATCACTTTAAACTTGGTGATGAGTTT





AAATCCAGTAGCTAATCCCTTCCTGAGACTCAAAGATCGTGACGCTGGTTGGAATTTCTGACTGTGC





CCTTTAGGGCCTCCTGAGTTTCAAAAGGAGGAAGTGTTCGTGCTTGTGTCCCTGAAGTTCCCTGTTG





CATGAGCCTGCGACAGGACCTCACCCCCACCACCAGGCTTCTATTTGGGATTCACATCAGTATTAGT





ATCGTAGCTACACCAAGTTCAGGCTTCTCTTTTTGTTTTTTTACCTAGAAATTGGGCTCAGTGGTCTTC





AACTTGAGGACGAGGGTGATTTTCCTAAGAAATCAGCAAAGAGGGAAGGCAGGGCCCCTGTAGATT





CACCAGTATAAACTTCAGCTGCAGGGATTCCAGAGCCCTCGGGACCACTCTGTCACCTTAATAGCCA





AGTTCTCCTGGTTCCTCCGATCTTACAGGCTCATCCAGGTTCCAAAGTGCTTCTGTCTCTGTTTTGAT





TCTCCAAACTGCTCTGTGATGTATGTAGGGATTATTCTCCCCACTTAACAGAAAGTAGTGTCTTGGAG





AGGTCAAGGGTCTCTAGTTCAATGGCCAGTCATAGCAGAAGGGAGGCCAAGCACCAGTCCATCACC





CCTCCCAGGCCAGCCTCTGTAAGTTGGCCACACTTGGGGAGTGAGTGTGGGTATGACTTTACCCTC





CTGGTTGGTTCTTACTGTTTGAGTCAAAACCTCATCAATATATCATTGACTCCTGGGTTCCTCAGGTC





ATTTCCTAATATCTGTCCCTATCCAATGCCTCTATTTTATCTTGAAAAAAGGACCAAAAATTATTTTTAG





CTATGGCAAGGCACAGGCCACATGGCCCCTGATGGCGTCCCTGCTGGTTTTCAATTCTCTGAAGCCT





TGTGTAGCTTTCAGAGCACACGTATCCTAATTACCCTCCTCTTCCTCAGCAGAACCCATTTGAGATTC





TAAATGAATACTCTTAGTCTCTAAAGTTGCAGTTAGAAACTAAAATAATGTTTTTTAATATGTAATATGC





TCCTCTTGGCTAATTTTCTTTTGACTTTAATGTGCCAATGTAACTTCCTTTAAAGGATCTATGCATTTAT





TAAATCTGGAAAACTATATGTACACTGTAGGTGGAAAATTCTCTTTTTTAACTAAATATTTTTCCATCAC





AAATTTAAAGAATTGCATGATTAATTAGGCTTTCATTTTTAAATTACGCTTTCATCACTACGCAGGATTA





CTTTATTTTATTCCCAAAGCTCATTAGCATGGGATAATTACTCTGCTACAGAAATAGGCAATTTAAAAA





AATGAATTTAGCTCTTCTCATTGGGGGCAGAAAAGAAAAAAAAAACCATTGCACTCAGATGGAAAATG





CCTATAGACACAGGAGCAGGTGGTTCCTGTGGACTTCTGGTTTGGAATTTTGCCTCACCAGGTCAAG





CGTGGTTAGGGTGGAAGGTGTCCAGTATCTTGAAAACCTGGCCCTGGAGGAAGGTTCTGGGTCAGC





TGCAATGAGAGACTGGTGATTAAGGGCACCGTGGGCAGGACACAGTCCTCGCCTTACCCACCCCAT





CCTTCCTGTTACCCACAGTCTGCTGGCCTCCATGCCTCTTCCCCTTGTCACTTGTGTCTCCTCCTTAT





GCACAGAGCTGCCTGCCTTTATGAATTTTCTTTTCTTTTTTTTTTGAGACAGCGTCTTGCTGTGTCACC





CAGGCTGGAGTGCAGTGGTGCCATCTTGGCTCACTGCAACCTCCGCCTCCCAGGTTCAAGCAATTC





TTGTGCCTCAGCCTCCTGAGGATTACAGGCGTGCGCCACCACACCCAGCTAATTTTTGTATTTTTAGT





AGAGACGGGTTTTCACCATGTTGGCCAGGCTGGTCTCAAACTCCTGACCTCAGGTGATCCACCCAC





CTCGGTTTCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCACGCCCAGCCTGCCCTTGTGAATTTT





CACCTGCTCCTTACCCCTCACCTGTTAGGACTGTTTCTTGCTTTTGCCCCTGTCGGTCCCCTGCCTTA





ACAGACCTAAGCAGCTGATAATGCACCAAGCTTCCCTGACCAGGTGGGGTGTGTCTATCACCCAAG





GGCAGTCCTACAGACCCTGACCAAAGGCCGTTCCTGGGCGGCCCAAGGTCCAGGTTTCTTCCACCT





GCTCTTCCCTGTTTATGGGGATTTGCAAGCCTAATTGCATCAGCAGGAGCCCATCTCTCAGAGAACC





CGGACTCCCCAAGCAGACTGGGATTTTGGGAAGGGTGTGGGGGGTGTCATTGCTGGATACCCGTCT





TTCTGCCTGTCCTTTCTCCTCTCTGAATCCTGGGGCCCCTCTCCCTCCTTAAAGCTGGAGTGGACAG





AGGGACAGGAGAGGATCAGAGTTCATCCCCCCTGGGAAAGAGCAAGAGCGAATGAATCCCAGCGC





CAGCGGCTGAGGCTGCCTTCCGTGCCTTCCCTCCATGGGCGACGGGTGAGTGGGGCTTAGGAAAC





TGGAACAGGGAAGGTTCTGTTACCACACTTTGGAACTTTCCCCCTGGGATTCAGCAGTTGAGAAGCA





GAGACCTTTCTGCCCTGGGTGAATGGGTCCTTGGGGGAGGGGTTGGTCTTTTGTCTCGCATCCCCA





TCTTTCCTTTCCTTCTGGGCCATGCTCCTCCCTGGCTGGAAAAAGGTGGCTGTGCTGTCCCTGTGAT





CCACTCTCAGCAAATGCGTGTGGCTCAAATAAACAAAGAACTTACCTGTTAGAGTGAAAATCCTCAG





GAGATTGTACCCAAATGCCATGCTCTAAATATTCATGGTCTCTCTAATGCCCTCAAGACGTGATTTCC





ATGGGAACCATCCTCCCCTGGGGGCAGTTAGCAGGAGTACGTGGGGCACGTGAGGTGGTCCTCCT





TTCAGCACACCGTGCCCATAGAAACTTCTAGAAATTTCTGAAAATGCTCTGTGGGCAGCTCTTGGGT





GGCAGTAAGTCCATCAACCCCCATCTACCCCGGGCCTGAAGCGCTGCGCTTGCTCTCTTTATGTGTG





TGCACCCGAAGGATTTCCTGGTCTCTGTAGCTGATCCTGTGAGCCCCTCAAGCATGAAGCCTCCCTT





GGGGCTTCTCAAAGCATGGAGAGGGGCCCTTCCTGTCCTTTGGGAAAATCTTCCCCACTGTGTCAGT





TATATGGGAACAAGAGTGATGGGGTCTTTCTCTAGGCCTGTGCCACAGGACAGAGAACACGGGATT





CTGCTGTTCGCTTTGAGCCACAGCCTTTACCAGCCCGGCTTGTGTGGGGGGCCCCTTCGCCTTGCT





GCAAAGAGCTGTTCCCCAAAGGGCATATCCACAGGGTACAGGTTTTAAAAAGGCTTTTTTTTTTTTTT





TTGAGACAGGGTCTCGCTCTGTCGCCTAGACTCAGTGCAGTGGCGCCATGTTGGCTGGTTGCAACC





TCCACCTCCTGGGTTCAAGTGATTCTCCCACCTCAGCCTCTCTGGTAGCTGGGACTACAGGCACGC





GCCACCATGCCCAGCTAATTTTTGGATTTTTAGTAGAGAAGGAGTTTCACCATGCTGACCAGGCTGG





TTTCGAACTCCTGACCTCAAGTGATCCGCCCGCCTGGGCCTCCCAGAGTGCTGAGATTACAGGCGT





GAGCCACCGCACCTGGCCAAAAAAAGGCATTTTGATTTAGGTTGCTGTGTTTGCTTGTTGATAAAGAA





AACTCAATCGGGACACTAGTTTTGTGCTCAGCTTTAGGCCGGGTAGCTAATGGGAGGATGTCCAGCC





TGTCACTGTGCTCCCAGCGCAAGGAAATGGGTGCCCACCTGGAATCAGGAGAAGAGGCTTTTCCCT





CCTGTTCTGCAACCAGGGTGGAGCTATCTTTCCAGGGAAGCCAGCTGAGAGGTTTTAGGGCTTTGG





TTATTTTATGGGGGTTTTAAACCTCCTAACTTTTCAATGACAAATGGCTCCCAGGTGCCATAGTCTCT





GTTAAATCCTCAAACATTCACAAGCACACACTGCCAGGGGCACGGGTTGTCTTTCACCTGCATGTTT





CTAAGGCTCTTTATTCAATCTCACGGTGTCAGTGTCCAGTTGTCAAAGTTATGAATCTTCCTCCTGCT





TCTAAACAGGGCTGACAGTATACTCTCGTCTAGTCTAGGAACATGTCTGCTGCTGGGATACCCTGGT





ACCAGGATTTGAGGGCCACGGGTGGCATCTCTGAGAGCTGAAAATCCACAGAGTGCCTGTGGGAAA





GCCAAGCCCTTGGCTGTGTGGCTTTTCTATCCCTTGGATTTACAGGTCTGGGAATTGGCTGCTTCTT





AGTTATAACCCCAGTGACAAATGCTGGCTTAAGCCACACCTGTTCCCACTGTTGCTAGAATTCAAACA





GTTGCTTTTTTTTTTTCTTTTTGAGAAAGGGCCTCACTCTGTTGCCCAGGCTGGAGTGCAGTGGCTTG





ATCACAGCTCACGAAAGCCTCAAACTCCTAGGCTCAAGTGATCCTCCTGAAAAGTAGGTAGGACTAC





AGGCACATGCCACCACATACAGCTAATTTGTTTTCATTTTTTTTTTTTTTAGAGACAGGATCTCGCTGT





GTTCCCCAGGTAGGTCTTGAACTCCTGGCCTCAAGTGATCCTCCTGCCTTGACCTCCCAAAGTGCTG





GATTACAAGCGTGAGCCCCTGCACCCGGCCCAAGCAGTTGCTTCTTTTTTTCTCTTTTTTTTTTTTTTT





GAGATGGAGCCTCACTCTGTTGCCCAGGCTGGAGTGCAGTGGCGCGATCTCCACTCACTGCAAGCT





CCGCCTCCCGGGTTCATGCCATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGCCTG





CCACCACACCCAGCTAATTTTTTGTATTTTTGGTACAGACAGGGTTTCACCGTGTTAGCCAGGATGGT





CTTGATCTCCTGATCTCGTGATCCGCCCACCCCGGCCTCCCAAAGTGCTGGATTACAAGCGTGAGC





CACCGCGCCCCGCCAAGCAGTTGCTTCTTATGCAACATGTTGGTTGGGACTTGTCCACGGGCCAGG





CCAATAAAATTCTTAATCCTGCAGAGAGTCAGTACCCTCATCACCCCATCACTGGAAAACAAATGTTT





TAAGCTATCAAGAGAGGGAATGTGCAGCTTTTGGTTTCTAGATGCATGGTTTGGTGTGATCTACCTTT





GTGCCTAAAGGGAATGTCCCAAACAACAGAGCCTTCTTTGCTGTCACTCCAGAATTCTCTACACAGA





ATTTCCCAAGTCCATTCAGGACAGACGCGCAGTCCTCTTTCAATGGAAGAAGAGAGGACTTTTCCCC





TCCTGAAAAATGACTGGAGTGTGAACAAGGCAGCTCTGTTTTTCTAAATAAGTTGTTCTTGTGAGTTT





TTTCTGGCCACTGGGCATCTCTGCCCTCACTTTTCATCCCTGCCCTCTAAGCTGCAGACCCCATGAC





CACACTGTCTGCTTCCTTGAGCTTCCCGCACGAGGCTTGGACCTGGGGGACCTGGAGACCCTGCGG





ACAGAACTGTGGCTGAGCCACTGTGGCCAACTCTTGGGGAGCTCCACAGTGGGGGTTGCTGGTCTG





TGAGGCTGAGTCTCCATTTCAGAGCACACACTCCCTGGCAGGGCGCCTCTGCCTGTGTCTCCTGCC





CAGCAGCCGCCAGCAGGGAATAGTTGCTGGTGTCTGAGCACAAAGAGAGCTTTGATTACCTAGAGA





GGAAAAAGGCTGTCAGCCAGATGCAGCCAGGCCCAGGGGTAGATACAGGAGTTGCTAAGGAAGGG





GCCGAGCCAGGAGAGGCCAGGCAGATCCACAAAGCCCAAGGGGATGCAGGCTGGGTGTGGTTTCT





GAGGGAACCTACCAAATAGCAGGTAGATGGAATCAGAGGACTCTTGTGTCCTGAAAGAACCTCCTTA





AAAACAACTAAAACGAAGAACTTCTGGGGCTGTTCACACATTGTTCAAGTCACCCCAAGATCGTTCTG





GCACGCTGAGCTGAACACCACCATCTTTGTTCATTCTCTCTCTAATGGGCAAAGCAGGATCATCGAG





TTGAAAAGTTGTAAATAATGAGGATATTTATCCCGCTATTTATTTTTTCAATAACTGTGACCTCCTGCA





CTGTGAATGCTCTGTGACATGAGATTCTTAGTTTAATAAAACTGTCATTAAATTTGAATGAATTGATAT





TATTGGTTACTGAACACTGGCATGAGTTTATTTTTATTGTGAAGAAAAAAATCTACAGCAATCTAAACT





AAACCTTTCTAAGAAATCTAGCAGTCAGTATTGTAATGCAATATATCAAAATCTGTACACTGTCAATAA





AATAAATGAGCACAAAAAAAAAAAAAA






As used herein, the term “SORL1” refers to the gene encoding Sortilin-related receptor. The terms “SORL1” and “Sortilin-related receptor” include wild-type forms of the SORL1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type SORL1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type SORL1 nucleic acid sequence (e.g., SEQ ID NO: 65, ENA accession number Y08110). SEQ ID NO: 65 is a wild-type gene sequence encoding SORL1 protein, and is shown below:










(SEQ ID NO: 65)



