Micromachined infrared sensitive pixel and infrared imager including same

Abstract
An infrared (IR) sensitive pixel and an IR imager including the same. According to one embodiment, the pixel includes a substrate assembly having a cavity defined by at least one sidewall and a cantilevered beam connected to the substrate assembly and disposed in the cavity. The cantilevered beam includes a first spring portion and a first capacitor plate portion, wherein the first spring portion includes at least two materials having different coefficients of thermal expansion. The pixel further includes a second capacitor plate portion, such that incident IR radiation causes the first spring portion of the cantilevered beam to move laterally relative to the sidewall, thereby creating a variable capacitance between the first capacitor plate portion of the cantilevered beam and the second capacitor plate portion.
Description




BACKGROUND OF INVENTION




1. Field of Invention




The present invention relates generally to micromachining and, more particularly, to a micromachined infrared sensitive pixel that may be used in, for example, an infrared imager.




2. Description of the Background




The human eye can only gather information from the visible light region of the electromagnetic spectrum. Imaging in the infrared (IR) region of the spectrum, however, allows sensing of small differences in temperature in the environment. This ability is highly useful for surveillance and security applications as it enables detection of objects in absolute darkness. Conventional IR imagers have been in use by law enforcement and military agencies. However, conventional IR imager technology relies on semiconductor sensors, which are expensive and bulky due to the necessary cooling to liquid nitrogen temperatures (77 K). Newer uncooled imagers are based on custom materials and are expensive to fabricate.




The applications for low cost infrared imagers range from household security applications to “night vision” aids for night driving. IR sensors with high enough sensitivity (0.1 degree Kelvin) to be suitable for imaging purposes are expensive. Imagers made using conventional semiconductor technologies are very expensive and bulky, as the imagers have to be cooled to the temperature of liquid nitrogen. Newer uncooled imagers are based on custom processes that are expensive to fabricate.




Several research and development groups have created medium-performance IR imaging arrays. One example is the Honeywell uncooled bolometer array. Certain technology spearheaded by Sarnoff Laboratories and Sarcon Microsystems includes the creation of suspended bimorph micro-plates whose thermo-mechanical displacement is detected by measuring the capacitance of the micro-plate to the substrate. The main drawback of that approach is that the designs are difficult to manufacture due to the good control of residual stress.




Other approaches to uncooled IR imagers include the Texas Instrument Approach: An array of 25 μm-75 μm Barium Strontium Titanate (BST) detectors whose polarization and electric constant change with temperature, resulting in a change in capacitor charge as the scene temperature varies. This technology is limited by the ability to obtain good quality, very thin BST films. The best reported Noise Equivalent Difference Temperature (NEDT) for the system was 100 mK (C. Hanson, “Uncooled thermal imaging at Texas Instruments,” SPIE vol. 2020, Infrared Technology XIX (1993)).




An approach by Honeywell uses an array of micro-bolometers with Vanadium Oxide (VO


x


) resistors (Temperature Coefficient of Resistance (TCR) 2%/K). The bolometer is suspended by a silicon nitride bridge for thermal isolation from the substrate containing the read out electronics. The commercial products achieve a Noise Equivalent Difference Temperature (NEDT) in the range of 100 mK and have been integrated in video rate and single shot digital cameras. Recent results from Raytheon have reported a 20 mK NEDT for a 2500 μm


2


pixel size. This approach is limited by the self-heating of the pixel and 1/f noise. (B. E. Cole et al., “Monolithic Two-Dimensional Arrays of Micromachined Microstructures for Infrared Applications,”


Proceedings of the IEEE


, Vol. 86, no. 8, pp. 1679-1686, 1998, and W. Radford et al., “Microbolometer Uncooled Infrared Camera with 20 mK NEDT,”


SPIE Conference on IR Tech. and Applications XXIV


, San Diego, Calif., July 1998, pp.636-646.




An approach by Sarnoff Research Center senses capacitance change of a bimetallic element with the substrate. The thermal isolation is designed using a SiC suspension and the bimetallic strip includes SiC and Aluminum. The theoretical value for the NEDT using this technology is 5 mK.