CCGGCCCAGCGGCTCTCCTGGCCTCGCGCTGCACATTCTCTCCTGGCGGCGGCGCCACCT






GCAGTAGCGTTCGCCCGAACATGGCGACACGGAGCAGCAGGAGGGAGTCGCGACTCCCGT





TCCTATTCACCCTGGTCGCACTGCTGCCGCCCGGAGCTCTCTGCGAAGTCTGGACGCAGA





GGCTGCACGGCGGCAGCGCGCCCTTGCCCCAGGACCGGGGCTTCCTCGTGGTGCAGGGCG





ACCCGCGCGAGCTGCGGCTGTGGGCGCGCGGGGATGCCAGGGGGGCGAGCCGCGCGGACG





AGAAGCCGCTCCGGAGGAAACGGAGCGCTGCCCTGCAGCCCGAGCCCATCAAGGTGTACG





GACAGGTTAGTCTGAATGATTCCCACAATCAGATGGTGGTGCACTGGGCTGGAGAGAAAA





GCAACGTGATCGTGGCCTTGGCCCGAGATAGCCTGGCATTGGCGAGGCCCAAGAGCAGTG





ATGTGTACGTGTCTTACGACTATGGAAAATCATTCAAGAAAATTTCAGACAAGTTAAACT





TTGGCTTGGGAAATAGGAGTGAAGCTGTTATCGCCCAGTTCTACCACAGCCCTGCGGACA





ACAAGCGGTACATCTTTGCAGACGCTTATGCCCAGTACCTCTGGATCACGTTTGACTTCT





GCAACACTCTTCAAGGCTTTTCCATCCCATTTCGGGCAGCTGATCTCCTCCTACACAGTA





AGGCCTCCAACCTTCTCTTGGGCTTTGACAGGTCCCACCCCAACAAGCAGCTGTGGAAGT





CAGATGACTTTGGCCAGACCTGGATCATGATTCAGGAACATGTCAAGTCCTTTTCTTGGG





GAATTGATCCCTATGACAAACCAAATACCATCTACATTGAACGACACGAACCCTCTGGCT





ACTCCACTGTCTTCCGAAGTACAGATTTCTTCCAGTCCCGGGAAAACCAGGAAGTGATCC





TTGAGGAAGTGAGAGATTTTCAGCTTCGGGACAAGTACATGTTTGCTACAAAGGTGGTGC





ATCTCTTGGGCAGTGAACAGCAGTCTTCTGTCCAGCTCTGGGTCTCCTTTGGCCGGAAGC





CCATGAGAGCAGCCCAGTTTGTCACAAGACATCCTATTAATGAATATTACATCGCAGATG





CCTCCGAGGACCAGGTGTTTGTGTGTGTCAGCCACAGTAACAACCGCACCAATTTATACA





TCTCAGAGGCAGAGGGGCTGAAGTTCTCCCTGTCCTTGGAGAACGTGCTCTATTACAGCC





CAGGAGGGGCCGGCAGTGACACCTTGGTGAGGTATTTTGCAAATGAACCATTTGCTGACT





TCCACCGAGTGGAAGGATTGCAAGGAGTCTACATTGCTACTCTGATTAATGGTTCTATGA





ATGAGGAGAACATGAGATCGGTCATCACCTTTGACAAAGGGGGAACCTGGGAGTTTCTTC





AGGCTCCAGCCTTCACGGGATATGGAGAGAAAATCAATTGTGAGCTTTCCCAGGGCTGTT





CCCTTCATCTGGCTCAGCGCCTCAGTCAGCTCCTCAACCTCCAGCTCCGGAGAATGCCCA





TCCTGTCCAAGGAGTCGGCTCCAGGCCTCATCATCGCCACTGGCTCAGTGGGAAAGAACT





TGGCTAGCAAGACAAACGTGTACATCTCTAGCAGTGCTGGAGCCAGGTGGCGAGAGGCAC





TTCCTGGACCTCACTACTACACATGGGGAGACCACGGCGGAATCATCACGGCCATTGCCC





AGGGCATGGAAACCAACGAGCTAAAATACAGTACCAATGAAGGGGAGACCTGGAAAACAT





TCATCTTCTCTGAGAAGCCAGTGTTTGTGTATGGCCTCCTCACAGAACCTGGGGAGAAGA





GCACTGTCTTCACCATCTTTGGCTCGAACAAAGAGAATGTCCACAGCTGGCTGATCCTCC





AGGTCAATGCCACGGATGCCTTGGGAGTTCCCTGCACAGAGAATGACTACAAGCTGTGGT





CACCATCTGATGAGCGGGGGAATGAGTGTTTGCTGGGACACAAGACTGTTTTCAAACGGC





GGACCCCCCATGCCACATGCTTCAATGGAGAGGACTTTGACAGGCCGGTGGTCGTGTCCA





ACTGCTCCTGCACCCGGGAGGACTATGAGTGTGACTTCGGTTTCAAGATGAGTGAAGATT





TGTCATTAGAGGTTTGTGTTCCAGATCCGGAATTTTCTGGAAAGTCATACTCCCCTCCTG





TGCCTTGCCCTGTGGGTTCTACTTACAGGAGAACGAGAGGCTACCGGAAGATTTCTGGGG





ACACTTGTAGCGGAGGAGATGTTGAAGCGCGACTGGAAGGAGAGCTGGTCCCCTGTCCCC





TGGCAGAAGAGAACGAGTTCATTCTGTATGCTGTGAGGAAATCCATCTACCGCTATGACC





TGGCCTCGGGAGCCACCGAGCAGTTGCCTCTCACCGGGCTACGGGCAGCAGTGGCCCTGG





ACTTTGACTATGAGCACAACTGTTTGTATTGGTCCGACCTGGCCTTGGACGTCATCCAGC





GCCTCTGTTTGAATGGAAGCACAGGGCAAGAGGTGATCATCAATTCTGGCCTGGAGACAG





TAGAAGCTTTGGCTTTTGAACCCCTCAGCCAGCTGCTTTACTGGGTAGATGCAGGCTTCA





AAAAGATTGAGGTAGCTAATCCAGATGGCGACTTCCGACTCACAATCGTCAATTCCTCTG





TGCTTGATCGTCCCAGGGCTCTGGTCCTCGTGCCCCAAGAGGGGGTGATGTTCTGGACAG





ACTGGGGAGACCTGAAGCCTGGGATTTATCGGAGCAATATGGATGGTTCTGCTGCCTATC





ACCTGGTGTCTGAGGATGTGAAGTGGCCCAATGGCATCTCTGTGGACGACCAGTGGATTT





ACTGGACGGATGCCTACCTGGAGTGCATAGAGCGGATCACGTTCAGTGGCCAGCAGCGCT





CTGTCATTCTGGACAACCTCCCGCACCCCTATGCCATTGCTGTCTTTAAGAATGAAATCT





ACTGGGATGACTGGTCACAGCTCAGCATATTCCGAGCTTCCAAATACAGTGGGTCCCAGA





TGGAGATTCTGGCAAACCAGCTCACGGGGCTCATGGACATGAAGATTTTCTACAAGGGGA





AGAACACTGGAAGCAATGCCTGTGTGCCCAGGCCATGCAGCCTGCTGTGCCTGCCCAAGG





CCAACAACAGTAGAAGCTGCAGGTGTCCAGAGGATGTGTCCAGCAGTGTGCTTCCATCAG





GGGACCTGATGTGTGACTGCCCTCAGGGCTATCAGCTCAAGAACAATACCTGTGTCAAAG





AAGAGAACACCTGTCTTCGCAACCAGTATCGCTGCAGCAACGGGAACTGTATCAACAGCA





TTTGGTGGTGTGACTTTGACAACGACTGTGGAGACATGAGCGATGAGAGAAACTGCCCTA





CCACCATCTGTGACCTGGACACCCAGTTTCGTTGCCAGGAGTCTGGGACTTGTATCCCAC





TGTCCTATAAATGTGACCTTGAGGATGACTGTGGAGACAACAGTGATGAAAGTCATTGTG





AAATGCACCAGTGCCGGAGTGACGAGTACAACTGCAGTTCCGGCATGTGCATCCGCTCCT





CCTGGGTATGTGACGGGGACAACGACTGCAGGGACTGGTCTGATGAAGCCAACTGTACCG





CCATCTATCACACCTGTGAGGCCTCCAACTTCCAGTGCCGAAACGGGCACTGCATCCCCC





AGCGGTGGGCGTGTGACGGGGATACGGACTGCCAGGATGGTTCCGATGAGGATCCAGTCA





ACTGTGAGAAGAAGTGCAATGGATTCCGCTGCCCAAACGGCACTTGCATCCCATCCAGCA





AACATTGTGATGGTCTGCGTGATTGCTCTGATGGCTCCGATGAACAGCACTGCGAGCCCC





TCTGTACGCACTTCATGGACTTTGTGTGTAAGAACCGCCAGCAGTGCCTGTTCCACTCCA





TGGTCTGTGACGGAATCATCCAGTGCCGCGACGGGTCCGATGAGGATGCGGCGTTTGCAG





GATGCTCCCAAGATCCTGAGTTCCACAAGGTATGTGATGAGTTCGGTTTCCAGTGTCAGA





ATGGAGTGTGCATCAGTTTGATTTGGAAGTGCGACGGGATGGATGATTGCGGCGATTATT





CTGATGAAGCCAACTGCGAAAACCCCACAGAAGCCCCAAACTGCTCCCGCTACTTCCAGT





TTCGGTGTGAGAATGGCCACTGCATCCCCAACAGATGGAAATGTGACAGGGAGAACGACT





GTGGGGACTGGTCTGATGAGAAGGATTGTGGAGATTCACATATTCTTCCCTTCTCGACTC





CTGGGCCCTCCACGTGTCTGCCCAATTACTACCGCTGCAGCAGTGGGACCTGCGTGATGG





ACACCTGGGTGTGCGACGGGTACCGAGATTGTGCAGATGGCTCTGACGAGGAAGCCTGCC





CCTTGCTTGCAAACGTCACTGCTGCCTCCACTCCCACCCAACTTGGGCGATGTGACCGAT





TTGAGTTCGAATGCCACCAACCGAAGACGTGTATTCCCAACTGGAAGCGCTGTGACGGCC





ACCAAGATTGCCAGGATGGCCGGGACGAGGCCAATTGCCCCACACACAGCACCTTGACTT





GCATGAGCAGGGAGTTCCAGTGCGAGGACGGGGAGGCCTGCATTGTGCTCTCGGAGCGCT





GCGACGGCTTCCTGGACTGCTCGGACGAGAGCGATGAAAAGGCCTGCAGTGATGAGTTGA





CTGTGTACAAAGTACAGAATCTTCAGTGGACAGCTGACTTCTCTGGGGATGTGACTTTGA





CCTGGATGAGGCCCAAAAAAATGCCCTCTGCATCTTGTGTATATAATGTCTACTACAGGG





TGGTTGGAGAGAGCATATGGAAGACTCTGGAGACCCACAGCAATAAGACAAACACTGTAT





TAAAAGTCTTGAAACCAGATACCACGTATCAGGTTAAAGTACAGGTTCAGTGTCTCAGCA





AGGCACACAACACCAATGACTTTGTGACCCTGAGGACCCCAGAGGGATTGCCAGATGCCC





CTCGAAATCTCCAGCTGTCACTCCCCAGGGAAGCAGAAGGTGTGATTGTAGGCCACTGGG





CTCCTCCCATCCACACCCATGGCCTCATCCGTGAGTACATTGTAGAATACAGCAGGAGTG





GTTCCAAGATGTGGGCCTCCCAGAGGGCTGCTAGTAACTTTACAGAAATCAAGAACTTAT





TGGTCAACACTCTATACACCGTCAGAGTGGCTGCGGTGACTAGTCGTGGAATAGGAAACT





GGAGCGATTCTAAATCCATTACCACCATAAAAGGAAAAGTGATCCCACCACCAGATATCC





ACATTGACAGCTATGGTGAAAATTATCTAAGCTTCACCCTGACCATGGAGAGTGATATCA





AGGTGAATGGCTATGTGGTGAACCTTTTCTGGGCATTTGACACCCACAAGCAAGAGAGGA





GAACTTTGAACTTCCGAGGAAGCATATTGTCACACAAAGTTGGCAATCTGACAGCTCATA





CATCCTATGAGATTTCTGCCTGGGCCAAGACTGACTTGGGGGATAGCCCTCTGGCATTTG





AGCATGTTATGACCAGAGGGGTTCGCCCACCTGCACCTAGCCTCAAGGCCAAAGCCATCA





ACCAGACTGCAGTGGAATGTACCTGGACCGGCCCCCGGAATGTGGTTTATGGTATTTTCT





ATGCCACGTCCTTTCTTGACCTCTATCGCAACCCGAAGAGCTTGACTACTTCACTCCACA





ACAAGACGGTCATTGTCAGTAAGGATGAGCAGTATTTGTTTCTGGTCCGTGTAGTGGTAC





CCTACCAGGGGCCATCCTCTGACTACGTTGTAGTGAAGATGATCCCGGACAGCAGGCTTC





CACCCCGTCACCTGCATGTGGTTCATACGGGCAAAACCTCCGTGGTCATCAAGTGGGAAT





CACCGTATGACTCTCCTGACCAGGACTTGTTGTATGCAATTGCAGTCAAAGATCTCATAA





GAAAGACTGACAGGAGCTACAAAGTAAAATCCCGTAACAGCACTGTGGAATACACCCTTA





ACAAGTTGGAGCCTGGCGGGAAATACCACATCATTGTCCAACTGGGGAACATGAGCAAAG





ATTCCAGCATAAAAATTACCACAGTTTCATTATCAGCACCTGATGCCTTAAAAATCATAA





CAGAAAATGATCATGTTCTTCTGTTTTGGAAAAGCCTGGCTTTAAAGGAAAAGCATTTTA





ATGAAAGCAGGGGCTATGAGATACACATGTTTGATAGTGCCATGAATATCACAGCTTACC





TTGGGAATACTACTGACAATTTCTTTAAAATTTCCAACCTGAAGATGGGTCATAATTACA





CGTTCACCGTCCAAGCAAGATGCCTTTTTGGCAACCAGATCTGTGGGGAGCCTGCCATCC





TGCTGTACGATGAGCTGGGGTCTGGTGCAGATGCATCTGCAACGCAGGCTGCCAGATCTA





CGGATGTTGCTGCTGTGGTGGTGCCCATCTTATTCCTGATACTGCTGAGCCTGGGGGTGG





GGTTTGCCATCCTGTACACGAAGCACCGGAGGCTGCAGAGCAGCTTCACCGCCTTCGCCA





ACAGCCACTACAGCTCCAGGCTGGGGTCCGCAATCTTCTCCTCTGGGGATGACCTGGGGG





AAGATGATGAAGATGCCCCTATGATAACTGGATTTTCAGATGACGTCCCCATGGTGATAG





CCTGAAAGAGCTTTCCTCACTAGAAACCAAATGGTGTAAATATTTTATTTGATAAAGATA





GTTGATGGTTTATTTTAAAAGATGCACTTTGAGTTGCAATATGTTATTTTTATATGGGCC






As used herein, the term “SPI1” refers to the gene encoding Transcription factor PU.1. The terms “SPI1” and “Transcription factor PU.1” include wild-type forms of the SPI1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type SPI1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type SPI1 nucleic acid sequence (e.g., SEQ ID NO: 66, ENA accession number X52056). SEQ ID NO: 66 is a wild-type gene sequence encoding SPI1 protein, and is shown below:










(SEQ ID NO: 66)



AAAATCAGGAACTTGTGCTGGCCCTGCAATGTCAAGGGAGGGGGCTCACCCAGGGCTCCT






GTAGCTCAGGGGGCAGGCCTGAGCCCTGCACCCGCCCCACGACCGTCCAGCCCCTGACGG





GCACCCCATCCTGAGGGGCTCTGCATTGGCCCCCACCGAGGCAGGGGATCTGACCGACTC





GGAGCCCGGCTGGATGTTACAGGCGTGCAAAATGGAAGGGTTTCCCCTCGTCCCCCCTCC





ATCAGAAGACCTGGTGCCCTATGACACGGATCTATACCAACGCCAAACGCACGAGTATTA





CCCCTATCTCAGCAGTGATGGGGAGAGCCATAGCGACCATTACTGGGACTTCCACCCCCA





CCACGTGCACAGCGAGTTCGAGAGCTTCGCCGAGAACAACTTCACGGAGCTCCAGAGCGT





GCAGCCCCCGCAGCTGCAGCAGCTCTACCGCCACATGGAGCTGGAGCAGATGCACGTCCT





CGATACCCCCATGGTGCCACCCCATCCCAGTCTTGGCCACCAGGTCTCCTACCTGCCCCG





GATGTGCCTCCAGTACCCATCCCTGTCCCCAGCCCAGCCCAGCTCAGATGAGGAGGAGGG





CGAGCGGCAGAGCCCCCCACTGGAGGTGTCTGACGGCGAGGCGGATGGCCTGGAGCCCGG





GCCTGGGCTCCTGCCTGGGGAGACAGGCAGCAAGAAGAAGATCCGCCTGTACCAGTTCCT





GTTGGACCTGCTCCGCAGCGGCGACATGAAGGACAGCATCTGGTGGGTGGACAAGGACAA





GGGCACCTTCCAGTTCTCGTCCAAGCACAAGGAGGCGCTGGCGCACCGCTGGGGCATCCA





GAAGGGCAACCGCAAGAAGATGACCTACCAGAAGATGGCGCGCGCGCTGCGCAACTACGG





CAAGACGGGCGAGGTCAAGAAGGTGAAGAAGAAGCTCACCTACCAGTTCAGCGGCGAAGT





GCTGGGCCGCGGGGGCCTGGCCGAGCGGCGCCACCCGCCCCACTGAGCCCGCAGCCCCCG





CCGGCCCCGCCAGGCCTCCCCGCTGGCCATAGCATTAAGCCCTCGCCCGGCCCGGACACA





GGGAGGACGCTCCCGGGGCCCAGAGGCAGGACTGTGGCGGGCCGGGCTCCGTCACCCGCC





CCTCCCCCCACTCCAGGCCCCCTCCACATCCCGCTTCGCCTCCCTCCAGGACTCCACCCC





GGCTCCCGACGCCAGCTGGGCGTCAGACCCACCGGCAACCTTGCAGAGGACGACCCGGGG





TACTGCCTTGGGAGTCTCAAGTCCGTATGTAAATCAGATCTCCCCTCTCACCCCTCCCAC





CCATTAACCTCCTCCCAAAAAACAAGTAAAGTTATTCTCAATCC






As used herein, the term “SPP1” refers to the gene encoding Secreted Phosphoprotein 1. The terms “SPP1” and “Secreted Phosphoprotein 1” include wild-type forms of the SPP1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type SPP1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type SPP1 nucleic acid sequence (e.g., SEQ ID NO: 67, NCBI Reference Sequence: NM_001040058.1). SEQ ID NO: 67 is a wild-type gene sequence encoding SPP1 protein, and is shown below:










(SEQ ID NO: 67)



CTCCCTGTGTTGGTGGAGGATGTCTGCAGCAGCATTTAAATTCTGGGAGGGCTTGGTTGTCAGCAG






CAGCAGGAGGAGGCAGAGCACAGCATCGTCGGGACCAGACTCGTCTCAGGCCAGTTGCAGCCTTC





TCAGCCAAACGCCGACCAAGGAAAACTCACTACCATGAGAATTGCAGTGATTTGCTTTTGCCTCCTA





GGCATCACCTGTGCCATACCAGTTAAACAGGCTGATTCTGGAAGTTCTGAGGAAAAGCAGCTTTACA





ACAAATACCCAGATGCTGTGGCCACATGGCTAAACCCTGACCCATCTCAGAAGCAGAATCTCCTAGC





CCCACAGAATGCTGTGTCCTCTGAAGAAACCAATGACTTTAAACAAGAGACCCTTCCAAGTAAGTCC





AACGAAAGCCATGACCACATGGATGATATGGATGATGAAGATGATGATGACCATGTGGACAGCCAG





GACTCCATTGACTCGAACGACTCTGATGATGTAGATGACACTGATGATTCTCACCAGTCTGATGAGT





CTCACCATTCTGATGAATCTGATGAACTGGTCACTGATTTTCCCACGGACCTGCCAGCAACCGAAGT





TTTCACTCCAGTTGTCCCCACAGTAGACACATATGATGGCCGAGGTGATAGTGTGGTTTATGGACTG





AGGTCAAAATCTAAGAAGTTTCGCAGACCTGACATCCAGTACCCTGATGCTACAGACGAGGACATCA





CCTCACACATGGAAAGCGAGGAGTTGAATGGTGCATACAAGGCCATCCCCGTTGCCCAGGACCTGA





ACGCGCCTTCTGATTGGGACAGCCGTGGGAAGGACAGTTATGAAACGAGTCAGCTGGATGACCAGA





GTGCTGAAACCCACAGCCACAAGCAGTCCAGATTATATAAGCGGAAAGCCAATGATGAGAGCAATGA





GCATTCCGATGTGATTGATAGTCAGGAACTTTCCAAAGTCAGCCGTGAATTCCACAGCCATGAATTTC





ACAGCCATGAAGATATGCTGGTTGTAGACCCCAAAAGTAAGGAAGAAGATAAACACCTGAAATTTCG





TATTTCTCATGAATTAGATAGTGCATCTTCTGAGGTCAATTAAAAGGAGAAAAAATACAATTTCTCACT





TTGCATTTAGTCAAAAGAAAAAATGCTTTATAGCAAAATGAAAGAGAACATGAAATGCTTCTTTCTCAG





TTTATTGGTTGAATGTGTATCTATTTGAGTCTGGAAATAACTAATGTGTTTGATAATTAGTTTAGTTTGT





GGCTTCATGGAAACTCCCTGTAAACTAAAAGCTTCAGGGTTATGTCTATGTTCATTCTATAGAAGAAA





TGCAAACTATCACTGTATTTTAATATTTGTTATTCTCTCATGAATAGAAATTTATGTAGAAGCAAACAAA





ATACTTTTACCCACTTAAAAAGAGAATATAACATTTTATGTCACTATAATCTTTTGTTTTTTAAGTTAGT





GTATATTTTGTTGTGATTATCTTTTTGTGGTGTGAATAAATCTTTTATCTTGAATGTAATAAGAATTTGG





TGGTGTCAATTGCTTATTTGTTTTCCCACGGTTGTCCAGCAATTAATAAAACATAACCTTTTTTACTGC





CTAAAAAAAAAAAAAAAAA






As used herein, the term “SPPL2A” refers to the gene encoding Signal Peptide Peptidase Like 2A. The terms “SPPL2A” and “Signal Peptide Peptidase Like 2A” include wild-type forms of the SPPL2A gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type SPPL2A. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type SPPL2A nucleic acid sequence (e.g., SEQ ID NO: 68, NCBI Reference Sequence: NM_001040058.1). SEQ ID NO: 68 is a wild-type gene sequence encoding SPPL2A protein, and is shown below:










(SEQ ID NO: 68)



AAGAGGAAGTCGCGCTGCTGTGGCGGCCGCTGTAGCAGCGGCGGTCCAGTCGTAGCCCGGCCGC






CCGCGCCTGTCCGGTCCGGTCCGGCCACGGAGGCAGCGCAGCGGCGGGACTCCGAGCCTACCCC





GCCGAGTGAGCTGCGCCGCACCGTGCCGTCCCACCCGGCACCCACCAGTCCGATGGGGCCGCAG





CGGCGGCTGTCCCCTGCCGGGGCCGCCCTACTCTGGGGCTTCCTGCTCCAGCTGACAGCCGCTCA





GGAAGCAATCTTGCATGCGTCTGGAAATGGCACAACCAAGGACTACTGCATGCTTTATAACCCTTATT





GGACAGCTCTTCCAAGTACCCTAGAAAATGCAACTTCCATTAGTTTGATGAATCTGACTTCCACACCA





CTATGCAACCTTTCTGATATTCCTCCTGTTGGCATAAAGAGCAAAGCAGTTGTGGTTCCATGGGGAA





GCTGCCATTTTCTTGAAAAAGCCAGAATTGCACAGAAAGGAGGTGCTGAAGCAATGTTAGTTGTCAA





TAACAGTGTCCTATTTCCTCCCTCAGGTAACAGATCTGAATTTCCTGATGTGAAAATACTGATTGCATT





TATAAGCTACAAAGACTTTAGAGATATGAACCAGACTCTAGGAGATAACATTACTGTGAAAATGTATT





CTCCATCGTGGCCTAACTTTGATTATACTATGGTGGTTATTTTTGTAATTGCGGTGTTCACTGTGGCA





TTAGGTGGATACTGGAGTGGACTAGTTGAATTGGAAAACTTGAAAGCAGTGACAACTGAAGATAGAG





AAATGAGGAAAAAGAAGGAAGAATATTTAACTTTTAGTCCTCTTACAGTTGTAATATTTGTGGTCATCT





GCTGTGTTATGATGGTCTTACTTTATTTCTTCTACAAATGGTTGGTTTATGTTATGATAGCAATTTTCTG





CATAGCATCAGCAATGAGTCTGTACAACTGTCTTGCTGCACTAATTCATAAGATACCATATGGACAAT





GCACGATTGCATGTCGTGGCAAAAACATGGAAGTGAGACTTATTTTTCTCTCTGGACTGTGCATAGC





AGTAGCTGTTGTTTGGGCTGTGTTTCGAAATGAAGACAGGTGGGCTTGGATTTTACAGGATATCTTG





GGGATTGCTTTCTGTCTGAATTTAATTAAAACACTGAAGTTGCCCAACTTCAAGTCATGTGTGATACTT





CTAGGCCTTCTCCTCCTCTATGATGTATTTTTTGTTTTCATAACACCATTCATCACAAAGAATGGTGAG





AGTATCATGGTTGAACTCGCAGCTGGACCTTTTGGAAATAATGAAAAGTTGCCAGTAGTCATCAGAGT





ACCAAAACTGATCTATTTCTCAGTAATGAGTGTGTGCCTCATGCCTGTTTCAATATTGGGTTTTGGAG





ACATTATTGTACCAGGCCTGTTGATTGCATACTGTAGAAGATTTGATGTTCAGACTGGTTCTTCTTACA





TATACTATGTTTCGTCTACAGTTGCCTATGCTATTGGCATGATACTTACATTTGTTGTTCTGGTGCTGA





TGAAAAAGGGGCAACCTGCTCTCCTCTATTTAGTACCTTGCACACTTATTACTGCCTCAGTTGTTGCC





TGGAGACGTAAGGAAATGAAAAAGTTCTGGAAAGGTAACAGCTATCAGATGATGGACCATTTGGATT





GTGCAACAAATGAAGAAAACCCTGTGATATCTGGTGAACAGATTGTCCAGCAATAATATTATGTGGAA





CTGCTATAATGTGTCATTGATTTTCTACAAATAGACTTCGACTTTTTAAATTGACTTTTGAATTGACAAT





CTGAAAGAGTCTTCAATGATATGCTTGCAAAAATATATTTTTATGAGCTGGTACTGACAGTTACATCAT





AAATAACTAAAACGCTTTGCTTTTAATGTTAAAGTTGTGCCTTCACATTAAATAAAACATATGGTCTGT





GTAGTTTCCGAGATGTACTATATACAGTATATTTTTCTAAAAAAAAA






As used herein, the term “TBK1” refers to the gene encoding Serine/threonine-protein kinase TBK1. The terms “TBK1” and “Serine/threonine-protein kinase TBK1” include wild-type forms of the TBK1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type TBK1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type TBK1 nucleic acid sequence (e.g., SEQ ID NO: 69, ENA accession number AF191838). SEQ ID NO: 69 is a wild-type gene sequence encoding TBK1 protein, and is shown below:










(SEQ ID NO: 69)



GCCGGCGGTGGCGCGGCGGAGACCCGGCTGGTATAACAAGAGGATTGCCTGATCCAGCCA






AGATGCAGAGCACTTCTAATCATCTGTGGCTTTTATCTGATATTTTAGGCCAAGGAGCTA





CTGCAAATGTCTTTCGTGGAAGACATAAGAAAACTGGTGATTTATTTGCTATCAAAGTAT





TTAATAACATAAGCTTCCTTCGTCCAGTGGATGTTCAAATGAGAGAATTTGAAGTGTTGA





AAAAACTCAATCACAAAAATATTGTCAAATTATTTGCTATTGAAGAGGAGACAACAACAA





GACATAAAGTACTTATTATGGAATTTTGTCCATGTGGGAGTTTATACACTGTTTTAGAAG





AACCTTCTAATGCCTATGGACTACCAGAATCTGAATTCTTAATTGTTTTGCGAGATGTGG





TGGGTGGAATGAATCATCTACGAGAGAATGGTATAGTGCACCGTGATATCAAGCCAGGAA





ATATCATGCGTGTTATAGGGGAAGATGGACAGTCTGTGTACAAACTCACAGATTTTGGTG





CAGCTAGAGAATTAGAAGATGATGAGCAGTTTGTTTCTCTGTATGGCACAGAAGAATATT





TGCACCCTGATATGTATGAGAGAGCAGTGCTAAGAAAAGATCATCAGAAGAAATATGGAG





CAACAGTTGATCTTTGGAGCATTGGGGTAACATTTTACCATGCAGCTACTGGATCACTGC





CATTTAGACCCTTTGAAGGGCCTCGTAGGAATAAAGAAGTGATGTATAAAATAATTACAG





GAAAGCCTTCTGGTGCAATATCTGGAGTACAGAAAGCAGAAAATGGACCAATTGACTGGA





GTGGAGACATGCCTGTTTCTTGCAGTCTTTCTCGGGGTCTTCAGGTTCTACTTACCCCTG





TTCTTGCAAACATCCTTGAAGCAGATCAGGAAAAGTGTTGGGGTTTTGACCAGTTTTTTG





CAGAAACTAGTGATATACTTCACCGAATGGTAATTCATGTTTTTTCGCTACAACAAATGA





CAGCTCATAAGATTTATATTCATAGCTATAATACTGCTACTATATTTCATGAACTGGTAT





ATAAACAAACCAAAATTATTTCTTCAAATCAAGAACTTATCTACGAAGGGCGACGCTTAG





TCTTAGAACCTGGAAGGCTGGCACAACATTTCCCTAAAACTACTGAGGAAAACCCTATAT





TTGTAGTAAGCCGGGAACCTCTGAATACCATAGGATTAATATATGAAAAAATTTCCCTCC





CTAAAGTACATCCACGTTATGATTTAGACGGGGATGCTAGCATGGCTAAGGCAATAACAG





GGGTTGTGTGTTATGCCTGCAGAATTGCCAGTACCTTACTGCTTTATCAGGAATTAATGC





GAAAGGGGATACGATGGCTGATTGAATTAATTAAAGATGATTACAATGAAACTGTTCACA





AAAAGACAGAAGTTGTGATCACATTGGATTTCTGTATCAGAAACATTGAAAAAACTGTGA





AAGTATATGAAAAGTTGATGAAGATCAACCTGGAAGCGGCAGAGTTAGGTGAAATTTCAG





ACATACACACCAAATTGTTGAGACTTTCCAGTTCTCAGGGAACAATAGAAACCAGTCTTC





AGGATATCGACAGCAGATTATCTCCAGGTGGATCACTGGCAGACGCATGGGCACATCAAG





AAGGCACTCATCCGAAAGACAGAAATGTAGAAAAACTACAAGTCCTGTTAAATTGCATGA





CAGAGATTTACTATCAGTTCAAAAAAGACAAAGCAGAACGTAGATTAGCTTATAATGAAG





AACAAATCCACAAATTTGATAAGCAAAAACTGTATTACCATGCCACAAAAGCTATGACGC





ACTTTACAGATGAATGTGTTAAAAAGTATGAGGCATTTTTGAATAAGTCAGAAGAATGGA





TAAGAAAGATGCTTCATCTTAGGAAACAGTTATTATCGCTGACTAATCAGTGTTTTGATA





TTGAAGAAGAAGTATCAAAATATCAAGAATATACTAATGAGTTACAAGAAACTCTGCCTC





AGAAAATGTTTACAGCTTCCAGTGGAATCAAACATACCATGACCCCAATTTATCCAAGTT





CTAACACATTAGTAGAAATGACTCTTGGTATGAAGAAATTAAAGGAAGAGATGGAAGGGG





TGGTTAAAGAACTTGCTGAAAATAACCACATTTTAGAAAGGTTTGGCTCTTTAACCATGG





ATGGTGGCCTTCGCAACGTTGACTGTCTTTAGCTTTCTAATAGAAGTTTAAGAAAAGTTT





CCGTTTGCACAAGAAAATAACGCTTGGGCATTAAATGAATGCCTTTATAGATAGTCACTT





GTTTCTACAATTCAGTATTTGATGTGGTCGTGTAAATATGTACAATATTGTAAATACATA





AAAAATATACAAATTTTTGGCTGCTGTGAAGATGTAATTTTATCTTTTAACATTTATAAT





TATATGAGGAAATTTGACCTCAGTGATCACGAGAAGAAAGCCATGACCGACCAATATGTT





GACATACTGATCCTCTACTCTGAGTGGGGCTAAATAAGTTATTTTCTCTGACCGCCTACT





GGAAATATTTTTAAGTGGAACCAAAATAGGCATCCTTACAAATCAGGAAGACTGACTTGA





CACGTTTGTAAATGGTAGAACGGTGGCTACTGTGAGTGGGGAGCAGAACCGCACCACTGT





TATACTGGGATAACAATTTTTTTGAGAAGGATAAAGTGGCATTATTTTATTTTACAAGGT





GCCCAGATCCCAGTTATCCTTGTATCCATGTAATTTCAGATGAATTATTAAGCAAACATT





TTAAAGT






As used herein, the term “TNF” refers to the gene encoding Tumor necrosis factor. The terms “TNF” and “Tumor necrosis factor” include wild-type forms of the TNF gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type TNF. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type TNF nucleic acid sequence (e.g., SEQ ID NO: 70, ENA accession number X01394). SEQ ID NO: 70 is a wild-type gene sequence encoding TNF protein, and is shown below:










(SEQ ID NO: 70)



GCAGAGGACCAGCTAAGAGGGAGAGAAGCAACTACAGACCCCCCCTGAAAACAACCCTCA






GACGCCACATCCCCTGACAAGCTGCCAGGCAGGTTCTCTTCCTCTCACATACTGACCCAC





GGCTCCACCCTCTCTCCCCTGGAAAGGACACCATGAGCACTGAAAGCATGATCCGGGACG





TGGAGCTGGCCGAGGAGGCGCTCCCCAAGAAGACAGGGGGGCCCCAGGGCTCCAGGCGGT





GCTTGTTCCTCAGCCTCTTCTCCTTCCTGATCGTGGCAGGCGCCACCACGCTCTTCTGCC





TGCTGCACTTTGGAGTGATCGGCCCCCAGAGGGAAGAGTTCCCCAGGGACCTCTCTCTAA





TCAGCCCTCTGGCCCAGGCAGTCAGATCATCTTCTCGAACCCCGAGTGACAAGCCTGTAG





CCCATGTTGTAGCAAACCCTCAAGCTGAGGGGCAGCTCCAGTGGCTGAACCGCCGGGCCA





ATGCCCTCCTGGCCAATGGCGTGGAGCTGAGAGATAACCAGCTGGTGGTGCCATCAGAGG





GCCTGTACCTCATCTACTCCCAGGTCCTCTTCAAGGGCCAAGGCTGCCCCTCCACCCATG





TGCTCCTCACCCACACCATCAGCCGCATCGCCGTCTCCTACCAGACCAAGGTCAACCTCC





TCTCTGCCATCAAGAGCCCCTGCCAGAGGGAGACCCCAGAGGGGGCTGAGGCCAAGCCCT





GGTATGAGCCCATCTATCTGGGAGGGGTCTTCCAGCTGGAGAAGGGTGACCGACTCAGCG





CTGAGATCAATCGGCCCGACTATCTCGACTTTGCCGAGTCTGGGCAGGTCTACTTTGGGA





TCATTGCCCTGTGAGGAGGACGAACATCCAACCTTCCCAAACGCCTCCCCTGCCCCAATC





CCTTTATTACCCCCTCCTTCAGACACCCTCAACCTCTTCTGGCTCAAAAAGAGAATTGGG





GGCTTAGGGTCGGAACCCAAGCTTAGAACTTTAAGCAACAAGACCACCACTTCGAAACCT





GGGATTCAGGAATGTGTGGCCTGCACAGTGAATTGCTGGCAACCACTAAGAATTCAAACT





GGGGCCTCCAGAACTCACTGGGGCCTACAGCTTTGATCCCTGACATCTGGAATCTGGAGA





CCAGGGAGCCTTTGGTTCTGGCCAGAATGCTGCAGGACTTGAGAAGACCTCACCTAGAAA





TTGACACAAGTGGACCTTAGGCCTTCCTCTCTCCAGATGTTTCCAGACTTCCTTGAGACA





CGGAGCCCAGCCCTCCCCATGGAGCCAGCTCCCTCTATTTATGTTTGCACTTGTGATTAT





TTATTATTTATTTATTATTTATTTATTTACAGATGAATGTATTTATTTGGGAGACCGGGG





TATCCTGGGGGACCCAATGTAGGAGCTGCCTTGGCTCAGACATGTTTTCCGTGAAAACGG





AGCTGAACAATAGGCTGTTCCCATGTAGCCCCCTGGCCTCTGTGCCTTCTTTTGATTATG





TTTTTTAAAATATTTATCTGATTAAGTTGTCTAAACAATGCTGATTTGGTGACCAACTGT





CACTCATTGCTGAGCCTCTGCTCCCCAGGGGAGTTGTGTCTGTAATCGCCCTACTATTCA





GTGGCGAGAAATAAAGTTTGCTT






As used herein, the term “TREM2” refers to the gene encoding Triggering receptor expressed on myeloid cells 2. The terms “TREM2” and “Triggering receptor expressed on myeloid cells 2” include wild-type forms of the TREM2 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type TREM2. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type TREM2 nucleic acid sequence (e.g., SEQ ID NO: 71, ENA accession number AF213457). SEQ ID NO: 71 is a wild-type gene sequence encoding TREM2 protein, and is shown below:










(SEQ ID NO: 71)



TGACATGCCTGATCCTCTCTTTTCTGCAGTTCAAGGGAAAGACGAGATCTTGCACAAGGC






ACTCTGCTTCTGCCCTTGGCTGGGGAAGGGTGGCATGGAGCCTCTCCGGCTGCTCATCTT





ACTCTTTGTCACAGAGCTGTCCGGAGCCCACAACACCACAGTGTTCCAGGGCGTGGGGGG





CCAGTCCCTGCAGGTGTCTTGCCCCTATGACTCCATGAAGCACTGGGGGAGGCGCAAGGC





CTGGTGCCGCCAGCTGGGAGAGAAGGGCCCATGCCAGCGTGTGGTCAGCACGCACAACTT





GTGGCTGCTGTCCTTCCTGAGGAGGTGGAATGGGAGCACAGCCATCACAGACGATACCCT





GGGTGGCACTCTCACCATTACGCTGCGGAATCTACAACCCCATGATGCGGGTCTCTACCA





GTGCCAGAGCCTCCATGGCAGTGAGGCTGACACCCTCAGGAAGGTCCTGGTGGAGGTGCT





GGCAGACCCCCTGGATCACCGGGATGCTGGAGATCTCTGGTTCCCCGGGGAGTCTGAGAG





CTTCGAGGATGCCCATGTGGAGCACAGCATCTCCAGGAGCCTCTTGGAAGGAGAAATCCC





CTTCCCACCCACTTCCATCCTTCTCCTCCTGGCCTGCATCTTTCTCATCAAGATTCTAGC





AGCCAGCGCCCTCTGGGCTGCAGCCTGGCATGGACAGAAGCCAGGGACACATCCACCCAG





TGAACTGGACTGTGGCCATGACCCAGGGTATCAGCTCCAAACTCTGCCAGGGCTGAGAGA





CACGTGAAGGAAGATGATGGGAGGAAAAGCCCAGGAGAAGTCCCACCAGGGACCAGCCCA





GCCTGCATACTTGCCACTTGGCCACCAGGACTCCTTGTTCTGCTCTGGCAAGAGACTACT





CTGCCTGAACACTGCTTCTCCTGGACCCTGGAAGCAGGGACTGGTTGAGGGAGTGGGGAG





GTGGTAAGAACACCTGACAACTTCTGAATATTGGACATTTTAAACACTTACAAATAAATC





CAAGACTGTCATATTTAAAAA






As used herein, the term “TREML2” refers to the gene encoding Triggering Receptor Expressed on Myeloid Cells Like 2. The terms “TREML2” and “Triggering Receptor Expressed on Myeloid Cells Like 2” include wild-type forms of the TREML2 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type TREML2. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type TREML2 nucleic acid sequence (e.g., SEQ ID NO: 72, NCBI Reference Sequence: NM_024807.3). SEQ ID NO: 72 is a wild-type gene sequence encoding TREML2 protein, and is shown below:










(SEQ ID NO: 72)



CAATGAATCCCTGCGGTTGGCTGGGGGCAGTGGGTCCCACACTGCCTCACTTCCCTAAATGGGCAG






CTTCACTTTTAGAACCCCGGGTCCTTCCCTGGCAGGCCCAGGTGGCACATCCTGTGTCGGGTGGGC





CCTCACCTTGGATCTCCAGGCCTGACACTGCCCAGCTGGATGGAACCATGGCCCCAGCCTTCCTGC





TGCTGCTGCTGCTGTGGCCACAGGGTTGCGTCTCAGGCCCCTCTGCTGACAGTGTATACACAAAAG





TGAGGCTCCTTGAAGGGGAGACTCTGTCTGTGCAGTGCTCCTATAAGGGCTACAAAAACCGCGTGG





AGGGCAAGGTTTGGTGCAAAATCAGGAAGAAGAAGTGTGAGCCTGGCTTTGCCCGAGTCTGGGTGA





AAGGGCCCCGCTACTTGCTGCAGGACGATGCCCAGGCCAAGGTGGTCAACATCACCATGGTGGCC





CTCAAGCTCCAGGACTCAGGCCGATACTGGTGCATGCGCAACACCTCTGGGATCCTGTACCCCTTG





ATGGGCTTCCAGCTGGATGTGTCTCCAGCTCCCCAAACTGAGAGGAACATTCCTTTCACACATCTGG





ACAACATCCTCAAGAGTGGAACTGTCACAACTGGCCAAGCCCCTACCTCAGGCCCTGATGCCCCTTT





TACCACTGGTGTGATGGTGTTCACCCCAGGACTCATCACCTTGCCTAGGCTCTTAGCCTCCACCAGA





CCTGCCTCCAAGACAGGCTACAGCTTCACTGCTACCAGCACCACCAGCCAGGGACCCAGGAGGACC





ATGGGGTCCCAGACAGTGACCGCGTCTCCCAGCAATGCCAGGGACTCCTCTGCTGGCCCAGAATCC





ATCTCCACTAAGTCTGGGGACCTCAGCACCAGATCGCCCACCACAGGGCTCTGCCTCACCAGCAGA





TCTCTCCTCAACAGACTACCCTCCATGCCCTCCATCAGGCACCAGGATGTTTACTCCACTGTGCTTG





GGGTGGTGCTGACCCTCCTGGTGCTGATGCTGATCATGGTCTATGGGTTTTGGAAGAAGAGACACA





TGGCAAGCTACAGCATGTGCAGCGATCCTTCTACACGTGACCCACCTGGAAGACCAGAGCCCTATG





TGGAAGTCTACTTGATCTGAGGCCACTTAAGCATGGGGTGGGGAGCTTCTCCCAGAGTGGCCCCAG





GGGGTTAGAGGAGGGGTGAAGATTGGGGCCAGTATCGATCTTATGAAGCTGGAGGACTTGTGCAGT





GCTGGACTCACCCAGGACTTCCCAAACCCAGAGGCTGCCATCCTAAGCAGCCCCACAGCCCAGTGT





TCTCCTTGGGGGCAGGAACCTGGGGAGGGGCCCAGAGCAAAGGGCATCAGGGAGAAAGTCCCGAG





GAAATGTGACCAGTGGTTTCTGCTCGGAGCTGCAGACCCCAGGGCTCTTGGTGGAGGCAGGGGAA





CCCTGAGAGTGCTGTTTACAGAGAACCTCAGCTCCCGTCTGCCTCAGAAACCCTATTGGGCTGAGCT





GCCCTCCCCACCAGGGCCACTGTGTCCTCTGCTTCCCTCCGTTCTGCTTCAGCTTCCCCTAAGGTTA





GGGAAGAAAGAATCGGGCTCACGAATGCCAGAGGCAGTGATGTCCCATCCTGGAGGAGAGGAAAC





AGTGACTAAAAGCTGGGGACCCACAGAGGGGTTGGCAGCTTCTCTTGTCGGGACAGGTGTCCTTTG





CTGGGCCTCTGGATGGCCCTGCCCTGACTGGGGCTGCTCCTCCCTCCTGTCCTGGGACCGCGCAG





AGCCCACGCTCTCACTGCTGCCTCCTGCTGGCCGCTGCCTCCTTAGAAAGCTGTGACCAGGCAGCT





AAGAGCCTCTGGGCTGCAGGGTCAGCCTCTCCCAAGACTGAAGTGCAGAGGCTGGACTTGGGGCT





CTCTCCCCCAGCTTCTACACCTGGGCTCCAAGTCTGAGTTCCCACAGGGGACCCAGCAGCCTCCAG





GAAGTCCATACCCTGGGGTGGCTGAGACCTTGGCTCTGTATGGAGGCTGCTCACCCCACAGACACT





GGTGGGGAGACCATGGCTCAGAGGAAGGGTGGAGCAACCCTCCTCCTACCCCTCAGGATAGAGAG





AGAAGACACACTTGGGACACAGTGAAGACAGTAACTTGGAACTGACCACGGCCTGGAGGACTGGCC





CAGGCAGGGGGACAGGGAAAATGGAGCCCAAGTAGCCTCTGGCCAGGGACCCAATGTCCCGAGGA





ATCTGCCTCCCACCCACTGACTCAGGGCTCAGACTCAGCCTCTATTGTCCAGAGCACTGGCTTGGC





GTCCAGCAATGAAGGCTGGAGAATGCAGCCTGGATTCCCCTACACACACACACACACACACACACA





CACACACACACACACACACACACACACAGGTGTCTACTGACCTGGAGTGACTGGAATAGCACCTGG





GGATAAATGTGACAACTGTGCATTGAACCCTGGGTCAGGGACGTTCCAATGGCCAAGAGAGTGACA





CAGCCAGGACCCTGGTGGACAGCCAGAGGGGCCACTTCAGGATGGATGTGGGGAGAGTGGAAGAG





GCAGGGAGTAATCCTGGGGGACAGCAGGGAGGAGGCACTTCTTCCCTATGTCCAGGAGAGGGCAA





TAGAGGGAAGACTGAGGCTGAAGAATTGACGGCTCTGGACCCAGGACAGACAGACAGACAGACAGA





CAGACAGACAGACAGACACGCACACACACCCATCTCTGTCTAGCAAGCAGCCTCCTAAGATAGCTGT





TCTCCCTATCATGACGGTGTAGCCACCATCCTGTTGTATACTAGGAGAGAACTTAACCCACCTGGGG





GAAAATAGCTCCCCAAGAGCTGGCACCAGTACCACTGATGGCCCTGCTTCCTCTGAGTGAGATGCC





CAGGAGGAGGAGCCCTAGGGAAGAAGTCAGGGACAGGGACCAGGATACCACTCTGTCACTGTGTG





ACCCTCAGCAAGTCACTAACCCTTGGCCTCATTTTTCCTGTCTTGTGAAAGAGGACAATAATTCCTAC





TTCTCAAGATTGTTTTCAAGATAAAATAACATTAGCATTGTACAATGATGCAAATGCCTCATTACCATT





ATTCCTTAAGTTGTTTTCCAGCTCTAATGTTGTTTCCAACATTACATTTAAGACCTTAGGATTCTGTTTC





TTGCTTTTGTCATATCTCTTCCCAAGTGTCATCACTATATGGATGTTGAGGGCCCCCGATGACAGTCC





CTTTGGTAAGGTCCTCTTTTGAGGAGGGGAGGGTACAGGGTGGACTCATCTCAGTGTGAACTTGGC





AAGTCACTGTCCCTCTCTGATCTTGTTTCCTCATCTGGAGAAGGAGTGAGAGAGGAGAAAGGAAGAA





ACCAGTCAGGCAGGCAGTTAGGGTGGGTTCTCGGTAGAATTCTTTTAAACAAAAGAACAGCCTGAAA





AATCAAGCTGCAGGCACAGATATGGGAACTTGCACAGGGGGGCTTGCCTAAGACATGCCCACAGCC





TCATAGATAAGACAGACTACACAGGTGACTTGCCCAAACATGCCTGCAATGGAAAATTTCATCCCCT





GACATGTGCAGTAAGGGGAACAAAGCAATATGGAGTAAGTAACTCAAGCCAAGGGCCCACATGTAC





ATTAGAAGGACAGCAGGGAGCTACCAGAAATTCATGCCTTATGCAGATGAGCTGCCCAGTCCTCATC





GGTTTCTTATAAAAGCCTTTACATTCAACTGTAAAAATGGCAACCCTCTTTCAGGCCTCCTCTCCACA





GCAGAGAGCTTTCTTCTCTCACTCATTAAACTTTCACTCCAACCTCAAAAAAAAAAAAAAAAAA






As used herein, the term “TYROBP” refers to the gene encoding TYRO protein tyrosine kinase-binding protein. The terms “TYROBP” and “TYRO protein tyrosine kinase-binding protein” include wild-type forms of the TYROBP gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type TYROBP. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type TYROBP nucleic acid sequence (e.g., SEQ ID NO: 73, ENA accession number AF019562). SEQ ID NO: 73 is a wild-type gene sequence encoding TYROBP protein, and is shown below:










(SEQ ID NO: 73)