Silicon infrared imagers developed at the University of Michigan use a n+polysilicon and gold thermocouple to measure the temperature difference between the pixel and the substrate. The best reported NEDT for a 200 μm by 650 μm device was 200 mK. These devices have been integrated into a standard CMOS process to achieve a NEDT of 320 mK for a 250 μm by 250 μm device. It is difficult to achieve small pixel size with this approach due to the larger number of conductors in the thermopile that increase the pixel thermal conductivity to the substrate.




Heat balancing CMOS imagers also developed at the University of Michigan use suspended CMOS transistors that are heat balanced to cancel out the incident infrared radiation. The group fabricated a 100 μm×100 μm pixel and reported a detectivity of 3×10


7


cm-(Hz)


−1/2


/W. The thermal isolation between the substrate and the pixel is poor due to the large number of conductors incident on the pixel. The approach is limited by the size of the pixel that cannot be reduced due to etching considerations.




Pyroelectric detectors using PVDF film deposited on CMOS have been demonstrated by Binne et al, “An integrated 16×16 PVDF pyroelectric sensor array,”


IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control


, vol. 47, Issue Nov. 6, 2000, pp. 1413-1420. The main drawback to this approach is that it requires an external mechanical chopper for operation.




A brief summary of the state of the art pixels demonstrated by industry and research groups is summarized in Table 1 below.












TABLE 1











Comparison of Pixel Performance Reported in Literature

















Honeywell




TI approach




Active Pixel




U. Mich




Pyroelectric




















Principle




Bolometer




Ferroelectric




Heat-balancing




Thermopile




PVDF






Process




Custom




Custom




CMOS




CMOS




CMOS






Pixel size




50 μm × 50 μm




50 μm × 50 μm




100 μm × 100 μm




250 μm × 250 μm




105 μm × 105 μm






Bandwidth




30 Hz




30




30




NA




30 Hz






Noise




30 × 10


−12






NA




300 × 10


−12






330 × 10


−12






2.4 × 10


−11








Equivalent




W/Hz





W/Hz




W/Hz




W/Hz






Power






Detectivity




5 × 10


8






NA




3 × 10


7






7.7 × 10


7






4.4 × 10


8








(cm-(Hz)


−1/2


/W)






NEDT




25 mK




100 mK




NA




320 mK




NA














Accordingly, there is a need for a low cost imager that has the potential of being utilized in markets and applications that until now were not cost effective. For example, there is a need for an imager for applications such as night driving aids. IR closed circuit cameras could aid surveillance and home security systems. Low cost IR imagers can be used to identify sources of heat leaks in homes and factories leading to energy savings.




SUMMARY OF THE INVENTION




According to one embodiment, the present invention is directed to a pixel for an IR sensor. The pixel includes a substrate assembly having a cavity defined by at least one sidewall and a cantilevered beam connected to the substrate assembly and disposed in the cavity. The cantilevered beam includes a first spring portion and a first capacitor plate portion, wherein the first spring portion includes at least two materials having different coefficients of thermal expansion. The pixel further includes a second capacitor plate portion, such that incident IR radiation causes the first spring portion of the cantilevered beam to move laterally relative to the sidewall, thereby creating a variable capacitance between the first capacitor plate portion of the cantilevered beam and the second capacitor plate portion.




According to another embodiment, the pixel includes a substrate assembly, a first cantilevered beam and a second cantilevered beam. The substrate assembly includes a cavity defined by at least one sidewall. The first cantilevered beam is connected to the substrate assembly and disposed in the cavity, and includes a first spring portion and a first capacitor plate portion, wherein the first spring portion includes at least two materials having different coefficients of thermal expansion. The second cantilevered beam is also connected to the substrate assembly and disposed in the cavity, and includes a second spring portion and a second capacitor plate portion, wherein the second spring portion includes at least two materials having different coefficients of thermal expansion, such that incident IR radiation causes the first and second spring portions to move laterally relative to the sidewall thereby creating a variable capacitance between the first and second capacitor plate portions.




According to another embodiment, the present invention is directed to a micromachined structure. The micromachined structure includes a substrate assembly having a cavity defined by at least one sidewall. The micromachined structure also includes a first cantilevered beam connected to the substrate assembly and disposed in the cavity. The first cantilevered beam includes a first spring portion and a first capacitor plate portion, wherein the first spring portion includes at least two materials having different coefficients of thermal expansion. In addition, the micromachined structure includes a second capacitor plate portion, such that incident IR radiation causes the first spring portion of the first cantilevered beam to move laterally relative to the sidewall, thereby creating a variable capacitance between the first capacitor plate portion of the first cantilevered beam and the second capacitor plate portion.