CCACGCGTCCGCGCTGCGCCACATCCCACCGGCCCTTACACTGTGGTGTCCAGCAGCATC






CGGCTTCATGGGGGGACTTGAACCCTGCAGCAGGCTCCTGCTCCTGCCTCTCCTGCTGGC





TGTAAGTGGTCTCCGTCCTGTCCAGGCCCAGGCCCAGAGCGATTGCAGTTGCTCTACGGT





GAGCCCGGGCGTGCTGGCAGGGATCGTGATGGGAGACCTGGTGCTGACAGTGCTCATTGC





CCTGGCCGTGTACTTCCTGGGCCGGCTGGTCCCTCGGGGGCGAGGGGCTGCGGAGGCAGC





GACCCGGAAACAGCGTATCACTGAGACCGAGTCGCCTTATCAGGAGCTCCAGGGTCAGAG





GTCGGATGTCTACAGCGACCTCAACACACAGAGGCCGTATTACAAATGAGCCCGAATCAT





GACAGTCAGCAACATGATACCTGGATCCAGCCATTCCTGAAGCCCACCCTGCACCTCATT





CCAACTCCTACCGCGATACAGACCCACAGAGTGCCATCCCTGAGAGACCAGACCGCTCCC





CAATACTCTCCTAAAATAAACATGAAGCACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA






As used herein, the term “ZCWPW1” refers to the gene encoding Zinc finger CW-type PWWP domain protein 1. The terms “ZCWPW1” and “Zinc finger CW-type PWWP domain protein 1” include wild-type forms of the ZCWPW1 gene, as well as variants (e.g., splice variants and polymorphisms) of wild-type ZCWPW1. Examples of such variants are nucleic acids having at least 70% sequence identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.9% identity, or more) to a wild-type ZCWPW1 nucleic acid sequence (e.g., SEQ ID NO: 74, ENA accession number AL136735). SEQ ID NO: 74 is a wild-type gene sequence encoding ZCWPW1 protein, and is shown below:










(SEQ ID NO: 74)



CGCCGTTTTCCCGGGGAGATGCGCCGCCCGGTCTCCCTGCCAGCGGAGTGCTGGGCCGAG






GACAGGGCGGCAGGGGTGACAGTGGGGTCCAGGAGAGTCTCAAAATCCTAAGCTTTCAGT





ATTTGTTATTGTGAAAGAAGTTAATTCACCTGAAACAGAGGAGGGGCAACCTGAGTTATC





AGAAAGTGACTTCCTGGCCTTCCCTTCTTTACTGATCAGAGGCACACAAAGCGTAGTTTC





TAAGCTGAATGATGACAACGTTGCAGAATAAAGAAGAATGTGGAAAGGGACCAAAGAGAA





TCTTTGCCCCACCTGCACAAAAATCTTACAGCCTGTTACCTTGTAGCCCTAACTCCCCTA





AGGAGGAGACCCCGGGGATCAGTTCCCCAGAGACAGAGGCCAGGATAAGCCTGCCAAAGG





CCAGTTTAAAGAAGAAAGAGGAAAAAGCAACCATGAAGAATGTTCCAAGCAGGGAACAGG





AGAAAAAAAGAAAGGCACAAATCAACAAGCAAGCAGAGAAGAAAGAAAAGGAAAAATCAA





GTCTTACCAATGCAGAATTTGAGGAGATTGTCCAGATTGTTCTGCAGAAGTCCCTTCAGG





AGTGCTTGGGGATGGGATCTGGCCTTGATTTTGCAGAGACTTCTTGTGCCCAGCCCGTAG





TATCTACCCAATCAGACAAGGAGCCAGGAATTACTGCTTCTGCTACTGATACTGATAATG





CTAATGGAGAGGAGGTACCACATACTCAAGAGATTTCAGTGTCTTGGGAAGGTGAAGCTG





CCCCTGAGATAAGGACATCTAAGTTAGGCCAGCCAGATCCTGCACCCTCTAAGAAGAAAT





CCAATAGACTCACCTTAAGCAAAAGAAAGAAGGAAGCTCATGAGAAGGTGGAGAAAACTC





AAGGTGGACATGAGCACAGACAGGAAGACCGACTAAAGAAAACAGTTCAGGATCATTCTC





AGATCAGGGACCAGCAAAAAGGAGAGATAAGTGGTTTTGGTCAATGTCTGGTCTGGGTCC





AGTGTTCCTTCCCAAACTGTGGGAAATGGAGGCGGCTGTGTGGGAACATTGACCCCTCAG





TTCTCCCAGATAATTGGTCCTGTGATCAGAACACAGATGTGCAGTATAATCGCTGTGATA





TTCCTGAGGAGACCTGGACAGGGCTTGAGAGTGATGTGGCCTATGCCTCCTACATCCCAG





GATCCATCATCTGGGCCAAGCAATACGGTTACCCCTGGTGGCCAGGCATGATAGAATCTG





ATCCTGACTTAGGGGAATATTTTCTTTTTACTTCCCATCTTGATTCCCTGCCGTCTAAGT





ACCATGTGACGTTTTTTGGAGAAACAGTTTCTCGTGCATGGATCCCAGTCAACATGCTAA





AGAACTTCCAGGAGCTGTCCCTGGAGCTATCAGTCATGAAAAAGCGCAGAAATGACTGCA





GCCAGAAACTGGGGGTGGCCCTGATGATGGCTCAAGAGGCAGAACAGATCAGCATTCAGG





AACGGGTTAACTTGTTTGGTTTCTGGAGCCGATTCAACGGATCTAACAGTAATGGGGAAA





GAAAAGACTTACAGCTCTCTGGTTTGAACAGCCCAGGATCCTGOTTAGAGAAAAAGGAGA





AAGAGGAAGAGTTGGAAAAGGAGGAAGGAGAGAAAACAGACCCAATTTTGCCCATTCGTA





AGCGAGTCAAAATACAGACCCAAAAAAACCAAGCCAAGAGGGCTTGGGGGTGATGCAGGC





ACAGCAGATGGCCGAGGCAGGACACTGCAGAGGAAGATAATGAAGAGATCTCTAGGCAGG





AAATCCACAGCTCCTCCTGCACCCAGAATGGGAAGGAAAGAAGGCCAAGGGAATTCAGAT





TCTGACCAGCCAGGCCCTAAGAAAAAATTTAAAGCTCCCCAGAGCAAGGCCTTGGCAGCC





AGCTTTTCAGAGGGAAAAGAAGTTAGAACAGTGCCAAAGAACCTGGGCCTATCAGCGTGT





AAGGGGGCCTGCCCCTCATCTGCGAAAGAAGAGCCCAGACACCGGGAACCCCTGACCCAG





GAGGCTGGAAGTGTCCCCCTTGAGGACGAAGCCTCCAGTGACCTGGACCTGGAGCAACTC





ATGGAAGATGTTGGGAGAGAGCTGGGGCAGAGCGGGGAGCTGCAGCACAGCAACAGTGAT





GGCGAGGACTTCCCCGTGGCGCTGTTTGGGAAGTAGCTGGTGCTCCTCTGCTCCCTCTTT





TTCTCCCTTCTCTGGGGCGCAGGAGGGAGAAGTTGCTAAGTGCTGGGTCTGTTCATTGGC





TATGAGGTTCAAATGTGTGTGGTGCAGTTTCTGTGTTAATAAAGCAGGTTACAGTCGAAA





AAAAAAAAAAAAAAAAA






DETAILED DESCRIPTION OF THE INVENTION

The present invention provides new forms of siRNA, including single- and double-stranded short interfering RNA (ds-siRNA), and methods for their use in treating a patient in need of microglial gene silencing (e.g., a patient having dysregulated microglial gene expression, such as a patient with, e.g., Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, frontotemporal dementia, Huntington's disease, multiple sclerosis, or progressive supranuclear palsy). The branched siRNA in the present invention has shown a surprising ability to permeate the cell. The branched compositions described herein may employ a variety of modifications known and previously unknown in the art. The siRNA of the invention may contain an antisense strand including a region that is represented by Formula IX:





Z-((A-P-)n(B-P-)m)q;   (IX)


wherein Z is a 5′ phosphorus stabilizing moiety; each A is, independently, a 2′-modified-ribonucleoside of a first type; each B is, independently, a 2′-modified-ribonucleoside of a second type; each P is, independently, an internucleoside linkage selected from a phosphodiester linkage and a phosphorothioate linkage; n is an integer from 1 to 5; m is an integer from 1 to 5; and q is an integer between 1 and 15. The embodiments of each part of Formula IX and the methods of use for the molecules Formula IX represents are described herein.


In some embodiments, the siRNA of the invention may have a sense strand represented by Formula X:





Y-((A-P-)n(B-P-)m)qL-((B-P-)m(A-P-)n)q;   (X)


wherein Y is a hydrophobic moiety (e.g., cholesterol, vitamin D, or tocopherol); Lisa linker; each A is, independently, a 2′-modified-ribonucleoside of a first type; each B is, independently, a 2′-modified-ribonucleoside of a second type; each P is, independently, an internucleoside linkage selected from a phosphodiester linkage and a phosphorothioate linkage; n is an integer from 1 to 5; m is an integer from 1 to 5; and q is an integer between 1 and 15. The embodiments of each part of Formula X and the methods of use for the molecules Formula X represents are described herein.


siRNA Structure


The simplest siRNAs consist of a ribonucleic acid comprising a single- or double-stranded structure, formed by a first strand, and in the case of a double-stranded siRNA, a second strand. The first strand comprises a stretch of contiguous nucleotides that is at least partially complementary to a target nucleic acid. The second strand also comprises a stretch of contiguous nucleotides where the second stretch is at least partially identical to a target nucleic acid. The first strand and said second strand may be hybridized to each other to form a double-stranded structure. The hybridization typically occurs by Watson Crick base pairing.


Depending on the sequence of the first and second strand, the hybridization or base pairing is not necessarily complete or perfect, which means that the first and second strand are not 100% base-paired due to mismatches. One or more mismatches may also be present within the duplex without necessarily impacting the siRNA activity.


The first strand contains a stretch of contiguous nucleotides which is essentially complementary to a target nucleic acid. Typically, the target nucleic acid sequence is, in accordance with the mode of action of interfering ribonucleic acids, a single-stranded RNA, preferably an mRNA. Such hybridization occurs most likely through Watson Crick base pairing but is not necessarily limited thereto. The extent to which the first strand has a complementary stretch of contiguous nucleotides to a target nucleic acid sequence can be between 80% and 100%, e.g., 80%, 85%, 90%, 95%, or 100% complementary.


siRNAs described herein may employ modifications to the nucleobase, phosphate backbone, ribose core, 5′- and 3′-ends, and branching, wherein multiple strands of siRNA may be covalently linked.


Length of siRNA Molecules


It is within the scope of the invention that any length, known and previously unknown in the art, may be employed for the current invention. As described herein, potential lengths for an antisense strand of the branched siRNA of the present invention is between 10 and 30 nucleotides (e.g., 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, or 30 nucleotides), 15 and 25 nucleotides (e.g., 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, or 25 nucleotides), or 18 and 23 nucleotides (e.g., 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, or 30 nucleotides). In some embodiments, the antisense strand is 21 nucleotides. In some embodiments, the antisense strand is 22 nucleotides. In some embodiments, the antisense strand is 23 nucleotides. In some embodiments, the antisense strand is 24 nucleotides. In some embodiments, the antisense strand is 25 nucleotides. In some embodiments, the antisense strand is 26 nucleotides. In some embodiments, the antisense strand is 27 nucleotides. In some embodiments, the antisense strand is 28 nucleotides. In some embodiments, the antisense strand is 29 nucleotides. In some embodiments, the antisense strand is 30 nucleotides.


In some embodiments, the sense strand of the branched siRNA of the present invention is between 12 and 30 nucleotides (e.g., 12 nucleotides, 13 nucleotides, 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides, or 30 nucleotides), or 14 and 18 nucleotides (e.g., 14 nucleotides, 15 nucleotides, 16 nucleotides, 17 nucleotides, or 18 nucleotides). In some embodiments, the sense strand is 16 nucleotides. In some embodiments, the sense strand is 17 nucleotides. In some embodiments, the sense strand is 18 nucleotides. In some embodiments, the sense strand is 19 nucleotides. In some embodiments, the sense strand is 20 nucleotides. In some embodiments, the sense strand is 21 nucleotides. In some embodiments, the sense strand is 22 nucleotides. In some embodiments, the sense strand is 23 nucleotides. In some embodiments, the sense strand is 24 nucleotides. In some embodiments, the sense strand is 25 nucleotides. In some embodiments, the sense strand is 26 nucleotides. In some embodiments, the sense strand is 27 nucleotides. In some embodiments, the sense strand is 28 nucleotides. In some embodiments, the sense strand is 29 nucleotides. In some embodiments, the sense strand is 30 nucleotides.


2′ Modifications


The present invention includes single- and double-stranded compositions comprising at least one alternating motif. Alternating motifs of the present invention may have the formula ((A-P-)n(B-P-)m) q where A is a nucleoside of a first type, B is a nucleoside of a second type, n is from 1 to 5, m is from 1 to 5, and q is from 1 to 15, and P is an internucleoside linkage. The result may include a regular or irregular pattern of alternating nucleosides of the first and second types. Each of the types of nucleosides may be identical with the exception that at least the 2′-substituent groups are different.


Possible 2′-modifications comprise all possible orientations of OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. In some embodiments, the modification includes a 2′-O-methyl (2′-O-Me) modification. Some embodiments use O[(CH2)nO]mCH3, O(CH2)nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3]2, where n and m are from 1 to about 10. Other potential sugar substituent groups include: C1 to C10 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. In some embodiments, the modification includes 2′ methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE). In some embodiments, the modification includes 2′-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2′-DMAOE, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethylamino-ethoxy-ethyl or 2′-DMAEOE), i.e., 2′-O—CH2OCH2N(CH3)2. Other potential sugar substituent groups include aminopropoxy (—OCH2CH2CH2NH2), allyl (—CH2—CH═CH2), —O-allyl (—O—CH2—CH═CH2) and fluoro (F). 2′-sugar substituent groups may be in the arabino (up) position or ribo (down) position. In some embodiments, the 2′-arabino modification is 2′-F. Similar modifications may also be made at other positions on the oligomeric compound, particularly the 3′ position of the sugar on the 3′ terminal nucleoside or in 2′-5′ linked oligonucleotides and the 5′ position of 5′ terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar.


Nucleobase Modifications


Oligomeric compounds may also include nucleosides or other surrogate or mimetic monomeric subunits that include a nucleobase (often referred to in the art simply as “base” or “heterocyclic base moiety”). The nucleobase is another moiety that has been extensively modified or substituted and such modified and or substituted nucleobases are amenable to the present invention. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases also referred herein as heterocyclic base moieties include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (—C═C-CH3) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia of Polymer Science and Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and, Applications, pages 289-302, Crooke, S. T. and Lebleu, B., ed., CRC Press, 1993. Oligomeric compounds of the present invention can also include polycyclic heterocyclic compounds in place of one or more heterocyclic base moieties. A number of tricyclic heterocyclic compounds have been previously reported. These compounds are routinely used in antisense applications to increase the binding properties of the modified strand to a target strand.


Representative cytosine analogs that make 3 hydrogen bonds with a guanosine in a second strand include 1,3-diazaphenoxazine-2-one (Kurchavov, et al., Nucleosides and Nucleotides, 1997, 16, 1837-1846), 1,3-diazaphenothiazine-2-one (Lin, K.-Y.; Jones, R. J.; Matteucci, M. J. Am. Chem. Soc. 1995, 117, 3873-3874), and 6,7,8,9-tetrafluoro-1,3-diazaphenoxazine-2-one (Wang, J.; Lin, K.-Y., Matteucci, M. Tetrahedron Lett. 1998, 39, 8385-8388). Incorporated into oligonucleotides these base modifications were shown to hybridize with complementary guanine and the latter was also shown to hybridize with adenine and to enhance helical thermal stability by extended stacking interactions (also see U.S. patent application entitled “Modified Peptide Nucleic Acids” filed May 24, 2002, Ser. No. 10/155,920; and U.S. patent application entitled “Nuclease Resistant Chimeric Oligonucleotides” filed May 24, 2002, Ser. No. 10/013,295, both of which are herein incorporated by reference in their entirety). Further helix-stabilizing properties have been observed when a cytosine analog/substitute has an aminoethoxy moiety attached to the rigid 1,3-diazaphenoxazine-2-one scaffold (Lin, K.-Y.; Matteucci, M. J. 25 Am. Chem. Soc. 1998, 120, 8531-8532).


Internucleoside Linkage Modifications


Another variable in the design of the present invention are the internucleoside linkages making up the phosphate backbone. Although the natural RNA phosphate backbone may be employed here, derivatives thereof, known and yet unknown in the art, may be used which enhance desirable characteristics of a siRNA. Although not limiting, of particular importance in the present invention is protecting parts, or the whole, of the siRNA from hydrolysis. One example of a modification that decreases the rate of hydrolysis is phosphorothioates. Any portion or the whole of the backbone may contain phosphate substitutions (e.g., phosphorothioates, phosphodiesters, etc.). For instance, the internucleoside linkages may be between 0 and 100% phosphorothioate, e.g., between 0 and 100%, 10 and 100%, 20 and 100%, 30 and 100%, 40 and 100%, 50 and 100%, 60 and 100% 70 and 100%, 80 and 100%, 90 and 100%, 0 and 90%, 0 and 80%, 0 and 70%, 0 and 60%, 0 and 50%, 0 and 40%, 0 and 30%, 0 and 20%, 0 and 10%, 10 and 90%, 20 and 80%, 30 and 70% 40 and 60%, 10 and 40%, 20 and 50%, and 60%, 40 and 70%, 50 and 80%, or 60 and 90% phosphorothioate linkages. Similarly, the internucleoside linkages may be between 0 and 100% phosphodiester linkages, e.g., between 0 and 100%, 10 and 100%, 20 and 100%, 30 and 100%, 40 and 100%, 50 and 100%, 60 and 100% 70 and 100%, 80 and 100%, 90 and 100%, 0 and 90%, 0 and 80%, 0 and 70%, 0 and 60%, 0 and 50%, 0 and 40%, 0 and 30%, 0 and 20%, 0 and 10%, 10 and 90%, 20 and 80%, 30 and 70%, 40 and 60%, 10 and 40%, 20 and 50%, 30 and 60%, 40 and 70%, 50 and 80%, or 60 and 90% phosphodiester linkages.


Specific examples of some potential oligomeric compounds useful in this invention include oligonucleotides containing modified e.g. non-naturally occurring internucleoside linkages. As defined in this specification, oligonucleotides having modified internucleoside linkages include internucleoside linkages that retain a phosphorus atom and internucleoside linkages that do not have a phosphorus atom. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. In the C. elegans system, modification of the internucleotide linkage (phosphorothioate) did not significantly interfere with RNAi activity. Based on this observation, it is suggested that some compositions of the invention can also have one or more modified internucleoside linkages. A preferred phosphorus containing modified internucleoside linkage is the phosphorothioate internucleoside linkage. In some embodiments, the modified oligonucleotide backbones containing a phosphorus atom therein include, for example, phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates, 5′-alkylene phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, selenophosphates, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein one or more internucleotide linkages is a 3′ to 3′, 5′ to 5′ or 2′ to 2′ linkage. In some embodiments, the modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.


siRNA Patterning


Nucleosides used in the invention tolerate a range of modifications in the nucleobase and sugar. A complete siRNA, single-stranded or double-stranded, may have 1, 2, 3, 4, 5, or more different nucleosides that each appear in the siRNA strand or strands once or more. The nucleosides may appear in a repeating pattern (e.g., alternating between two modified nucleosides) or may be a strand of one type of nucleoside with substitutions of a second type of nucleoside. Similarly, internucleoside linkages may be of one or more type appearing in a single- or double-stranded siRNA in a repeating pattern (e.g., alternating between two internucleoside linkages) or may be a strand of one type of internucleoside linkage with substitutions of a second type of internucleoside linkage. Though the siRNAs of the invention tolerate a range of substitution patterns, the following exemplify some preferred patterns in which A and B represent nucleosides of two types, and T and P represent internucleoside linkages of two types:


Pattern 1: A-T-B-T-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-B-T-A-T-A-T-A-T-A-T-A-T-A-T A-T-A-T-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-T-A-T
Pattern 2: A-T-A-T-A-P—B-P-B-P-B-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-B-T-A-T-A-T-A-T-A-T-A-T-A-T A-T-A-T-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-T-A-T
Pattern 3: A-T-B-T-A-P—B-P-B-P-B-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-B-T-A-T-A-T-A-T-A-T-A-T-A-T A-T-A-T-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-T-A-T
Pattern 4: A-T-B-T-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-B-T-A-T-A-T-A-T-A-T-A-T-A-T A-T-A-T-A-P-A-P-A-P-A-P—B-P-A-P-A-P—B-P-B-P-A-P-A-P-A-T-A-T
Pattern 5: A-T-B-T-A-P-A-P-A-P—B-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-B-T-A-T-B-T-A-T-A-T-A-T-A-T A-T-A-T-A-P-A-P-A-P-A-P—B-P-A-P—B-P-B-P-B-P-A-P-A-P-A-T-A-T.

In some embodiments, T represents phosphorothioate, and P represents phosphodiester.


In some embodiments, the siRNA molecule of the disclosure features any one of the siRNA nucleotide modification patterns and/or internucleoside linkage modification patterns described in International Patent Application Publication Nos. WO 2016/161388 and WO 2020/041769, the disclosures of which are incorporated in their entirety herein. In some embodiments of the disclosure, the siRNA may contain an antisense strand including a region represented by Formula A-I, wherein Formula A-I is, in the 5′-to-3′ direction





A-B-(A′)j-C-P2-D-P1-(C′-P1)k-C′   Formula A-I;


wherein A is represented by the formula C-P1-D-P1; each A′ is represented by the formula C-P2-D-P2; B is represented by the formula C-P2-D-P2-D-P2-D-P2; each C is a 2′-O-methyl (2′-O-Me) ribonucleoside; each C′, independently, is a 2′-O-Me ribonucleoside or a 2′-fluoro (2′-F) ribonucleoside; each D is a 2′-F ribonucleoside; each P1 is a phosphorothioate internucleoside linkage; each P2 is a phosphodiester internucleoside linkage; j is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and k is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7). In some embodiments, j is 4. In some embodiments, k is 4. In some embodiments, j is 4 and k is 4. The antisense is complementary (e.g., fully or partially complementary) to a target nucleic acid sequence.


In some embodiments, the antisense strand includes a structure represented by Formula A1, wherein Formula A1 is, in the 5′-to-3′ direction:





A-S-B-S-A-O-B-O-B-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-A-S-A-S-B-S-A   Formula A1;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments of the disclosure, the siRNA may contain an antisense strand including a region represented by Formula A-II, wherein Formula A-II is, in the 5′-to-3′ direction:





A-B-(A),-C-P2-D-P1-(C-P1)k-C′   Formula A-II;


wherein A is represented by the formula C-P1-D-P1; each A′ is represented by the formula C-P2-D-P2; B is represented by the formula C-P2-D-P2-D-P2-D-P2; each C is a 2′-O-methyl (2′-O-Me) ribonucleoside; each C′, independently, is a 2′-O-Me ribonucleoside or a 2′-fluoro (2′-F) ribonucleoside; each D is a 2′-F ribonucleoside; each P1 is a phosphorothioate internucleoside linkage; each P2 is a phosphodiester internucleoside linkage; j is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and k is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7). In some embodiments, j is 4. In some embodiments, k is 4. In some embodiments, j is 4 and k is 4. The antisense is complementary (e.g., fully or partially complementary) to a target nucleic acid sequence.


In some embodiments of the disclosure, the antisense strand includes a structure represented by Formula A2, wherein Formula A2 is, in the 5′-to-3′ direction:





A-S-B-S-A-O-B-O-B-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-A-S-A-S-A-S-A   Formula A2;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments of the disclosure, the sense strand includes a structure represented by Formula S-III, wherein Formula S-III is, in the 5′-to-3′ direction:





E-(A′)m-F   Formula S-III;


wherein E is represented by the formula (C-P1)2; F is represented by the formula (C-P2)3-D-P1-C-P1-C, (C-P2)3-D-P2-C-P2-C, (C-P2)3-D-P1-C-P1-D, or (C-P2)3-D-P2-C-P2-D; A′, C, D, P1, and P2 are as defined in Formula I; and m is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7). In some embodiments, m is 4. The sense strand is complementary (e.g., fully or partially complementary) to the antisense strand.


In some embodiments of the disclosure, the sense strand includes a structure represented by Formula S1, wherein Formula S1 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A-O-A-O-B-S-A-S-A   Formula S1;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage. In some embodiments of the disclosure, the sense strand includes a structure represented by Formula S2, wherein Formula S2 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A-O-A-O-B-O-A-O-A   Formula S2;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments of the disclosure, the sense strand includes a structure represented by Formula S3, wherein Formula S3 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A-O-A-O-B-S-A-S-B   Formula S3;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments of the disclosure, the sense strand includes a structure represented by Formula S4, wherein Formula S4 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A-O-A-O-B-O-A-O-B   Formula S4;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments of the disclosure, the siRNA may contain an antisense strand including a region represented by Formula A-IV, wherein Formula A-IV is, in the 5′-to-3′ direction:





A-(A)j-C-P2-B-(C-P1)k-C′   Formula A-IV;


wherein A is represented by the formula C-P1-D-P1; each A′ is represented by the formula C-P2-D-P2; B is represented by the formula D-P1-C-P1-D-P1; each C is a 2′-O-Me ribonucleoside; each C′, independently, is a 2′-O-Me ribonucleoside or a 2′-F ribonucleoside; each D is a 2′-F ribonucleoside; each P1 is a phosphorothioate internucleoside linkage; each P2 is a phosphodiester internucleoside linkage; j is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and k is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7). In some embodiments, j is 6. In some embodiments, k is 4. In some embodiments, j is 6 and k is 4. The antisense strand is complementary (e.g., fully or partially complementary) to a target nucleic acid. In some embodiments of the disclosure, the antisense strand includes a structure represented by Formula A3, wherein Formula A3 is, in the 5′-to-3′ direction:





A-S-B-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-B-S-A-S-A-S-A   Formula A3;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments of the disclosure, the siRNA of the disclosure may have a sense strand represented by Formula S-V, wherein Formula S-V is, in the 5′-to-3′ direction:





E-(A′)m-C-P2-F   Formula S-V;


wherein E is represented by the formula (C-P1)2; F is represented by the formula D-P1-C-P1-C, D-P2-C-P2-C, D-P′-C-P′-D, or D-P2-C-P2-D; A′, C, D, P1, and P2 are as defined in Formula IV; and m is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7). In some embodiments, m is 5. The sense strand is complementary (e.g., fully or partially complementary) to the antisense strand.


In some embodiments of the disclosure, the sense strand includes a structure represented by Formula S5, wherein Formula S5 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-A   Formula S5;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments of the disclosure, the sense strand includes a structure represented by Formula S6, wherein Formula S6 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-A   Formula S6;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments of the disclosure, the sense strand includes a structure represented by Formula S7, wherein Formula S7 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-S-A-S-B   Formula S7;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments of the disclosure, the sense strand includes a structure represented by Formula S8, wherein Formula S8 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B-O-A-O-B   Formula S8;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments of the disclosure, the siRNA may contain an antisense strand including a region represented by Formula A-VI, wherein Formula A-VI is, in the 5′-to-3′ direction:





A-Bj-E-Bk-E-F-Gl-D-P1-C′   Formula A-VI;


wherein A is represented by the formula C-P1-D-P1; each B is represented by the formula C-P2; each C is a 2′-O-Me ribonucleoside; each C′, independently, is a 2′-O-Me ribonucleoside or a 2′-F ribonucleoside; each D is a 2′-F ribonucleoside; each E is represented by the formula D-P2-C-P2; F is represented by the formula D-P1-C-P1; each G is represented by the formula C-P1; each P1 is a phosphorothioate internucleoside linkage; each P2 is a phosphodiester internucleoside linkage; j is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); k is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and I is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7). In some embodiments, j is 3. In some embodiments, k is 6. In some embodiments, I is 2. In some embodiments, j is 3, k is 6, and I is 2. The antisense strand is complementary (e.g., fully or partially complementary) to a target nucleic acid.


In some embodiments of the disclosure, the antisense strand includes a structure represented by Formula A4, wherein Formula A4 is, in the 5′-to-3′ direction:





A-S-B-S-A-O-A-O-A-O-B-O-A-O-A-O-A-O-A-O-A-O-A-O-A-O-B-O-A-O-B-S-A-S-A-S-A-S-B-S-A   Formula A4;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments of the disclosure, the siRNA may contain a sense strand including a region represented by Formula S-VII, wherein Formula S-VII is, in the 5′-to-3′ direction:





H-Bm-In-A′-Bo-H-C   Formula S-VII;


wherein A′ is represented by the formula C-P2-D-P2; each H is represented by the formula (C-P1)2; each I is represented by the formula (D-P2); B, C, D, P1, and P2 are as defined in Formula VI; m is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); n is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7); and o is an integer from 1 to 7 (e.g., 1, 2, 3, 4, 5, 6, or 7). In some embodiments, m is 3. In some embodiments, n is 3. In some embodiments, o is 3. In some embodiments, m is 3, n is 3, and o is 3. The sense strand is complementary (e.g., fully or partially complementary) to the antisense strand.


In some embodiments of the disclosure, the sense strand includes a structure represented by Formula S9, wherein Formula S9 is, in the 5′-to-3′ direction:





A-S-A-S-A-O-A-O-A-O-B-O-B-O-B-O-A-O-B-O-A-O-A-O-A-O-A-S-A-S-A   Formula S9;


wherein A represents a 2′-O-Me ribonucleoside, B represents a 2′-F ribonucleoside, 0 represents a phosphodiester internucleoside linkage, and S represents a phosphorothioate internucleoside linkage.


In some embodiments of the disclosure, the siRNA may contain an antisense strand including a region that is represented by Formula VIII:


5′ Phosphorus Stabilizing Moiety


To further protect the siRNA from degradation a 5′-phosphorus stabilizing moiety may be employed. A 5′-phosphorus stabilizing moiety replaces the 5′-phosphate to prevent hydrolysis of the phosphate. Hydrolysis of the 5′-phosphate prevents binding to RISC, a necessary step in gene silencing. Any replacement for phosphate that does not impede binding to RISC is contemplated in this disclosure. In some embodiments, the replacement for the 5′-phosphate is also stable to in vivo hydrolysis. Each siRNA strand may independently and optionally employ any suitable 5′-phosphorus stabilizing moiety.




embedded image


embedded image


Some exemplary endcaps are demonstrated in Formula I-VIII. Nuc in Formula I-VIII represents a nucleobase or nucleobase derivative or replacement as described herein. X in Formula I-VIII represents a 2′-modification as described herein. Some embodiments employ hydroxy as in Formula I, phosphate as in Formula II, vinylphosphonates as in Formula III, and VI, 5′-methylsubstitued phosphates as in Formula IV, VI, and VIII, or methylenephosphonates as in Formula VII, vinyl 5′-vinylphosphonate as a 5′-phosphorus stabilizing moiety as demonstrated in Formula III.


siRNA Branching


Branching of the siRNA molecules is a key feature in the present invention. The siRNA molecule may not be branched, or may be dibranched, tribranched, or tetrabranched, connected through a linker. Each main branch may be further branched to allow for 2, 3, 4, 5, 6, 7, or 8 separate RNA single- or double-strands. The branch points on the linker may stem from the same atom, or separate atoms along the linker. Some exemplary embodiments are listed in Table 1, where L represent a linker, and X represents any atom suitable to the siRNA molecule branch points:









TABLE 1







Branched siRNA structures









Dibranched
Tribranched
Tetrabranched





RNA—L—RNA


embedded image




embedded image









embedded image




embedded image




embedded image









embedded image




embedded image




embedded image










embedded image




embedded image











embedded image











Linkers


Multiple strands of siRNA described herein may be covalently attached by way of a linker. The effect of this branching improves, inter alia, cell permeability allowing better access into microglia in the CNS. Any linking moiety may be employed which is not incompatible with the siRNAs of the present invention. Exemplary linkers include ethylene glycol chains of 2 to 10 subunits (e.g., 2, 3, 4, 5, 6, 7, 8, 9, or 10 subunits), alkyl chains, carbohydrate chains, block copolymers, peptides, RNA, DNA, and others. In some embodiments, any carbon or oxygen atom of the linker is optionally replaced with a nitrogen atom, bears a hydroxyl substituent, or bears an oxo substituent. In some embodiments, the linker is a poly-ethylene glycol (PEG) linker. The PEG linkers suitable for use with the disclosed compositions and methods include linear or non-linear PEG linkers. Examples of non-linear PEG linkers include branched PEGs, linear forked PEGs, or branched forked PEGs.


PEG linkers of various weights may be used with the disclosed compositions and methods. For example, the PEG linker may have a weight that is between 5 and 500 Daltons. In some embodiments, a PEG linker having a weight that is between 500 and 1,000 Dalton may be used. In some embodiments, a PEG linker having a weight that is between 1,000 and 10,000 Dalton may be used. In some embodiments, a PEG linker having a weight that is between 200 and 20,000 Dalton may be used. In some embodiments, the linker is covalently attached to a sense strand of the siRNA. In some embodiments, the linker is covalently attached to an antisense strand of the siRNA. In some embodiments, the PEG linker is a triethylene glycol (TrEG) linker. In some embodiments, the PEG linker is a tetraethylene linker (TEG).


In some embodiments, the linker is an alkyl chain linker. In some embodiments, the linker is a peptide linker. In some embodiments, the linker is a RNA linker. In some embodiments, the linker is a DNA linker.


Linkers may covalently link 2, 3, 4, or 5 unique siRNA strands. The linker may covalently bind to any part of the siRNA oligomer. In some embodiments, the linker attaches to the 3′ end of nucleosides of each siRNA strand. In some embodiments, the linker attaches to the 5′ end of nucleosides of each siRNA strand. In some embodiments, the linker attaches to a nucleoside of an siRNA strand (e.g., sense or antisense strand) by way of a covalent bond-forming moiety. In some embodiments, the covalent-bond-forming moiety is selected from the group consisting of an alkyl, ester, amide, carbonate, carbamate, triazole, urea, formacetal, phosphonate, phosphate, and phosphate derivative (e.g., phosphorothioate, phosphoramidate, etc.).


In some embodiments, the linker has a structure of Formula L1, as is shown below:




embedded image


In some embodiments, the linker has a structure of Formula L2, as is shown below:




embedded image


In some embodiments, the linker has a structure of Formula L3, as is shown below:




embedded image


In some embodiments, the linker has a structure of Formula L4, as is shown below:




embedded image


In some embodiments, the linker has a structure of Formula L5, as is shown below:




embedded image


In some embodiments, the linker has a structure of Formula L6, as is shown below:




embedded image


In some embodiments, the linker has a structure of Formula L7, as is shown below:




embedded image


In some embodiments, the linker has a structure of Formula L8, as is shown below:




embedded image


In some embodiments, the linker has a structure of Formula L9, as is shown below:




embedded image


In some embodiments, the selection of a linker for use with one or more of the branched siRNA molecules disclosed herein may be based on the hydrophobicity of the linker, such that, e.g., desirable hydrophobicity is achieved for the one or more branched siRNA molecules of the disclosure. For example, a linker containing an alkyl chain may be used to increase the hydrophobicity of the branched siRNA molecule as compared to a branched siRNA molecule having a less hydrophobic linker or a hydrophilic linker.


Methods of Treatment

The invention provides methods of treating a subject in need of gene silencing. The gene silencing may be performed in order to silence defective or overactive microglial genes, silence negative regulators of microglial genes with reduced expression and/or activity, silence wild type microglial genes with an activating role in a pathway(s) that increases expression and/or activity of a disease driver gene, silence splice isoforms of a microglial gene(s) that, when selectively knocked down, may elevate total expression and/or activity of the gene(s), among other reasons, so long as the goal is to restore genetic and biochemical pathway activity from a disease state towards a healthy state. The active compound can be administered in any suitable dose. The actual dosage amount of a composition of the present invention administered to a patient can be determined by physical and physiological factors such as body weight, severity of condition, previous or concurrent therapeutic interventions, idiopathy of the patient and on the route of administration. Depending upon the dosage and the route of administration, the number of administrations of a preferred dosage and/or an effective amount may vary according to the response of the subject. The practitioner responsible for administration will, in any event, determine the concentration of active ingredient(s) in a composition and appropriate dose(s) for the individual subject. Administration may occur any suitable number of times per day, and for as long as necessary. Subjects may be adult or pediatric humans, with or without comorbid diseases.


Diseases

The methods of the invention feature delivering a branched siRNA molecule to a microglial cell in a subject in need of microglial gene silencing. Subjects in need of microglial gene silencing may be suffering from neurodegenerative diseases in which neuroinflammation is a primary component of the disease pathology (e.g., Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, frontotemporal dementia, Huntington's disease, multiple sclerosis, or progressive supranuclear palsy).


Alzheimer's Disease


Alzheimer's disease (AD) is a late-onset neurodegenerative disorder responsible for the majority of dementia cases in the elderly. AD patients suffer from a progressive cognitive decline characterized by symptoms including an insidious loss of short- and long-term memory, attention deficits, language-specific problems, disorientation, impulse control, social withdrawal, anhedonia, and other symptoms. Distinguishing neuropathological features of AD are extracellular aggregates of amyloid-6 plaques and neurofibrillary tangles composed of hyperphosphorylated microtubule-associated tau proteins. Accumulation of these aggregates is associated with neuronal loss and atrophy in a number of brain regions including the frontal, temporal, and parietal lobes of the cerebral cortex as well as subcortical structures like the basal forebrain cholinergic system and the locus coeruleus within the brainstem. AD is also associated with increased neuroinflammation characterized by reactive gliosis and elevated levels of pro-inflammatory cytokines.


Amyotrophic Lateral Sclerosis


Amyotrophic Lateral Sclerosis (ALS) is a fast-progressing fatal neurodegenerative disease that affects motor neurons both in the brain and spinal cord, consequently resulting in paralysis of voluntary muscles at later stages of disease. ALS affects about 6 persons per 100,000 people and typically leads to death within 3 to 5 years after the onset of symptoms, with no cure yet available. ALS leads to muscle weakness, atrophy, and muscle spasms as a result of degeneration of upper and lower motor neurons. Cognitive and behavioral dysfunction (e.g., language dysfunction, executive dysfunction, social cognition, and verbal memory dysfunction), and frontotemporal dementia are all possible symptoms of ALS.


Parkinson's Disease


PD is a progressive disorder that affects movement, and it is recognized as the second most common neurodegenerative disease after Alzheimer's disease. Common symptoms of PD include resting tremor, rigidity, and bradykinesia, and non-motor symptoms, such as depression, constipation, pain, sleep disorders, genitourinary problems, cognitive decline, and olfactory dysfunction, are also increasingly being associated with PD. A key feature of PD is the death of dopaminergic neurons in the substantia nigra pars compacta, and, for that reason, most current treatments for PD focus on increasing dopamine. Another well-known neuropathological hallmark of PD is the presence of Lewy bodies containing α-synuclein in brain regions affected by PD, which are thought to contribute to the disease.


PD is thought to result from a combination of genetic and environmental risk factors. There is no single gene responsible for all Parkinson's disease cases, and the vast majority of PD cases seem to be sporadic and not directly inherited. Mutations in the genes encoding parkin, PTEN-induced putative kinase 1 (PINK1), leucine-rich repeat kinase 2 (LRRK2), and Parkinsonism-associated deglycase (DJ-1) have been found to be associated with PD, but they represent only a small subset of the total number of PD cases. Occupational exposure to some pesticides and herbicides has also been proposed as a risk factor for PD. The synthetic neurotoxin MPTP can cause Parkinsonism, but its use is extremely rare.


Frontotemporal Dementia


Frontotemporal dementia (FTD; also known as frontotemporal lobar degeneration (FTLD)) is a clinical syndrome characterized by progressive neurodegeneration in the frontal and temporal lobes of the cerebral cortex. The manifestation of FTD is complex and heterogeneous, and may present as one of three clinically distinct variants including: 1) behavioral-variant frontotemporal dementia (BVFTD), characterized by changes in behavior and personality, apathy, social withdrawal, perseverative behaviors, attentional deficits, disinhibition, and a pronounced degeneration of the frontal lobe; 2) semantic dementia (SD), characterized by fluent, anomic aphasia, progressive loss of semantic knowledge of words, objects, and concepts and a pronounced degeneration of the anterior temporal lobes. Furthermore, SD variant of FTD exhibit a flat affect, social deficits, perseverative behaviors, and disinhibition; or 3) progressive nonfluent aphasia; characterized by motor deficits in speech production, reduced language expression, and pronounced degeneration of the perisylvian cortex. Neuronal loss in brains of FTD patients is associated with one of three distinct neuropathologies: 1) the presence of tau-positive neuronal and glial inclusions; 2) ubiquitin (ub)-positive and TAR DNA-binding protein 43 (TDP43)-positive, but tau-negative inclusions; or 3) ub and fused in sarcoma (FUS)-positive, but tau and TDP-43-negative inclusions. These neuropathologies are considered to be important in the etiology of FTD.


Nearly half of FTD patients have a first-degree family member with dementia, ALS, or Parkinson's disease, suggesting a strong genetic link to the cause of the disease. A number of mutations in chromosome 17q21 have been linked to FTD presentation.


Huntington's Disease


Huntington's Disease (HD) is an example of a trinucleotide repeat expansion disorder. This class of disorders involve the localized expansion of unstable repeats of sets of three nucleotides and can result in loss of function of a gene in which the expanded repeat is found, a gain of toxic function, or both. Trinucleotide repeats can be located in any part of the gene, including coding and non-coding regions. Repeats located within coding regions typically involve a repeated glutamine encoding triplet (CAG) or an alanine encoding triplet (CGA). Expanded repeat regions within non-coding sequences can lead to aberrant expression of the gene, while expanded repeats within coding regions (also known as codon reiteration disorders) may cause protein mis-folding and aggregation. Typically, regions of wild-type genes contain a variable number of repeat sequences in the normal population, but in the afflicted populations, the number of repeats can increase from a doubling to a log order increase in the number of repeats. In HD, repeats are inserted within the N-terminal coding region of the large cytosolic protein Huntingtin (Htt). Normal Htt alleles contain 15-20 CAG repeats, while alleles containing 35 or more repeats can be considered to confer a risk for developing the disease. Alleles containing 36-39 repeats are considered incompletely penetrant, and those individuals harboring those alleles may or may not develop the disease (or exhibit delayed presentation later in life), while alleles containing 40 repeats or more are considered completely penetrant. Those individuals with juvenile onset HD (<21 years of age) are often found to have 60 or more CAG repeats.


Multiple Sclerosis


Multiple sclerosis (MS) is the most common demyelinating disease of the CNS affecting young adults (disease onset between 20 to 40 years of age) and is the third leading cause for disability after trauma and rheumatic diseases in the US.