According to another embodiment, the present invention is directed to an infrared (IR) imager including an addressing circuit and a pixel array coupled to the addressing circuit. The pixel array includes a plurality of IR sensitive pixels, wherein each pixel includes first and second cantilevered beams. The first cantilevered beam is connected to a substrate assembly and disposed in a cavity of the substrate assembly, wherein the cavity is defined by a sidewall. The first cantilevered beam includes a first spring portion and a first capacitor plate portion, wherein the first spring portion includes at least two materials having different coefficients of thermal expansion. The second cantilevered beam is also connected to the substrate assembly and disposed in the cavity. The second cantilevered beam includes a second spring portion and a second capacitor plate portion, wherein the second spring portion includes at least two materials having different coefficients of thermal expansion, such that incident IR radiation causes the first and second spring portions to move laterally relative to the sidewall thereby creating a variable capacitance between the first and second capacitor plate portions.











BRIEF DESCRIPTION OF THE FIGURES




Embodiments of the present invention are described in conjunction with the following figures, wherein:





FIGS. 1 and 2

are diagrams illustrating a principle of operation according to one embodiment of the present invention;





FIG. 3

is a top plan view of an infrared sensitive pixel according to one embodiment of the present invention;





FIG. 4

is a cross-sectional side-view of the pixel of

FIG. 3

;





FIG. 5

is a top plan view of an infrared sensitive pixel according to another embodiment of the present invention;





FIG. 6

is a cross-sectional side-view of the pixel of

FIG. 5

;





FIGS. 7-9

illustrate a technique for fabricating an infrared sensitive pixel according to one embodiment of the present invention;





FIG. 10

is a scanning electron micrograph (SEM) image of a pixel according to another embodiment of the present invention;





FIG. 11

is a SEM image of a thermal isolation portion of the pixel of

FIG. 10

;





FIG. 12

is a cross-sectional side-view of the thermal isolation portion of

FIG. 11

;





FIG. 13

is a top plan view of a pixel according to another embodiment of the present invention;





FIG. 14

is a side-view of a pixel according to another embodiment of the present invention;





FIG. 15

is a diagram of an infrared (IR) imager according to one embodiment of the present invention;





FIG. 16

is a schematic diagram of an interface circuit of the IR imager of

FIG. 15

according to one embodiment of the present invention;





FIG. 17

is a schematic diagram of the array of the IR imager of

FIG. 15

according to one embodiment of the present invention;





FIG. 18

illustrates a clocking scheme for an IR imager according to one embodiment of the present invention; and





FIG. 19

is a schematic diagram of the capacitance detection circuit of the IR imager of

FIG. 15

according to one embodiment of the present invention.











DETAILED DESCRIPTION OF THE INVENTION




According to one embodiment, the present invention is directed to a micromachined infrared (IR) sensitive pixel. The operating principle of the IR pixel, according to one embodiment, is described in conjunction with

FIGS. 1 and 2

.

FIG. 1

illustrates two micromachined beams


10


anchored to a substrate assembly


12


. The beams


10


may be, for example, CMOS micromachined beams having a cross-section along line C-C′ in

FIG. 1

as illustrated in FIG.


2


. That is, the beams


10


may include both dielectric and metal layers. As illustrated in

FIG. 2

, the metal layers for the left-hand beam may be oriented on the right-hand side of the beam, and the metal layers for the right-hand beam may be oriented on the left-hand side of the beam.




The metal layers of the beams


10


may be, for example, aluminum such that the temperature coefficient of expansion (TCE) of the aluminum metal layers (23×10


−6


K


−1


) is much greater than that of the CMOS inter-layer dielectric (0.4×10


−6


K


−1


). Thus, if a temperature change is induced in the beams due to incident IR energy (P


in


), then a lateral bending moment is produced. The beam bending is proportional to a difference in the TCE of the metal layers and the inter-layer dielectric. The lateral motion increases the inter-beam separation and decreases the capacitance between the beams. This change in capacitance may be measured by circuitry


14


, such as an integrated CMOS capacitance-to-voltage converter, which may output a voltage proportional to the power of the incident IR energy.