MS patients present with destruction of myelin, death of oligodendrocytes, and axonal loss. The main pathologic finding in MS is the presence of infiltrating mononuclear cells, predominantly T lymphocytes and macrophages, which breach the blood brain barrier and induce active inflammation within the CNS. The neurological symptoms that characterize MS include complete or partial vision loss, diplopia, sensory symptoms, motor weakness that can progress to complete paralysis, bladder dysfunction, and cognitive deficits. The associated inflammatory foci lead to myelin destruction, plaques of demyelination, gliosis, and axonal loss within the brain and spinal cord and are the primary drivers of the clinical manifestations of neurological disability.


The etiology of MS is not fully understood. The disease develops in genetically predisposed subjects exposed to yet undefined environmental factors and the pathogenesis involves autoimmune mechanisms associated with autoreactive T cells against myelin antigens. It is well established that not one dominant gene determines genetic susceptibility to develop MS, but rather many genes, each with different influence, are involved. The detailed molecular mechanisms underlying MS etiology are still to be elucidated.


Progressive Supranuclear Palsy


Progressive supranuclear palsy (PSP), a progressive and fatal tauopathy, represents ˜10% of all Parkinsonian cases in the US. PSP patients have a variety of motor disorders, including postural instability, falls, abnormalities in gait, bradykinesia, vertical gaze paralysis, pseudobulbar paralysis, and axial stiffness without limb stiffness, in addition to cognitive impairments such as apathy, loss of executive function, and reduced fluency. Neuropathology of PSP is characterized by an accumulation of tau protein, which is associated with abnormal intracellular microtubules, resulting in insoluble filament deposits. The neuropathological presentation of PSP neurodegeneration is located in the subcortical regions, including substantia nigra, globus pallidus, and subthalamic nucleus. PSP neurodegeneration is characterized by the destruction of tissues and cytokine profiles of activated microglia and astrocytes.


There are currently no disease-modifying treatments for PSP. The current standard of care is palliative. Patients in the advanced stages of the disease often have feeding tubes inserted to avoid choking hazards and to provide nutrition. Although therapies are available to decrease some symptoms of PSP, none protect the brain from neurodegeneration. Current medications to treat symptoms of PSP include dopamine agonists, tricyclic antidepressants, methysergide, onabotulinumtoxin A (to treat muscle stiffness in the face). However, as the disease progresses and symptoms worsen, medications may fail to adequately decrease symptoms.


Gene Targets

The methods of the invention feature delivering a branched siRNA molecule to a microglial cell in a subject in need of microglial gene silencing. Patients in need of microglial gene silencing may have dysregulated expression and/or activity of a gene selected from the group consisting of ABCA7, ABI3, ADAM10, APOC1, APOE, AXL, BIN1, C1QA, C3, C9ORF72, CASS4, CCL5, CD2AP, CD33, CD68, CLPTM1, CLU, CR1, CSF1, CST7, CTSB, CTSD, CTSL, CXCL10, CXCL13, DSG2, ECHDC3, EPHA1, FABP5, FERMT2, FTH1, GNAS, GRN, HBEGF, HLA-DRB1, HLA-DRB5, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IGF1, IL10RA, IL1A, IL1B, IL1RAP, INPP5D, ITGAM, ITGAX, LILRB4, LPL, MEF2C, MMP12, MS4A4A, MS4A6A, NLRP3, NME8, NOS2, PICALM, PILRA, PLCG2, PTK2B, SCIMP, SLC24A4, SORL1, SPI1, SPP1, SPPL2A, TBK1, TNF, TREM2, TREML2, TYROBP, and ZCVVPW1 gene.


In some embodiments, the patient in need of microglial gene silencing may require silencing of any one of the genes selected from the group consisting of APOE, BIN1, C1QA, C3, C9ORF72, CCL5, CD33, CLU/APOJ, CR1, CXCL10, CXCL13, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IL10RA, IL1A, IL1B, IL1RAP, INPP5D, ITGAM, MEF2C, MMP12, NLRP3, NOS2, PILRA, PLCG2, PTK2B, SLC24A4, TBK1, and TNF.


Pharmaceutical Compositions

The branched siRNA molecules in the present invention can be formulated into a pharmaceutical composition for administration to a subject in a biologically compatible form suitable for administration in vivo. Accordingly, in one aspect, the present invention provides a pharmaceutical composition containing a branched siRNA in admixture with a suitable diluent, carrier, or excipient. The siRNA can be administered, for example, orally or by intravenous injection.


Conventional procedures and ingredients for the selection and preparation of suitable formulations are described, for example, in Remington: The Science and Practice of Pharmacy (2012, 22 nd ed.) and in The United States Pharmacopeia: The National Formulary (2015, USP 38 NF 33).


Under ordinary conditions of storage and use, a pharmaceutical composition may contain a preservative, e.g., to prevent the growth of microorganisms. Pharmaceutical compositions may include sterile aqueous solutions, dispersions, or powders, e.g., for the extemporaneous preparation of sterile solutions or dispersions. In all cases the form may be sterilized using techniques known in the art and may be fluidized to the extent that may be easily administered to a subject in need of treatment.


A pharmaceutical composition may be administered to a subject, e.g., a human subject, alone or in combination with pharmaceutically acceptable carriers, as noted herein, the proportion of which may be determined by the solubility and/or chemical nature of the compound, chosen route of administration, and standard pharmaceutical practice.


Regimens

A physician having ordinary skill in the art can readily determine an effective amount of siRNA for administration to a mammalian subject (e.g., a human) in need thereof. For example, a physician could start prescribing doses of a siRNA of the invention at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved. Alternatively, a physician may begin a treatment regimen by administering a siRNA at a high dose and subsequently administer progressively lower doses until a therapeutic effect is achieved (e.g., a reduction in expression of a target gene sequence). In general, a suitable daily dose of a siRNA of the invention will be an amount of the siRNA which is the lowest dose effective to produce a therapeutic effect. A single-strand or double-strand siRNA of the invention may be administered by injection, e.g., intrathecally, intracerebroventricularly, or intrastriatally. A daily dose of a therapeutic composition of a siRNA of the invention may be administered as a single dose or as two, three, four, five, six or more doses administered separately at appropriate intervals throughout the day, week, month, or year, optionally, in unit dosage forms. While it is possible for a siRNA of the invention to be administered alone, it may also be administered as a pharmaceutical formulation in combination with excipients, carriers, and optionally, additional therapeutic agents.


Routes of Administration

The method of the invention contemplates any route of administration tolerated by the therapeutic composition. Some embodiments of the method include injection intrathecally, intracerebroventricularly, or intrastriatally.


Intrathecal injection is the direct injection into the spinal column or subarachnoid space. By injecting directly into the CSF of the spinal column the siRNA molecule of the invention has direct access to microglia in the spinal column and a route to access the microglia in the brain by bypassing the blood brain barrier.


Intracerebroventricular (ICV) injection is a method to directly inject into the CSF of the cerebral ventricles. Similar to intrathecal injection, ICV is a method of injection which bypasses the blood brain barrier. Using ICV allows the advantage of access to the microglia of the brain and spinal column without the danger of the therapeutic being degraded in the blood.


Intrastriatal injection is the direct injection into the striatum, or corpus striatum. The striatum is an area in the subcortical basal ganglia in the brain. Injecting into the striatum bypasses the blood brain barrier and the pharmacokinetic challenges of injection into the blood stream and allows for direct access to the microglia of the brain and spinal column.


EXAMPLES
Example 1. Protocol for Uptake of Di-siRNA in Microglia of Non-Human Primates

The experiments described in this example were conducted to assess the ability of branched siRNA molecules to permeate the central nervous system and internalize within microglial cells. To this end, a branched siRNA compound targeting the huntingtin (HTT) gene and conjugated to a fluorescent dye (Cy3) was first injected into the cerebrospinal fluid via intrathecal injection into non-human primates (NHP; cynomolgus macaque). Central nervous system tissue samples were later obtained from the animals. To assess the extent to which the branched siRNA molecules were internalized by microglial cells, the tissue samples were stained using fluorescent-labeled antibodies that are specific for markers expressed in certain cell types (e.g., microglia). Fluorescence microscopy was then utilized to determine the degree of colocalization of the Cy3-labeled branched siRNA molecules and antibody-labeled microglial cells, which served as an indicator of microglial uptake. These experiments, and their results, are described in further detail below:


Paraffin embedded CNS tissue slides were tested. A dose of fluorescent labeled branched siRNA was administered to a NHP (cynomolgus macaque) via intrathecal injection. 48 hours after injection a distribution study was done. The control was an uninjected NHP. NHP tissues for imaging were post-fixed for 48-72 hours in 4% PFA at 5±3° C., and then transferred to PBS. All tissues were paraffin-embedded and sliced into 4 μm sections and mounted on slides for immunofluorescence staining. Subsequently, sections were deparaffinized and subjected to antigen retrieval. Samples were deparaffanized by two changes of xylene, 5 minutes each, then 50% xylene+50% ethanol (100%) for 5 minutes. Samples were hydrated by two changes of 100% ethanol for 3 minutes each, 90%, 80%, 70% and then 50% ethanol for 3 minutes each, followed by distilled water rinse. Antigen retrieval was carried out using 150 mL of Tris-EDTA buffer (pH9), placing the staining dish in a pressure cooker (containing 1200 mL DDH2O) for 10 minutes, allowing the slides to cool to room temperature, followed by section-wise rinsing with H2O and TBST. Sections were blocked with Background Terminator Blocking Reagent and the slides were then incubated with the primary antibody against the microglial-specific gene, Iba-1, for 1.5 hours at room temperature, followed by treatment with a secondary antibody labeled with Alexa Flour 488 (Alexa-488). Alexa-488 was used to visualize Iba-1 antibody. DAPI was used to visualize cell nuclei. Tissues were washed three times for 5 min with TBS-Tween 20. Fluoromount-G was used to place glass coverslips, and slides were left to dry at 4° C. overnight protected from light. Olympus VS200 slide scanner was used to acquire immunofluorescent images of brain and spinal cord (20× objective). Images within each imaging channel were acquired under the same settings for light intensity and exposure times.


Colocalization of DAPI stained nuclei, Alexa-488-labeled Iba-1 antibody, and Cy3-labeled siRNA was observed across all tested brain and spinal cord tissues of cynomolgus macaques, indicating microglial cell penetration and/or uptake of the branched di-siRNA. Control experiments included uninjected NHP control (no Cy3-siRNA), non-specific primary antibody (isotype antibody control), and no secondary antibody (no Alexa Fluor 488 reagent). Robust colocalization was observed in the cortex (FIG. 1A), hippocampus (FIG. 1B), caudate nucleus (FIG. 1C), and spinal cord (FIG. 1D). Controls showed no co-localization of Cy3 and Alexa Fluor 488 signals, indicating specificity of detection of microglial uptake (not shown).


These results demonstrate that the ds-siRNA agents of the present disclosure are capable of being internalized by microglial cells of CNS tissues, including brain and spinal cord, and support the use of such agents for treatment of neurological conditions, such as Alzheimer's disease or amyotrophic lateral sclerosis.


Example 2. Method of Treating a Patient with Alzheimer's Disease

A subject diagnosed with Alzheimer's disease is treated with a dose and frequency determined by a practitioner (e.g., three times daily, twice daily, once daily, once weekly, once monthly, bi-monthly, once every 4 months, once every 5 months, once every 6 months, once every 7 months, once every 8 months, once every 9 months, once every 10 months, once every 11 months, or annually). Dosage and frequency are determined based on the subject's height, weight, age, sex, and other disorders.


The branched siRNA is selected by the practitioner for compatibility with the disease and subject. Single- or double-stranded branched siRNA are available for selection. The siRNA chosen has an antisense strand, and in the case of double-stranded siRNA, a sense strand with a sequence and RNA modifications (e.g., natural and non-natural internucleoside linkages, modified sugars, and 5′-phosphorus stabilizing moieties) best suited to the patient and the disease being targeted (e.g., PSM-A-T-B-T-A-P-B-P-A-P-B-P-A-P-B-P-A-P-B-P-A-P-B-P-A-P-B-T-A-T-B-T-A-T-B-T-A-T-B-T B-T-A-T-B-P-A-P-B-P-A-P-B-P-A-P-B-P-A-P-B-P-A-P-B-P-A-T-B-T where A and B are different nucleosides, T is phosphorothioate, P is a phosphodiester, and PSM is a 5′-phosphorus stabilizing moiety).


The branched siRNA is delivered by the route best suited the patient and condition (e.g., intrathecally, intracerebroventricularly, or intrastriatally), at a rate tolerable to the patient until the subject has reached a maximum tolerated dose, or until the symptoms of the disease are ameliorated satisfactorily.


Example 3. Method of Treating a Patient with Amyotrophic Lateral Sclerosis

A subject diagnosed with Amyotrophic Lateral Sclerosis is treated with a dose and frequency determined by a practitioner (e.g., three times daily, twice daily, once daily, once weekly, once monthly bi-monthly, once every 4 months, once every 5 months, once every 6 months, once every 7 months, once every 8 months, once every 9 months, once every 10 months, once every 11 months, or annually). Dosage and frequency are determined based on the subject's height, weight, age, sex, and other disorders.


The branched siRNA is selected by the practitioner for compatibility with the disease and subject. Single- or double-stranded branched siRNA are available for selection. The siRNA chosen has an antisense strand, and in the case of double-stranded siRNA, a sense strand with a sequence and RNA modifications (e.g., natural and non-natural internucleoside linkages, modified sugars, and 5′-phosphorus stabilizing moieties) best suited to the patient and the disease being targeted (e.g., PSM-A-T-B-T-A-P-B-P-A-P-B-P-A-P-B-P-A-P-B-P-A-P-B-P-A-P-B-T-A-T-B-T-A-T-B-T-A-T-B-T B-T-A-T-B-P-A-P-B-P-A-P-B-P-A-P-B-P-A-P-B-P-A-P-B-P-A-T-B-T where A and B are different nucleosides, T is phosphorothioate, P is a phosphodiester, and PSM is a 5′-phosphorus stabilizing moiety).


The branched siRNA is delivered by the route best suited the patient and condition (e.g., intrathecally, intracerebroventricularly, or intrastriatally), at a rate tolerable to the patient until the subject has reached a maximum tolerated dose, or until the symptoms of the disease are ameliorated satisfactorily.


Specific Embodiments

Some specific embodiments are listed below. The below enumerated embodiments should not be construed to limit the scope of the invention, rather, the below are presented as some examples of the utility of the invention.

    • E1. A method of delivering a branched small interfering RNA (siRNA) molecule to a microglial cell in a subject in need of microglial gene silencing, the method comprising administering the branched siRNA molecule to the central nervous system of the subject.
    • E2. The method of E1, wherein the subject has been diagnosed as having a disease associated with expression of a dysregulated microglial gene or dysregulated microglial gene network.
    • E3. The method of E2, wherein the dysregulated microglial gene exhibits increased expression and/or activity in microglial cells of the subject as compared to the expression and/or activity of the microglial gene in microglial cells of a reference subject.
    • E4. The method of E2, wherein the dysregulated microglial gene exhibits reduced expression and/or activity in microglial cells of the subject as compared to the expression and/or activity of the microglial gene in microglial cells of a reference subject.
    • E5. The method of any one of E1-E4, wherein the delivering of the branched siRNA molecule to the subject results in silencing of a gene in the subject.
    • E6. The method of any one of E1-E5, wherein the siRNA includes (i) an antisense strand having complementarity to a portion of a gene encoding a positive regulator of a gene for which increased expression and/or activity (relative, e.g., to the level of expression and/or activity observed in a reference subject) is associated with a disease state.
    • E7. The method of any one of E1-E5, wherein the siRNA includes (i) an antisense strand having complementarity to a portion of a gene encoding a negative regulator of a gene for which decreased expression and/or activity (relative, e.g., to the level of expression and/or activity observed in a reference subject) is associated with a disease state.
    • E8. The method of any one of E1-E5, wherein the siRNA includes (i) an antisense strand having complementarity to a splice isoform of a gene for which overexpression of the splice isoform relative to the expression of the splice isoform in a reference subject is associated with a disease state.
    • E9. The method of any one of E6-E8, wherein the siRNA includes (ii) a sense strand having complementarity to the antisense strand.
    • E10. The method of any one of any one of E1-E9, wherein the silencing of the microglial gene in the subject treats a disease state in the subject.
    • E11. The method of any one of E1-E10, wherein the disease is a neuroinflammatory or neurodegenerative disease.
    • E12. The method of any one of E2-E10, wherein the dysregulated gene is selected from the group consisting of ABCA7, ABI3, ADAM10, APOC1, APOE, AXL, BIN1, C1QA, C3, C9ORF72, CASS4, CCL5, CD2AP, CD33, CD68, CLPTM1, CLU, CR1, CSF1, CST7, CTSB, CTSD, CTSL, CXCL10, CXCL13, DSG2, ECHDC3, EPHA1, FABP5, FERMT2, FTH1, GNAS, GRN, HBEGF, HLA-DRB1, HLA-DRB5, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IGF1, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, ITGAX, LILRB4, LPL, MEF2C, MMP12, MS4A4A, MS4A6A, NLRP3, NME8, NOS2, PICALM, PILRA, PLCG2, PTK2B, SCIMP, SLC24A4, SORL1, SPI1, SPP1, SPPL2A, TBK1, TNF, TREM2, TREML2, TYROBP, and ZCWPW1 or negative regulator, positive regulator, or splice isoform thereof.
    • E13. The method of any one of E1-E12, wherein the subject is a mammal, e.g., a human.
    • E14. The method of any one of E1-E13, wherein the branched siRNA is administered to the subject intrathecally, intracerebroventricularly, or intrastriatally.
    • E15. The method of any one of E1-E14, wherein the branched siRNA is administered to the subject intrathecally.
    • E16. The method of any one of E1-E14, wherein the branched siRNA is administered to the subject intracerebroventricularly.
    • E17. The method of any one of E1-E14, wherein the branched siRNA is administered to the subject intrastriatally.
    • E18. The method of any one of E1-17, wherein the siRNA molecule is di-branched.
    • E19. The method of any one of E1-17, wherein the siRNA molecule is tri-branched.
    • E20. The method of any one of E1-17, wherein the siRNA molecule is tetra-branched.
    • E21. The method of any one of E1-20, wherein the siRNA comprises (i) an antisense strand having complementarity to one or more of genes selected from the group consisting of APOE, BIN1, C1QA, C3, C9ORF72, CCL5, CD33, CLU/APOJ, CR1, CXCL10, CXCL13, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, MEF2C, MMP12, NLRP3, NOS2, PILRA, PLCG2, PTK2B, SLC24A4, TBK1, and TNF and (ii) a sense strand having complementarity to the antisense strand.
    • E22. The method of E21, wherein the antisense strand has the following formula, in the 5′-to-3′ direction:





Z-((A-P-)n(B-P-)m)q;

    • wherein Z is a 5′ phosphorus stabilizing moiety;
    • each A is, independently, a 2′-O-methyl (2′-O-Me) ribonucleoside;
    • each B is, independently, a 2′-fluoro-ribonucleoside;
    • each P is, independently, an internucleoside linkage selected from a phosphodiester linkage and a phosphorothioate linkage;
    • n is an integer from 1 to 5;
    • m is an integer from 1 to 5; and
    • q is an integer between 1 and 15.
    • E23. The method of E22, wherein Z is represented in any one of Formula I-VIII:




embedded image


embedded image


wherein Nuc represents a nucleobase, such as adenine, uracil, guanine, thymine, or cytosine, and R represents optionally substituted alkyl, optionally substituted alkenyl, or optionally substituted alkynyl (e.g., optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, or optionally substituted C2-C6 alkynyl), phenyl, benzyl, hydroxy, or hydrogen.

    • E24. The method of E22 or E23, wherein Z is (E)-vinylphosphonate represented in Formula III.
    • E25. The method of any one of E22-E24, wherein n is from 1 to 4.
    • E26. The method of any one of E22-E25, wherein n is from 1 to 3.
    • E27. The method of any one of E22-E26, wherein n is from 1 to 2.
    • E28. The method of any one of E22-E27, wherein n is 1.
    • E29. The method of any one of E22-E28, wherein m is from 1 to 4.
    • E30. The method of any one of E22-E29, wherein m is from 1 to 3.
    • E31. The method of any one of E22-E30, wherein m is from 1 to 2.
    • E32. The method of any one of E22-E31, wherein m is 1.
    • E33. The method of any one of E22-E32, wherein n and m are each 1.
    • E34. The method of any one of E22-E33, wherein 10% or less of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E35. The method of any one of E22-E34, wherein at least 10% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E36. The method of any one of E22-E35, wherein at least 20% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E37. The method of any one of E22-E36, wherein at least 30% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E38. The method of any one of E22-E37, wherein at least 40% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E39. The method of any one of E22-E38, wherein at least 50% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E40. The method of any one of E22-E39, wherein at least 60% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E41. The method of any one of E22-E40, wherein at least 70% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E42. The method of any one of E22-E41, wherein at least 80% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E43. The method of any one of E22-E42, wherein at least 90% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E44. The method of any one of E22-E43, wherein 10% or less of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.
    • E45. The method of any one of E22-E44, wherein at least 10% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.
    • E46. The method of any one of E22-E45, wherein at least 20% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.
    • E47. The method of any one of E22-E46, wherein at least 30% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.
    • E48. The method of any one of E22-E47, wherein at least 40% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.
    • E49. The method of any one of E22-E48, wherein at least 50% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.
    • E50. The method of any one of E22-E49, wherein at least 60% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.
    • E51. The method of any one of E22-E50, wherein at least 70% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.
    • E52. The method of any one of E22-E51, wherein at least 80% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.
    • E53. The method of any one of E22-E52, wherein at least 90% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.
    • E54. The method of any one of E22-E53, wherein 100% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.
    • E55. The method of any one of E22-E54, wherein 9 internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.
    • E56. The method of any one of E22-E55, wherein the length of the antisense strand is between 10 and nucleotides.
    • E57. The method of any one of E22-E56, wherein the length of the antisense strand is between 15 and nucleotides.
    • E58. The method of any one of E22-E57, wherein the length of the antisense strand is between 18 and 23 nucleotides.
    • E59. The method of any one of E22-E58, wherein the length of the antisense strand is 18 nucleotides.
    • E60. The method of any one of E22-E56, wherein the length of the antisense strand is 19 nucleotides.
    • E61. The method of any one of E22-E56, wherein the length of the antisense strand is 20 nucleotides.
    • E62. The method of any one of E22-E56, wherein the length of the antisense strand is 21 nucleotides.
    • E63. The method of any one of E22-E56, wherein the length of the antisense strand is 22 nucleotides.
    • E64. The method of any one of E22-E56, wherein the length of the antisense strand is 23 nucleotides.
    • E65. The method of any one of E22-E56, wherein the length of the antisense strand is 24 nucleotides.
    • E66. The method of any one of E22-E56, wherein the length of the antisense strand is 25 nucleotides.
    • E67. The method of any one of E22-E56, wherein the length of the antisense strand is 26 nucleotides.
    • E68. The method of any one of E22-E56, wherein the length of the antisense strand is 27 nucleotides.
    • E69. The method of any one of E22-E56, wherein the length of the antisense strand is 28 nucleotides.
    • E70. The method of any one of E22-E56, wherein the length of the antisense strand is 29 nucleotides.
    • E71. The method of any one of E22-E56, wherein the length of the antisense strand is 30 nucleotides.
    • E72. The method of E22, wherein the antisense strand includes a structure of Formula A1, wherein Formula A1 is:





A-T-B-T-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-B-T-A-T-A-T-A-T-A-T-A-T-A-T   Formula A1;


wherein A represents a 2′-O-methyl ribonucleoside, B represents a 2′-F ribonucleoside, T represents a phosphorothioate internucleoside linkage, and P represents a phosphodiester internucleoside linkage.

    • E73. The method of E22, wherein the antisense strand includes a structure of Formula A2, wherein Formula A2 is:





A-T-A-T-A-P-B-P-B-P-B-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-B-T-A-T-A-T-A-T-A-T-A-T-A-T   (Formula A2);


wherein A represents a 2′-O-methyl ribonucleoside, B represents a 2′-F ribonucleoside, T represents a phosphorothioate internucleoside linkage, and P represents a phosphodiester internucleoside linkage.

    • E74. The method of E22, wherein the antisense strand includes a structure of Formula A3, wherein Formula A3 is:





A-T-B-T-A-P-B-P-B-P-B-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-B-T-A-T-A-T-A-T-A-T-A-T-A-T   (Formula A3)


wherein A represents a 2′-O-methyl ribonucleoside, B represents a 2′-F ribonucleoside, T represents a phosphorothioate internucleoside linkage, and P represents a phosphodiester internucleoside linkage.

    • E75. The method of E22, wherein the antisense strand includes a structure of Formula A4, wherein Formula A4 is:





A-T-B-T-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-B-T-A-T-A-T-A-T-A-T-A-T-A-T   (Formula A4)


wherein A represents a 2′-O-methyl ribonucleoside, B represents a 2′-F ribonucleoside, T represents a phosphorothioate internucleoside linkage, and P represents a phosphodiester internucleoside linkage.

    • E76. The method of E22, wherein the antisense strand includes a structure of Formula A5, wherein Formula A5 is:





A-T-B-T-A-P-A-P-A-P-B-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-B-T-A-T-B-T-A-T-A-T-A-T-A-T   (Formula A5)


wherein A represents a 2′-O-methyl ribonucleoside, B represents a 2′-F ribonucleoside, T represents a phosphorothioate internucleoside linkage, and P represents a phosphodiester internucleoside linkage.

    • E77. The method of E22, wherein the sense strand has the following formula in the 5′-to-3′ direction:





Y-((A-P-)n(B-P-)m)qL-((B-P-)m(A-P-)n)q;

    • wherein Y is a hydrophobic moiety (e.g., cholesterol, vitamin D, or tocopherol) moiety;
    • L is a linker;
    • each A is, independently, a 2′-O-Me ribonucleoside;
    • each B is, independently, a 2′-fluoro-ribonucleoside;
    • each P is, independently, an internucleoside linkage selected from a phosphodiester linkage and a phosphorothioate linkage;
    • n is an integer from 1 to 5;
    • m is an integer from 1 to 5; and
    • each q is an integer between 1 and 15.
    • E78. The method of E77, wherein Y is cholesterol.
    • E79. The method of E77, wherein Y is tocopherol.
    • E80. The method of any one of E77-E79, wherein L is an ethylene glycol oligomer.
    • E81. The method of any one of E77-E80, wherein L is tetraethylene glycol.
    • E82. The method of any one of E77-E81, wherein the linker attaches to the sense strand by way of a covalent bond-forming moiety.
    • E83. The method of E82, wherein the covalent bond-forming moiety is selected from the group consisting of an alkyl, ester, amide, carbamate, phosphonate, phosphate, phosphorothioate, phosphoroamidate, triazole, urea, and formacetal.
    • E84. The method of E77, wherein L includes a structure of Formula L1, wherein Formula L1 is:




embedded image




    • E85. The method of E77, wherein L includes a structure of Formula L2, wherein Formula L2 is:







embedded image




    • E86. The method of E77, wherein L includes a structure of Formula L3, wherein Formula L3 is:







embedded image




    • E87. The method of E77, wherein L includes a structure of Formula L4, wherein Formula L4 is:







embedded image




    • E88. The method of E77, wherein L includes a structure of Formula L5, wherein Formula L5 is:







embedded image




    • E89. The method of E77, wherein L includes a structure of Formula L6, wherein Formula L6 is:







embedded image




    • E90. The method of E77, wherein L includes a structure of Formula L7, wherein Formula L7 is:







embedded image




    • E91. The method of E77, wherein L includes a structure of Formula L8, wherein Formula L8 is:







embedded image




    • E92. The method of E77, wherein L includes a structure of Formula L9, wherein Formula L9 is:







embedded image




    • E93. The method of any one of E77-E92, wherein each P is independently selected from a phosphodiester linkage and a phosphorothioate linkage.

    • E94. The method of any one of E77-E93, wherein n is from 1 to 4.

    • E95. The method of any one of E77-E94, wherein n is from 1 to 3.

    • E96. The method of any one of E77-E95, wherein n is from 1 to 2.

    • E97. The method of any one of E77-E96, wherein n is 1.

    • E98. The method of any one of E77-E97, wherein m is from 1 to 4.

    • E99. The method of any one of E77-E98, wherein m is from 1 to 3.

    • E100. The method of any one of E77-E99, wherein m is from 1 to 2.

    • E101. The method of any one of E77-E100, wherein m is 1.

    • E102. The method of any one of E77-E101, wherein n and m are each 1.

    • E103. The method of any one of E77-E102, wherein 10% or less of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E104. The method of any one of E77-E103, wherein at least 10% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E105. The method of any one of E77-E104, wherein at least 20% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E106. The method of any one of E77-E105, wherein at least 30% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E107. The method of any one of E77-E106, wherein at least 40% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E108. The method of any one of E77-E107, wherein at least 50% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E109. The method of any one of E77-E108, wherein at least 60% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E110. The method of any one of E77-E109, wherein at least 70% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E111. The method of any one of E77-E110, wherein at least 80% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E112. The method of any one of E77-E111, wherein at least 90% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E113. The method of any one of E77-E112, wherein 10% or less of the internucleoside linkages are phosphodiester linkages or phosphorothioate.

    • E114. The method of any one of E77-E113, wherein at least 10% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.

    • E115. The method of any one of E77-E114, wherein at least 20% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.

    • E116. The method of any one of E77-E115, wherein at least 30% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.

    • E117. The method of any one of E77-E116, wherein at least 40% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.

    • E118. The method of any one of E77-E117, wherein at least 50% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.

    • E119. The method of any one of E77-E118, wherein at least 60% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.

    • E120. The method of any one of E77-E119, wherein at least 70% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.

    • E121. The method of any one of E77-E120, wherein at least 80% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.

    • E122. The method of any one of E77-E121, wherein at least 90% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.

    • E123. The method of any one of E77-E122, wherein 100% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.

    • E124. The method of any one of E77-E123, wherein the length of the sense strand is between 12 and 30 nucleotides.

    • E125. The method of any one of E77-E124, wherein the length of the sense strand is between 14 and 28 nucleotides.

    • E126. The method of any one of E77-E125, wherein the length of the sense strand is between 16 and 26 nucleotides.

    • E127. The method of any one of E77-E126, wherein the length of the sense strand is between 18 and 24 nucleotides.

    • E128. The method of any one of E77-E125, wherein the length of the sense strand is 14 nucleotides.

    • E129. The method of any one of E77-E125, wherein the length of the sense strand is 15 nucleotides.

    • E130. The method of any one of E77-E125, wherein the length of the sense strand is 16 nucleotides.

    • E131. The method of any one of E77-E125, wherein the length of the sense strand is 17 nucleotides.

    • E132. The method of any one of E77-E125, wherein the length of the sense strand is 18 nucleotides.

    • E133. The method of any one of E77-E125, wherein the length of the sense strand is 19 nucleotides.

    • E134. The method of any one of E77-E125, wherein the length of the sense strand is 20 nucleotides.

    • E135. The method of any one of E77-E125, wherein the length of the sense strand is 21 nucleotides.

    • E136. The method of any one of E77-E125, wherein the length of the sense strand is 22 nucleotides.

    • E137. The method of any one of E77-E125, wherein the length of the sense strand is 23 nucleotides.

    • E138. The method of any one of E77-E125, wherein the length of the sense strand is 24 nucleotides.

    • E139. The method of any one of E77-E125, wherein the length of the sense strand is 25 nucleotides.

    • E140. The method of any one of E77-E125, wherein the length of the sense strand is 26 nucleotides.

    • E141. The method of any one of E77-E125, wherein the length of the sense strand is 27 nucleotides.

    • E142. The method of any one of E77-E125, wherein the length of the sense strand is 28 nucleotides.

    • E143. The method of any one of E77-E125, wherein the length of the sense strand is 29 nucleotides.

    • E144. The method of any one of E77-E125, wherein the length of the sense strand is 30 nucleotides.

    • E145. The method of any one of E77-E144, wherein 4 internucleoside linkages are phosphorothioate linkages.

    • E146. The method of E77, wherein the sense strand includes a structure of Formula S1, wherein Formula S1 is:








A-T-A-T-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-P-A-T-A-T   Formula S1;


wherein A represents a 2′-O-methyl ribonucleoside, B represents a 2′-F ribonucleoside, T represents a phosphorothioate internucleoside linkage, and P represents a phosphodiester internucleoside linkage.

    • E147. The method of E77, wherein the sense strand includes a structure of Formula S2, wherein Formula S2 is:





A-T-A-T-A-P-A-P-A-P-A-P-B-P-A-P-A-P-B-P-B-P-A-P-A-P-A-T-A-T   Formula S2;


wherein A represents a 2′-O-methyl ribonucleoside, B represents a 2′-F ribonucleoside, T represents a phosphorothioate internucleoside linkage, and P represents a phosphodiester internucleoside linkage.

    • E148. The method of E77, wherein the sense strand includes a structure of Formula S3, wherein Formula S3 is:





A-T-A-T-A-P-A-P-A-P-A-P-B-P-A-P-B-P-B-P-B-P-A-P-A-P-A-T-A-T   Formula S3;


wherein A represents a 2′-O-methyl ribonucleoside, B represents a 2′-F ribonucleoside, T represents a phosphorothioate internucleoside linkage, and P represents a phosphodiester internucleoside linkage.

    • E149. A branched siRNA molecule comprising a sense strand and an antisense strand, wherein the antisense strand comprises a region having complementarity to a segment of contiguous nucleotides within a gene selected from the group consisting of APOE, BIN1, C1QA, C3, C9ORF72, CCL5, CD33, CLU/APOJ, CR1, CXCL10, CXCL13, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, MEF2C, MMP12, NLRP3, NOS2, PILRA, PLCG2, PTK2B, SLC24A4, TBK1, and TNF or a negative regulator, positive regulator, or splice isoform thereof.
    • E150. The molecule of E149, wherein the siRNA molecule is di-branched.
    • E151. The molecule of E149, wherein the siRNA molecule is tri-branched.
    • E152. The molecule of any one of E149, wherein the siRNA molecule is tetra-branched.
    • E153. The molecule of any one of E149-E152, wherein the antisense strand of the branched siRNA has the following formula in the 5′-to-3′ direction:





Z-((A-P-)n(B-P-)m)q;

    • wherein Z is a 5′ phosphorus stabilizing moiety;
    • each A is, independently, a 2′-O-Me ribonucleoside;
    • each B is, independently, a 2′-fluoro-ribonucleoside;
    • each P is, independently, an internucleoside linkage selected from a phosphodiester linkage and a phosphorothioate linkage;
    • n is an integer from 1 to 5; m is an integer from 1 to 5; and
    • q is an integer between 1 and 15.
    • E154. The molecule of E153, wherein Z is represented in any one of Formula I-VIII:




embedded image


embedded image


wherein Nuc represents a nucleobase, such as adenine, uracil, guanine, thymine, or cytosine, and R represents optionally substituted alkyl, optionally substituted alkenyl, or optionally substituted alkynyl (e.g., optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, or optionally substituted C2-C6 alkynyl), phenyl, benzyl, hydroxy, or hydrogen.

    • E155. The molecule of E153 or E154, wherein Z is (E)-vinylphosphonate as represented in Formula III.
    • E156. The molecule of any one of E153-E99, wherein each P is independently selected from phosphodiester and phosphorothioate.
    • E157. The molecule of any one of E153-E156, wherein n is from 1 to 4.
    • E158. The molecule of any one of E153-E157, wherein n is from 1 to 3.
    • E159. The molecule of any one of E153-E158, wherein n is from 1 to 2.
    • E160. The molecule of any one of E153-E159, wherein n is 1.
    • E161. The molecule of any one of E153-E160, wherein m is from 1 to 4.
    • E162. The molecule of any one of E153-E161, wherein m is from 1 to 3.
    • E163. The molecule of any one of E153-E162, wherein m is from 1 to 2.
    • E164. The molecule of any one of E153-E163, wherein m is 1.
    • E165. The molecule of any one of E153-E164, wherein n and m are each 1.
    • E166. The molecule of any one of E153-E165, wherein 10% or less of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E167. The molecule of any one of E153-E166, wherein at least 10% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E168. The molecule of any one of E153-E167, wherein at least 20% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E169. The molecule of any one of E153-E168, wherein at least 30% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E170. The molecule of any one of E153-E169, wherein at least 40% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E171. The molecule of any one of E153-E170, wherein at least 50% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E172. The molecule of any one of E153-E171, wherein at least 60% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E173. The molecule of any one of E153-E172, wherein at least 70% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E174. The molecule of any one of E153-E173, wherein at least 80% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E175. The molecule of any one of E153-E174, wherein at least 90% of the ribonucleosides are 2′-O-Me ribonucleoside.
    • E176. The molecule of any one of E153-E175, wherein 10% or less of the internucleoside linkages are phosphodiester linkages or phosphorothioate.
    • E177. The molecule of any one of E153-E176, wherein at least 10% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.
    • E178. The molecule of any one of E153-E177, wherein at least 20% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.
    • E179. The molecule of any one of E153-E178, wherein at least 30% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.
    • E180. The molecule of any one of E153-E179, wherein at least 40% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.
    • E181. The molecule of any one of E153-E180, wherein at least 50% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.
    • E182. The molecule of any one of E153-E181, wherein at least 60% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.
    • E183. The molecule of any one of E153-E182, wherein at least 70% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.
    • E184. The molecule of any one of E153-E183, wherein at least 80% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.
    • E185. The molecule of any one of E153-E184, wherein at least 90% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.
    • E186. The molecule of any one of E153-E185, wherein 100% of the internucleoside linkages are phosphodiester linkages or phosphorothioate.
    • E187. The molecule of any one of E153-E186, wherein the length of the antisense strand is between 10 and 30 nucleotides.
    • E188. The molecule of any one of E153-E187, wherein the length of the antisense strand is between 15 and 25 nucleotides.
    • E189. The molecule of any one of E153-E188, wherein the length of the antisense strand is between 18 and 23 nucleotides.
    • E190. The molecule of any one of E153-E187, wherein the length of the antisense strand is 18 nucleotides.
    • E191. The molecule of any one of E153-E187, wherein the length of the antisense strand is 19 nucleotides.
    • E192. The molecule of any one of E153-E187, wherein the length of the antisense strand is 20 nucleotides.
    • E193. The molecule of any one of E153-E187, wherein the length of the antisense strand is 21 nucleotides.
    • E194. The molecule of any one of E153-E187, wherein the length of the antisense strand is 22 nucleotides.
    • E195. The molecule of any one of E153-E187, wherein the length of the antisense strand is 23 nucleotides.
    • E196. The molecule of any one of E153-E187, wherein the length of the antisense strand is 24 nucleotides.
    • E197. The molecule of any one of E153-E187, wherein the length of the antisense strand is 25 nucleotides.
    • E198. The molecule of any one of E153-E187, wherein the length of the antisense strand is 26 nucleotides.
    • E199. The molecule of any one of E153-E187, wherein the length of the antisense strand is 27 nucleotides.
    • E200. The molecule of any one of E153-E187, wherein the length of the antisense strand is 28 nucleotides.
    • E201. The molecule of any one of E153-E187, wherein the length of the antisense strand is 29 nucleotides.
    • E202. The molecule of any one of E153-E187, wherein the length of the antisense strand is 30 nucleotides.
    • E203. The molecule of any one of E149-E202, wherein 9 internucleoside linkages are phosphorothioate.
    • E204. The molecule of any one of E149-E203, wherein the sense strand of the branched siRNA has the following formula in the 5′-to-3′ direction:





Y-((A-P-)n(B-P-)m)qL-((B-P-)m(A-P-)n)q;

    • wherein Y is a hydrophobic moiety (e.g., cholesterol, vitamin D, or tocopherol);
    • L is a linker;
    • each A is, independently, a 2′-O-Me ribonucleoside;
    • each B is, independently, a 2′-fluoro-ribonucleoside;
    • each P is, independently, an internucleoside linkage selected from a phosphodiester linkage and a
    • phosphorothioate linkage;
    • n is an integer from 1 to 5;
    • m is an integer from 1 to 5; and
    • q is an integer between 1 and 15.
    • E205. The molecule of E204, wherein Y is cholesterol.
    • E206. The molecule of E204, wherein Y is tocopherol.
    • E207. The molecule of any one of E204-E206, wherein L is an ethylene glycol oligomer.
    • E208. The molecule of E207, wherein L is tetraethylene glycol.
    • E209. The molecule of any one of E204-E208, wherein L attaches to the sense strand by way of a covalent bond-forming moiety.
    • E210. The molecule of E209, wherein the covalent bond-forming moiety is selected from the group consisting of an alkyl, ester, amide, carbamate, phosphonate, phosphate, phosphorothioate, phosphoroamidate, triazole, urea, and formacetal.
    • E211. The molecule of E204, wherein L includes a structure of Formula L1, wherein Formula L1 is:




embedded image




    • E212. The molecule of E204, wherein L includes a structure of Formula L2, wherein Formula L2 is:







embedded image




    • E213. The molecule of E204, wherein L includes a structure of Formula L3, wherein Formula L3 is:







embedded image




    • E214. The molecule of E204, wherein L includes a structure of Formula L4, wherein Formula L4 is:







embedded image




    • E215. The molecule of E204, wherein L includes a structure of Formula L5, wherein Formula L5 is:







embedded image




    • E216. The molecule of E204, wherein L includes a structure of Formula L6, wherein Formula L6 is:







embedded image




    • E217. The molecule of E204, wherein L includes a structure of Formula L7, wherein Formula L7 is:







embedded image




    • E218. The molecule of E204, wherein L includes a structure of Formula L8, wherein Formula L8 is:







embedded image




    • E219. The molecule of E204, wherein L includes a structure of Formula L9, wherein Formula L9 is:







embedded image




    • E220. The molecule of any one of E204-E210, wherein each P is independently selected from phosphodiester and phosphorothioate.

    • E221. The molecule of any one of E204-E141, wherein n is from 1 to 4.

    • E222. The molecule of any one of E204-E142, wherein n is from 1 to 3.

    • E223. The molecule of any one of E204-E143, wherein n is from 1 to 2.

    • E224. The molecule of any one of E204-E144, wherein n is 1.

    • E225. The molecule of any one of E204-E145, wherein m is from 1 to 4.

    • E226. The molecule of any one of E204-E146, wherein m is from 1 to 3.

    • E227. The molecule of any one of E204-E147, wherein m is from 1 to 2.

    • E228. The molecule of any one of E204-E148, wherein m is 1.

    • E229. The molecule of any one of E204-E149, wherein n and m are each 1.

    • E230. The molecule of any one of E204-E150, wherein 10% or less of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E231. The molecule of any one of E204-E151, wherein at least 10% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E232. The molecule of any one of E204-E152, wherein at least 20% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E233. The molecule of any one of E204-E153, wherein at least 30% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E234. The molecule of any one of E204-E154, wherein at least 40% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E235. The molecule of any one of E204-E155, wherein at least 50% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E236. The molecule of any one of E204-E156, wherein at least 60% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E237. The molecule of any one of E204-E157, wherein at least 70% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E238. The molecule of any one of E204-E158, wherein at least 80% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E239. The molecule of any one of E204-E159, wherein at least 90% of the ribonucleosides are 2′-O-Me ribonucleoside.