The lateral motion (δ) at the tip of a beam


10


of length L, width w, thickness t, and effective Young's Modulus E can be expressed as:









δ
=




L
2

2



(


M
l


E






I

z





z




)


=


6


L
2



M
l



E





t






w
3








(
1
)













where M


l


is the lateral bending due to the beam cross-section and I


zz


is the moment of inertia about the z axis expressed as







I

z





z


=


1
12


t







w
3

.












It should be noted that out-of-plane curl of the two beams


10


is substantially identical and does not contribute to performance degradation.





FIGS. 3 and 4

illustrate a micromachined IR sensitive pixel


20


according to one embodiment of the present invention.

FIG. 3

is a top plan view of the pixel


20


and

FIG. 4

is a cross-sectional view of the pixel


20


along line III-III′. As illustrated in these figures, the pixel


20


includes a cantilevered beam


22


connected to a substrate assembly


24


and disposed in a cavity


26


defined by the substrate assembly. According to one embodiment, the beam


22


may be a CMOS micromachined beam, i.e., a beam having dielectric (such as silicon dioxide) and metal (such as aluminum) layers fabricated according to CMOS processing techniques, such as a standard 0.5 μm 3-metal CMOS process.




As used herein, the term “cantilevered beam” is not limited to straight beams, but may also include, for example, meandering, serpentine or curved beams. In addition, the term “substrate assembly” as used herein refers to a substrate and any intervening layers or structures formed thereon or therein. The term “substrate” refers to a structure that is often the lowest layer of semiconductor material in a wafer or die, although in some technologies the substrate is not a semiconductor material.




The beam


22


may include, for example, a spring portion


28


, a capacitive plate portion


30


and a thermal isolation portion


32


. The spring portion


28


may include at least two materials having different temperature coefficients of expansion (TCE) aligned along the longitudinal axis of the beam


22


. According to one embodiment, the spring portion


28


may be a CMOS micromachined structure having, for example, multiple aluminum layers and a silicon dioxide inter-layer dielectric aligned along the longitudinal axis of the beam


22


. The TCE for aluminum is 23×10


−6


K


−1


and the TCE for silicon dioxide is 0.4×10


−6


K


−1


. Thus, as explain previously, incident IR radiation impinging upon the spring portion


28


and capacitive plate portion


30


will cause the beam


22


to move laterally relative to, for example, a sidewall


33


defining the cavity


26


. The lateral movement of the spring portion


28


will in turn cause the capacitive plate portion


30


to move laterally, as indicated by the arrows in

FIGS. 3 and 4

.




The capacitive plate portion


30


includes an electrically conductive material. For example, according to one embodiment the capacitive plate portion


30


may include one or more CMOS metal layers (not shown). In addition, the substrate assembly


24


may include a capacitive plate portion


34


adjacent the capacitive plate portion


30


of the beam


22


. According to one embodiment, the capacitive plate portion


34


of the substrate assembly


24


may include one or more CMOS metal layers. Accordingly, lateral movement by the capacitive plate portion


30


of the beam


22


will cause the capacitance between the capacitive plate portions


30


,


34


to vary in inverse proportion to their separation distance. This capacitance may be sensed by circuitry, such as solid-state circuitry integrated into the substrate assembly


24


, to thereby determine the power of the incident IR radiation as described previously.




The thermal isolation portion


32


may provide an electrical connection between the capacitive plate portion


30


of the beam


22


and the substrate assembly circuitry while minimizing the thermal conductivity therebetween. In that way, the incident IR radiation may be effectively isolated in the beam


22


rather than dissipated in the substrate assembly


24


. According to one embodiment, as explained further hereinafter, the thermal isolation portion


32


may include a polysilicon interconnect layer to provide the electrical connection to the capacitive plate portion


30


.





FIGS. 5 and 6

illustrate the pixel


20


according to another embodiment of the present invention.