    • E240. The molecule of any one of E204-E160, wherein 10% or less of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.

    • E241. The molecule of any one of E204-E161, wherein at least 10% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.

    • E242. The molecule of any one of E204-E162, wherein at least 20% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.

    • E243. The molecule of any one of E204-E163, wherein at least 30% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.

    • E244. The molecule of any one of E204-E164, wherein at least 40% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.

    • E245. The molecule of any one of E204-E165, wherein at least 50% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.

    • E246. The molecule of any one of E204-E166, wherein at least 60% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.

    • E247. The molecule of any one of E204-E167, wherein at least 70% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.

    • E248. The molecule of any one of E204-E168, wherein at least 80% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.

    • E249. The molecule of any one of E204-E169, wherein at least 90% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.

    • E250. The molecule of any one of E204-E170, wherein 100% of the internucleoside linkages are phosphodiester linkages or phosphorothioate linkages.

    • E251. The molecule of any one of E204-E250, wherein the length of the sense strand is between 12 and nucleotides.

    • E252. The molecule of any one of E204-E251, wherein the length of the sense strand is between 14 and 28 nucleotides.

    • E253. The molecule of any one of E204-E252, wherein the length of the sense strand is between 16 and 26 nucleotides.

    • E254. The molecule of any one of E204-E253, wherein the length of the sense strand is between 18 and 24 nucleotides.

    • E255. The molecule of any one of E204-E251, wherein the length of the sense strand is 14 nucleotides.

    • E256. The molecule of any one of E204-E251, wherein the length of the sense strand is 15 nucleotides.

    • E257. The molecule of any one of E204-E251, wherein the length of the sense strand is 16 nucleotides.

    • E258. The molecule of any one of E204-E251, wherein the length of the sense strand is 17 nucleotides.

    • E259. The molecule of any one of E204-E251, wherein the length of the sense strand is 18 nucleotides.

    • E260. The molecule of any one of E204-E251, wherein the length of the sense strand is 19 nucleotides.

    • E261. The molecule of any one of E204-E251, wherein the length of the sense strand is 20 nucleotides.

    • E262. The molecule of any one of E204-E251, wherein the length of the sense strand is 21 nucleotides.

    • E263. The molecule of any one of E204-E251, wherein the length of the sense strand is 22 nucleotides.

    • E264. The molecule of any one of E204-E251, wherein the length of the sense strand is 23 nucleotides.

    • E265. The molecule of any one of E204-E251, wherein the length of the sense strand is 24 nucleotides.

    • E266. The molecule of any one of E204-E251, wherein the length of the sense strand is 25 nucleotides.

    • E267. The molecule of any one of E204-E251, wherein the length of the sense strand is 26 nucleotides.

    • E268. The molecule of any one of E204-E251, wherein the length of the sense strand is 27 nucleotides.

    • E269. The molecule of any one of E204-E251, wherein the length of the sense strand is 28 nucleotides.

    • E270. The molecule of any one of E204-E251, wherein the length of the sense strand is 29 nucleotides.

    • E271. The molecule of any one of E204-E251, wherein the length of the sense strand is 30 nucleotides.

    • E272. The molecule of any one of E204-E271, wherein 4 internucleoside linkages are phosphorothioate.

    • E273. A method of treating a subject diagnosed as having a disease associated with expression of a dysregulated microglial gene, the method comprising administering to the subject the branched siRNA molecule of any one of E149-E271.

    • E274. The method of any one of E11-E148 or E273, wherein the disease is a neuroinflammatory disease.

    • E275. The method of any one of E11-E148, E273, or E274, wherein the disease is a neurodegenerative disease.

    • E276. The method of any one of E11-E148 or E273-E275, wherein the disease is Alzheimer's disease.

    • E277. The method of any one of E11-E148 or E273-E275, wherein the disease is Amyotrophic Lateral





Sclerosis.

    • E278. The method of any one of E11-E148 or E273-E275, wherein the disease is Parkinson's disease.
    • E279. The method of any one of E11-E148 or E273-E275, wherein the disease is frontotemporal dementia.
    • E280. The method of any one of E11-E148 or E273-E275, wherein the disease is Huntington's disease.
    • E281. The method of any one of E11-E148 or E273-E275, wherein the disease is multiple sclerosis.
    • E282. The method of any one of E11-E148 or E273-E275, wherein the disease is progressive supranuclear palsy.
    • E283. The method of any one of E273, wherein the dysregulated microglial gene is selected from the group consisting of ABCA7, ABI3, ADAM10, APOC1, APOE, AXL, BIN1, C1QA, C3, C9ORF72, CASS4, CCL5, CD2AP, CD33, CD68, CLPTM1, CLU, CR1, CSF1, CST7, CTSB, CTSD, CTSL, CXCL10, CXCL13, DSG2, ECHDC3, EPHA1, FABP5, FERMT2, FTH1, GNAS, GRN, HBEGF, HLA-DRB1, HLA-DRB5, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IGF1, IL10RA, ILIA, IL1B, IL1 RAP, INPP5D, ITGAM, ITGAX, LILRB4, LPL, MEF2C, MMP12, MS4A4A, MS4A6A, NLRP3, NME8, NOS2, PICALM, PILRA, PLCG2, PTK2B, SCIMP, SLC24A4, SORL1, SPI1, SPP1, SPPL2A, TBK1, TNF, TREM2, TREML2, TYROBP, and ZCWPW1.
    • E284. The method of E273, wherein the administering of the branched siRNA molecule to the subject results is silencing of a microglial gene in the subject.
    • E285. The method of E284, wherein silencing of a microglial gene comprises silencing of any one of the genes selected from group consisting of APOE, BIN1, C1QA, C3, C9ORF72, CCL5, CD33, CLU/APOJ, CR1, CXCL10, CXCL13, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, MEF2C, MMP12, NLRP3, NOS2, PILRA, PLCG2, PTK2B, SLC24A4, TBK1, and TNF.
    • E286. The method of E273, wherein the microglial gene is an overactive disease driver gene (e.g., a dysregulated microglial gene).
    • E287. The method of E273, wherein the gene is a positive regulator of a gene for which increased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.
    • E288. The method of E273, wherein the gene is a negative regulator of a gene for which decreased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.
    • E289. The method of E273, wherein the gene is a splice isoform of a gene for which overexpression of the splice isoform relative to the expression of the splice isoform in a reference subject is associated with a disease state.
    • E290. The method of any one of E273-E289, wherein the subject is a human.


Other Embodiments

Various modifications and variations of the described disclosure will be apparent to those skilled in the art without departing from the scope and spirit of the disclosure. Although the disclosure has been described in connection with specific embodiments, it should be understood that the disclosure as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the disclosure that are obvious to those skilled in the art are intended to be within the scope of the disclosure.


Other embodiments are in the claims.

Claims
  • 1. A method of delivering a branched small interfering RNA (siRNA) molecule to a microglial cell in a subject in need of microglial gene silencing, the method comprising administering the branched siRNA molecule to the central nervous system of the subject.
  • 2. The method of claim 1, wherein the subject has been diagnosed as having a disease associated with expression of a dysregulated microglial gene or dysregulated microglial gene pathway.
  • 3. The method of claim 2, wherein the dysregulated microglial gene exhibits increased expression and/or activity in microglial cells of the subject as compared to the expression and/or activity of the microglial gene in microglial cells of a reference subject.
  • 4. The method of claim 2, wherein the dysregulated microglial gene exhibits reduced expression and/or activity in microglial cells of the subject as compared to the expression and/or activity of the microglial gene in microglial cells of a reference subject.
  • 5. The method of claim 1, wherein the microglial gene is a positive regulator of a gene for which increased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.
  • 6. The method of claim 1, wherein the microglial gene is a negative regulator of a gene for which decreased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.
  • 7. The method of claim 1, wherein the microglial gene is a splice isoform of a gene for which overexpression of the splice isoform relative to the expression of the splice isoform in a reference subject is associated with a disease state.
  • 8. The method of any one of claims 2-7, wherein the disease is a neuroinflammatory or neurodegenerative disease.
  • 9. The method of any one of claims 1-8, wherein the dysregulated gene is selected from the group consisting of ABCA7, ABI3, ADAM10, APOC1, APOE, AXL, BIN1, C1QA, C3, C9ORF72, CASS4, CCL5, CD2AP, CD33, CD68, CLPTM1, CLU, CR1, CSF1, CST7, CTSB, CTSD, CTSL, CXCL10, CXCL13, DSG2, ECHDC3, EPHA1, FABP5, FERMT2, FTH1, GNAS, GRN, HBEGF, HLA-DRB1, HLA-DRB5, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IGF1, IL10RA, IL1A, IL1B, IL1RAP, INPP5D, ITGAM, ITGAX, LILRB4, LPL, MEF2C, MMP12, MS4A4A, MS4A6A, NLRP3, NME8, NOS2, PICALM, PILRA, PLCG2, PTK2B, SCIMP, SLC24A4, SORL1, SPI1, SPP1, SPPL2A, TBK1, TNF, TREM2, TREML2, TYROBP, and ZCVVPW1.
  • 10. The method of any one of claims 1-9, wherein the subject is a human.
  • 11. The method of any one of claims 1-10, wherein the branched siRNA is administered to the subject intrathecally, intracerebroventricularly, or intrastriatally.
  • 12. The method of any one of claims 1-11, wherein the siRNA molecule is di-branched.
  • 13. The method of any one of claims 1-12, wherein the siRNA comprises (i) an antisense strand having complementarity to one or more of genes selected from the group consisting of APOE, BIN1, C1QA, C3, C9ORF72, CCL5, CD33, CLU/APOJ, CR1, CXCL10, CXCL13, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, MEF2C, MMP12, NLRP3, NOS2, PILRA, PLCG2, PTK2B, SLC24A4, TBK1, and TNF, and (ii) a sense strand having complementarity to the antisense strand.
  • 14. The method of claim 13, wherein the antisense strand has the following formula, in the 5′-to-3′ direction: Z-((A-P-)n(B-P-)m)q;wherein Z is a 5′ phosphorus stabilizing moiety;each A is, independently, a 2′-O-methyl (2′-O-Me) ribonucleoside;each B is, independently, a 2′-fluoro (2′-F) ribonucleoside;each P is, independently, an internucleoside linkage selected from a phosphodiester linkage and a phosphorothioate linkage;n is an integer from 1 to 5;m is an integer from 1 to 5; and q is an integer between 1 and 15
  • 15. The method of claim 14, wherein Z is represented in any one of Formula I-VIII:
  • 16. The method of claim 14 or 15, wherein Z is (E)-vinylphosphonate represented in Formula III.
  • 17. The method of any one of claims 13-16, wherein at least 50% of the ribonucleosides are 2′-O-Me ribonucleoside.
  • 18. The method of any one of claims 13-17, wherein at least 60% of the ribonucleosides are 2′-O-Me ribonucleoside.
  • 19. The method of any one of claims 13-18, wherein at least 70% of the ribonucleosides are 2′-O-Me ribonucleoside.
  • 20. The method of any one of claims 13-19, wherein at least 80% of the ribonucleosides are 2′-O-Me ribonucleoside.
  • 21. The method of any one of claims 13-20, wherein at least 90% of the ribonucleosides are 2′-O-Me ribonucleoside.
  • 22. The method of any one of claims 13-21, wherein the length of the antisense strand is between 10 and 30 nucleotides.
  • 23. The method of any one of claims 13-22, wherein the length of the antisense strand is between 15 and 25 nucleotides.
  • 24. The method of claim 23, wherein the length of the antisense strand is 20 nucleotides.
  • 25. The method of claim 23, wherein the length of the antisense strand is 21 nucleotides.
  • 26. The method of claim 23, wherein the length of the antisense strand is 22 nucleotides.
  • 27. The method of claim 23, wherein the length of the antisense strand is 23 nucleotides.
  • 28. The method of claim 23, wherein the length of the antisense strand is 24 nucleotides.
  • 29. The method of claim 23, wherein the length of the antisense strand is 25 nucleotides.
  • 30. The method of claim 22, wherein the length of the antisense strand is 26 nucleotides.
  • 31. The method of claim 22, wherein the length of the antisense strand is 27 nucleotides.
  • 32. The method of claim 22, wherein the length of the antisense strand is 28 nucleotides.
  • 33. The method of claim 22, wherein the length of the antisense strand is 29 nucleotides.
  • 34. The method of claim 22, wherein the length of the antisense strand is 30 nucleotides.
  • 35. The method of any one of claims 13-34, wherein the length of the sense strand is between 12 and 30 nucleotides.
  • 36. The method of claim 35, wherein the length of the sense strand is 14 nucleotides.
  • 37. The method of claim 35, wherein the length of the sense strand is 15 nucleotides.
  • 38. The method of claim 35, wherein the length of the sense strand is 16 nucleotides
  • 39. The method of claim 35, wherein the length of the sense strand is 17 nucleotides.
  • 40. The method of claim 35, wherein the length of the sense strand is 18 nucleotides.
  • 41. The method of claim 35, wherein the length of the sense strand is 19 nucleotides.
  • 42. The method of claim 35, wherein the length of the sense strand is 20 nucleotides.
  • 43. The method of claim 35, wherein the length of the sense strand is 21 nucleotides.
  • 44. The method of claim 35, wherein the length of the sense strand is 22 nucleotides.
  • 45. The method of claim 35, wherein the length of the sense strand is 23 nucleotides.
  • 46. The method of claim 35, wherein the length of the sense strand is 24 nucleotides.
  • 47. The method of claim 35, wherein the length of the sense strand is 25 nucleotides.
  • 48. The method of claim 35, wherein the length of the sense strand is 26 nucleotides.
  • 49. The method of claim 35, wherein the length of the sense strand is 27 nucleotides.
  • 50. The method of claim 35, wherein the length of the sense strand is 28 nucleotides.
  • 51. The method of claim 35, wherein the length of the sense strand is 29 nucleotides.
  • 52. The method of claim 35, wherein the length of the sense strand is 30 nucleotides.
  • 53. A branched siRNA molecule comprising a sense strand and an antisense strand, wherein the antisense strand comprises a region having complementarity to a segment of contiguous nucleotides within a gene selected from the group consisting of APOE, BIN1, C1QA, C3, C9ORF72, CCL5, CD33, CLU/APOJ, CR1, CXCL10, CXCL13, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, MEF2C, MMP12, NLRP3, NOS2, PILRA, PLCG2, PTK2B, SLC24A4, TBK1, and TNF.
  • 54. The molecule of claim 53, wherein the antisense strand has complementarity to a portion of a gene encoding a positive regulator of a gene for which increased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.
  • 55. The molecule of claim 53, wherein the antisense strand has complementarity to a portion of a gene encoding a negative regulator of a gene for which decreased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.
  • 56. The molecule of claim 53, wherein the antisense strand has complementarity to a splice isoform of a gene for which overexpression of the splice isoform relative to the expression of the splice isoform in a reference subject is associated with a disease state.
  • 57. The molecule of any one of claims 53-56, wherein the sense strand has complementarity to the antisense strand.
  • 58. The molecule of any one of claims 53-57, wherein the siRNA molecule is di-branched.
  • 59. The molecule of any one of claims 53-58, wherein the antisense strand of the branched siRNA has the following formula in the 5′-to-3′ direction: Z-((A-P-)n(B-P-)m)q;wherein Z is a 5′ phosphorus stabilizing moiety;each A is, independently, a 2′-O-Me ribonucleoside;each B is, independently, a 2′-F ribonucleoside;each P is, independently, an internucleoside linkage selected from a phosphodiester linkage and a phosphorothioate linkage;n is an integer from 1 to 5;m is an integer from 1 to 5; andq is an integer between 1 and 15.
  • 60. The molecule of claim 59, wherein Z is represented in any one of Formula I-VIII:
  • 61. The molecule of claim 59 or 60, wherein Z is (E)-vinylphosphonate as represented in Formula III.
  • 62. The molecule of any one of claims 53-61, wherein the length of the antisense strand is between and 30 nucleotides.
  • 63. The molecule of claim 62, wherein the length of the antisense strand is between 15 and 30 nucleotides.
  • 64. The molecule of claim 62, wherein the length of the antisense strand is 20 nucleotides.
  • 65. The molecule of claim 62, wherein the length of the antisense strand is 21 nucleotides.
  • 66. The molecule of claim 62, wherein the length of the antisense strand is 22 nucleotides.
  • 67. The molecule of claim 62, wherein the length of the antisense strand is 23 nucleotides.
  • 68. The molecule of claim 62, wherein the length of the antisense strand is 24 nucleotides.
  • 69. The molecule of claim 62, wherein the length of the antisense strand is 25 nucleotides.
  • 70. The molecule of claim 62, wherein the length of the antisense strand is 26 nucleotides.
  • 71. The molecule of claim 62, wherein the length of the antisense strand is 27 nucleotides.
  • 72. The molecule of claim 62, wherein the length of the antisense strand is 28 nucleotides.
  • 73. The molecule of claim 62, wherein the length of the antisense strand is 29 nucleotides.
  • 74. The molecule of claim 62, wherein the length of the antisense strand is 30 nucleotides.
  • 75. The molecule of any one of claims 53-74, wherein the length of the sense strand is between 12 and 30 nucleotides.
  • 76. The molecule of claim 75, wherein the length of the sense strand is 14 nucleotides.
  • 77. The molecule of claim 75, wherein the length of the sense strand is 15 nucleotides.
  • 78. The molecule of claim 75, wherein the length of the sense strand is 16 nucleotides
  • 79. The molecule of claim 75, wherein the length of the sense strand is 17 nucleotides.
  • 80. The molecule of claim 75, wherein the length of the sense strand is 18 nucleotides.
  • 81. The molecule of claim 75, wherein the length of the sense strand is 19 nucleotides.
  • 82. The molecule of claim 75, wherein the length of the sense strand is 20 nucleotides.
  • 83. The molecule of claim 75, wherein the length of the sense strand is 21 nucleotides.
  • 84. The molecule of claim 75, wherein the length of the sense strand is 22 nucleotides.
  • 85. The molecule of claim 75, wherein the length of the sense strand is 23 nucleotides.
  • 86. The molecule of claim 75, wherein the length of the sense strand is 24 nucleotides.
  • 87. The molecule of claim 75, wherein the length of the sense strand is 25 nucleotides.
  • 88. The molecule of claim 75, wherein the length of the sense strand is 26 nucleotides.
  • 89. The molecule of claim 75, wherein the length of the sense strand is 27 nucleotides.
  • 90. The molecule of claim 75, wherein the length of the sense strand is 28 nucleotides.
  • 91. The molecule of claim 75, wherein the length of the sense strand is 29 nucleotides.
  • 92. The molecule of claim 75, wherein the length of the sense strand is 30 nucleotides.
  • 93. A method of treating a subject diagnosed as having a disease associated with expression of a dysregulated microglial gene or dysregulated microglial gene pathway, the method comprising administering to the subject the branched siRNA molecule of any one of claims 53-92.
  • 94. The method of claim 93, wherein the dysregulated microglial gene is selected from the group consisting of ABCA7, ABI3, ADAM10, APOC1, APOE, AXL, BIN1, C1QA, C3, C9ORF72, CASS4, CCL5, CD2AP, CD33, CD68, CLPTM1, CLU, CR1, CSF1, CST7, CTSB, CTSD, CTSL, CXCL10, CXCL13, DSG2, ECHDC3, EPHA1, FABP5, FERMT2, FTH1, GNAS, GRN, HBEGF, HLA-DRB1, HLA-DRB5, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IGF1, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, ITGAX, LILRB4, LPL, MEF2C, MMP12, MS4A4A, MS4A6A, NLRP3, NME8, NOS2, PICALM, PILRA, PLCG2, PTK2B, SCIMP, SLC24A4, SORL1, SPI1, SPP1, SPPL2A, TBK1, TNF, TREM2, TREML2, TYROBP, and ZCVVPW1.
  • 95. The method of claim 93, wherein the dysregulated microglial gene exhibits increased expression and/or activity in microglial cells of the subject as compared to the expression and/or activity of the same gene in microglial cells of a reference subject.
  • 96. The method of claim 93, wherein the dysregulated microglial gene exhibits reduced expression and/or activity in microglial cells of the subject as compared to the expression and/or activity of the same gene in microglial cells of a reference subject.
  • 97. The method of claim 93, wherein the administering of the branched siRNA molecule to the subject results in silencing of a gene in the subject.
  • 98. The method of claim 97, wherein the silencing of a gene comprises silencing any one of the genes selected from the group consisting of APOE, BIN1, C1QA, C3, C9ORF72, CCL5, CD33, CLU/APOJ, CR1, CXCL10, CXCL13, IFIT1, IFIT3, IFITM3, IFNAR1, IFNAR2, IL10RA, ILIA, IL1B, IL1RAP, INPP5D, ITGAM, MEF2C, MMP12, NLRP3, NOS2, PILRA, PLCG2, PTK2B, SLC24A4, TBK1, and TNF.
  • 99. The method of claim 97, wherein silencing of a gene comprises silencing of a positive regulator of a gene for which increased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.
  • 100. The method of claim 97, wherein silencing of a gene comprises silencing of a gene for which decreased expression and/or activity relative to the level of expression and/or activity observed in a reference subject is associated with a disease state.
  • 101. The method of claim 97, wherein silencing of a gene comprises silencing of a splice isoform of a gene for which overexpression of the splice isoform relative to the expression of the splice isoform in a reference subject is associated with a disease state.
  • 102. The method of any one of claims 93-101, wherein the subject is a human.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2022/021789 3/24/2022 WO
Provisional Applications (1)
Number Date Country
63165518 Mar 2021 US