FIG. 5

is a top plan view of the pixel


20


and

FIG. 6

is cross-sectional view of the pixel


20


along line V-V′. As illustrated in

FIGS. 5 and 6

, the pixel


20


may include two cantilevered beams


22




a-b


. As described previously, each beam


22




a-b


may respectively include a spring portion


28




a-b


, a capacitive plate portion


30




a-b


and a thermal isolation portion


32




a-b


. According to such an embodiment, the capacitive plate portions


30




a-b


form a capacitor. As explained previously, the metal layers of spring portion


28




a


may be oriented on the side of the beam


22




a


adjacent to beam


22




b


and the metal layers of spring portion


28




b


may be oriented on the side of the beam


22




b


adjacent to beam


22




a


, or vice versa. In that way, incident IR radiation causes each of the spring portions


28




a-b


to move laterally, but in opposite directions, relative to the sidewall


33


of the cavity, thereby causing the capacitance between the capacitive plate portions


30




a-b


to vary. The capacitance between the capacitive plate portions


30




a-b


may be sensed, for example, by solid-state circuitry integrated in the substrate assembly


24


.




Although the pixels described previously and hereinafter are described in the context of an IR sensitive pixel, it should be noted that the micromachined structure might be used for other purposes, such as a lateral actuator, a lateral resonant sensor and a temperature sensor.





FIGS. 7-9

illustrate a process for fabricating a pixel


20


according to an embodiment of the present invention.

FIG. 7

illustrates a cross-sectional view of a substrate assembly


40


having a circuitry layer


42


formed on a substrate


43


. The circuitry layer


42


may be, for example, a CMOS circuitry layer, including CMOS circuitry regions


44


and CMOS interconnect regions


46


, formed on the substrate


43


according to conventional CMOS fabrication techniques. The CMOS circuitry regions


44


may include, for example, CMOS circuits


45


. For an embodiment in which the circuitry layer


42


is a CMOS circuitry layer, as illustrated in

FIG. 7

, the CMOS circuitry layer


42


may include polysilicon layers


48


, intermediate metal layers


50


, and upper metal layers


52


. The CMOS circuitry layer


42


may also include dielectric layers


54


. The dielectric layers


54


may be, for example, an oxide layer such as, for example, silicon dioxide. The thickness of the CMOS circuitry layer


42


may be, for example, 5-7 μm. The substrate


43


may be, for example, a bulk silicon mass and may have a thickness of, for example, 400-800 μm.





FIG. 8

illustrates the substrate assembly


40


after micromachining of the circuitry layer


42


. In the illustrated embodiment, portions of the dielectric layers


54


of the CMOS circuitry layer


42


have been removed by a reactive ion etch (RIE). The upper metal layers


52


act as the etching mask such that only those portions of the dielectric layers


54


exposed by the upper metal layers


54


are removed. RIEs are directional (anisotropic), such that a number microstructures


60


having well-defined sidewalls are formed. As in the illustrated embodiment, the microstructures


60


may include CMOS dielectric layers


54


and metal layers


50


,


52


. The RIE may be performed with, for example, CHF


3


as the etchant gas in an O


2


plasma. CMOS micromachining processes used to create CMOS microstructures are further described in U.S. Pat. No. 5,717,631 entitled “Microelectromechanical Structure and Process of Making Same” to Carley et al., and U.S. Pat. No. 5,970,315, entitled “Microelectromechanical Structure and Process of Making Same” to Carley et al., which are incorporated herein by reference.





FIG. 9

illustrates the substrate assembly


40


after an isotropic etch to remove portions of the substrate


43


. According to one embodiment, a RIE may be used for the isotropic etch using, for example, sulfur hexafluoride (SF


6


) as the etchant gas in an O


2


plasma. As illustrated in

FIG. 9

, the isotropic etching step releases the microstructures


60


from the substrate


43


to form cantilevered beams. In another embodiment a RIE may be first used for a directional etch of the substrate


43


, followed by an isotropic etch.





FIG. 10

is a scanning electron micrograph (SEM) image of a pixel


20


according to another embodiment of the present invention. As can be seen in

FIG. 10

, the beams


22




a-b


may have a meandering or folded shape. In addition, the capacitive plate portions


30




a-b


of the beams may include protruding finger beams configured to form an interdigitated capacitor. That is, the finger beams of the respective capacitive plate portions


30




a-b


are interleaved. The meandering shape design for the beams


22




a-b


of the illustrated embodiment maximizes the tip deflection of the spring portions


28




a-b


within the pixel area. Further, the interdigitated capacitor structure increases the capacitance of the pixel


20


, hence increasing the sensitivity thereof. The dimensions for the pixel


20


given in

FIG. 10

are exemplary.




The pixel


20


of

FIG. 10

additionally includes a micromachined frame


70


connected to the substrate assembly


24


around the beams, which may be fabricated according to the conventional micromachining techniques such as those previously described. The frame


70


may include an embedded heater (not shown), which may be used to test the pixel


20


or to provide a temperature offset during operation. According to one embodiment, the structures of the beams


22




a-b


may be designed so that they have different mechanical resonant frequencies. For example, the mechanical resonant frequency of the beam


22




a


may be 245 kHz and the mechanical resonant frequency of the beam


22




b


may be 230 kHz.





FIG. 11

is a SEM image of the thermal isolation portion


32


of a beam of the pixel and

FIG. 12

is a cross-sectional view of the thermal isolation portion


32


along line A-A′. According to the illustrated embodiment, the thermal isolation portion


32


includes slotted metal lines


72


. The slots in the beam


22


interrupt the metallization layers of the microstructure, such as the upper metal layer


52


, thereby decreasing the thermal conductivity between the capacitive plate portion of the beam and the substrate assembly. Electrical conductivity between circuitry in the substrate assembly and the capacitive plate portion of the beam may be provided by polysilicon interconnect layer


48


. According to one embodiment, the polysilicon interconnect layer


48


may have a width of, for example, 0.6 μm.




The anchor portion


74


of the substrate assembly may include an electrically conductive via


76


to provide an electrical connection between the polysilicon interconnect layer


48


and the metal interconnect layer


50


of the substrate assembly circuitry. The via


76


may be made of metal such as, for example, tungsten or aluminum.




The beams


22


of the pixel


20


may take on numerous different configurations.

FIG. 13

is a top view of a pixel configuration according to another embodiment of the present invention. Like the embodiment illustrated in

FIG. 10

, the capacitive plate portions


30




a-b


of the beams


22




a-b


in

FIG. 13

form an interdigitated capacitor. According to the illustrated embodiment, each capacitive plate portion


30




a-b


includes a main beam


77




a-b


having a number of finger beams


78


extending therefrom. The finger beams


78


from the respective capacitive plate portions


30




a-b


are interleaved to thereby form the interdigitated capacitor. During fabrication, the different residual stresses in the embedded layers of the spring portions


28




a-b


cause the finger beams


78


to move closer together after the mechanical release from the substrate, described previously, to thereby improve device sensitivity.




To enhance the efficiency of the IR sensitive pixels


20


described herein, an IR absorbing material (not shown) may be deposited on the pixel


20


such as, for example, by sputtering. The IR absorbing material may be, for example, platinum black, gold black or carbon black. According to another embodiment, the IR absorbing material may be deposited on a plate over the pixel.

FIG. 14

is a side-view of a pixel


20


according to such an embodiment. As illustrated in

FIG. 14

, a plate


80


made of, for example, a thermally conductive material such as aluminum, is located over the beams (not shown) and supported by a post


82


connected to the frame


70


. In this case, the thermal isolation portions between the frame


70


and the beams


28




a-b


may be omitted. The IR absorbing material


84


is deposited on the plate


80


. The post


82


may also made of a thermally conductive material such as aluminum. Although only one post


82


is shown in

FIG. 14

, more than one post may be employed if necessary to support the plate. According to other embodiments, such as for pixels


20


that do not include a frame, the post(s)


82


may be directly connected to the beams


28




a-b.






Pixels according to the present invention may be used in an infrared (IR) imager.

FIG. 15

is a diagram of an IR imager


100


according to one embodiment of the present invention. According to one embodiment, the IR imager


100


may be integrated onto a single chip (or die). As illustrated in

FIG. 15

, the imager


100


includes an array


101


of pixels


20


having N columns and M rows. The pixels


20


may be individually addressed by an addressing circuit


102


once every image scan. A pixel


20


in the M-th row and the N-th column may be selected when, for example, a N-th column bit line


104


and a M-th row bit line


106


are driven to a logic high by the addressing circuit


102


. The addressing circuit


102


may include, for example, shift registers and may be synchronized by a master clock


108


. A capacitance detection circuit


112


may be coupled to the addressing circuit


102


to sense the change in capacitance of the addressed pixel.




Each pixel


20


may include an interface circuit


110


coupled to the addressing circuit


102


.

FIG. 16

is a diagram of the interface circuit


110


according to one embodiment of the present invention. In

FIG. 16

the pixel


20


is represented as a variable capacitor, which is coupled to a reference capacitor


120


. According to one embodiment, the capacitance of the reference capacitor


120


may be 5 fF. The circuit


110


also includes a shared source follower configuration including, for example, NMOS field effect transistors (FETs)


122


,


124


,


126


and


128


. The first transistor


122


may be controlled by a reset signal and the second transistor


124


may be controlled by a reset compensation signal. The control terminal of the transistor


126


is coupled to the common node between the pixel


20


and the reference capacitor


120


, and the source of the transistor


126


is coupled to the drain of the transistor


128


. The transistor


128


is driven by the row bit line select signal from the addressing circuit


102


, and the source of the transistor


128


is coupled to a column bit line from the addressing circuit


102


. The capacitance bridge formed by the pixel


20


and the reference capacitor


120


may be driven by two out of phase signals, V


REF




+


and V


REF







, which enable, as described hereinafter, double correlated sampling based capacitor detection. Any initial mismatch between the pixel


20


and reference capacitor


120


may be eliminated by adjusting the ratio between the positive and negative reference voltages, V


REF




+


and V


REF







. The transistors


122


and


124


may be used to set the DC voltage at the output. Switch injection errors may be reduced by driving the transistor


124


with a signal (the reset compensation signal) that is a delayed and inverted version of the reset signal driving the transistor


122


.





FIG. 17

is a schematic of the array


101


of the imager


100


according to one embodiment. The active column is selected by, for example, a logic high on the appropriate column bit line from the addressing circuit (not shown) and the active pixel is selected, for example, by a logic high on the row bit lines from the addressing circuit. The capacitance detection circuit


112


may be shared by each pixel


20


of the array


101


.





FIG. 18

illustrates a sample clocking scheme for a 2×2 pixel array. The V


REF




+


and V


REF







analog signals are input to the capacitive bridge as shown in FIG.


16


and may be centered around analog ground. The frequency of the sampling is related to the scan rate of the image. The master clock frequency may be obtained by the relation:








F




clock


=2(


N


)(


M


)(


S


)(


n


)  (2)






where N is the number of columns, M is the number of rows, S is the scan rate of the image, and n is the number of pixel output measurements made per cycle. For a 16×16 array, operating at 30 frames per second and one measurement per cycle, the master clock frequency would be 15.36 kHz.





FIG. 19

is a schematic diagram of the capacitance detection circuit


112


according to one embodiment of the present invention using double correlated sampling to generate an output voltage V


out


that is proportional to the change in capacitance of the pixel


20


relative to the reference capacitor


120


(see FIG.


16


). The output from the pixel interface circuit


110


is coupled to a capacitor C


a


that samples the DC offset voltage introduced by the interface circuit


110


. The signal is amplified by an amplifier


130


, and then the output, clocked by sampling signals phase


1


and phase


2


, is sampled on capacitors C


s1


and C


s2


respectively. The difference is calculated by a differential amplifier


132


and latched by a sample-and-hold circuit


134


. The switch


136


of the sample-and-hold circuit


134


may be driven by sampling signal phase


2


such that the output is valid on the falling edge of phase


2


.




The pixel performance of an initial design is summarized in Table 2. For a given pixel area, optimal design is a careful trade-off between the area of the pixel and the thermal isolation. The Noise Equivalent Difference Temperature (NEDT) is the minimum temperature difference at the image source that the pixel can sense. NEDT can be improved to a certain extent by improving the thermal isolation, as the thermal time constant must be low enough to accommodate the image frame rate. However, the NEDT of 50 mK for this design example does not include the performance boost from energy absorption enhancements.












TABLE 2











Sample Pixel Performance














Symbol




Definition




Value




Unit









A




Micromechanical pixel area




588









(μm)


2








L


finger






Finger Beam length




25




μm






L


spring






Spring length




20




μm






V


mod






Modulation voltage




3




V






F




F number of optics




1











G




Fill Factor




68




%






S


p






Positional sensitivity (FEA)




416




A/K






S


c






Capacitance sensitivity (FEA)




160




aF/K






R


therma


1




Thermal isolation resistance




3.31 × 10


6






K-s/J






R


radiation






Radiative coupling resistance




9.87 × 10


6






K-s/J






C


thermal






Thermal capacity






  


6.79 × 10


−9






J/K






τ


thermal






Thermal constant




21




ms






β




Thermal transfer function




123











ΔT


thermal






Thermal noise




35.8




μK(Hz)


−1/2








ΔT


photon






Photon noise




2.46




μK(Hz)


−1/2








ΔT


amp






Amplifier noise (CDS




52.7




μK(Hz)


−1/2









switched capacitor)






ΔT


scene






Total noise referred to the




8.75




mK(Hz)


−1/2









scene






Detectivity




Detectivity




  3 × 10


9






cm(Hz)


1/2


/W






NEP




Noise equivalent power




  4.02 × 10


−9






W






NEDT




NEDT (@ 30 Hz)




6.08




mK














The fill factor of the device, that determines the radiative coupling from the scene to the device, can be improved by integrating an array of, for example, silicon microlenses to focus infrared energy on the pixel. The microlens array may be, for example, integrated on the backside of the chip to decrease assembly costs.




The presence of sidewall area increases the radiative absorption area of the device. Sidewall infrared energy absorption may be enhanced be design and control of the etch depth during isotropic release of the microstructures.




An advantage of the present invention that may be realized in certain embodiments thereof is that a relatively large gap (10-20 μm) may be formed between the thermal mass of the pixel and the underlying substrate assembly. This large gap may have negligible thermal conductance relative to the thermal conductance of the pixel beams


22


, which makes operation of an uncooled IR imager at atmospheric pressure feasible.




Although the present invention has been described herein with respect to certain embodiments, those of ordinary skill in the art will recognize that many modifications and variations of the present invention may be implemented. The foregoing description and the following claims are intended to cover all such modifications and variations.



Claims
  • 1. A pixel for an IR sensor, comprising:a substrate assembly having a cavity defined by at least one sidewall; a cantilevered beam connected to the substrate assembly and disposed in the cavity, the cantilevered beam including a first spring portion and a first capacitor plate portion, wherein the first spring portion includes at least two materials having different coefficients of thermal expansion; and a second capacitor plate portion, such that incident IR radiation causes the first spring portion of the cantilevered beam to move laterally relative to the sidewall, thereby creating a variable capacitance between the first capacitor plate portion of the cantilevered beam and the second capacitor plate portion.
  • 2. The pixel of claim 1, wherein the cantilevered beam further includes a first thermal isolation portion between the substrate assembly and the first spring portion.
  • 3. The pixel of claim 1, wherein the cantilevered beam includes a CMOS micromachined beam.
  • 4. The pixel of claim 1, wherein the first spring portion includes a metal layer and a dielectric layer with different coefficients of thermal expansion.
  • 5. The pixel of claim 4, wherein the metal layer includes aluminum and the dielectric layer includes silicon dioxide.
  • 6. A pixel for an IR sensor, comprising:a substrate assembly having a cavity defined by at least one sidewall; a first cantilevered beam connected to the substrate assembly and disposed in the cavity, the first cantilevered beam including a first spring portion and a first capacitor plate portion, wherein the first spring portion includes at least two materials having different coefficients of thermal expansion; and a second cantilevered beam connected to the substrate assembly and disposed in the cavity, the second cantilevered beam including a second spring portion and a second capacitor plate portion, wherein the second spring portion includes at least two materials having different coefficients of thermal expansion such that incident IR radiation causes the first and second spring portions to move laterally relative to the sidewall thereby creating a variable capacitance between the first and second capacitor plate portions.
  • 7. The pixel of claim 6, wherein:the first cantilevered beam further includes a first thermal isolation portion between the substrate assembly and the first spring portion; and the second cantilevered beam further includes a second thermal isolation portion between the substrate assembly and the second spring portion.
  • 8. The pixel of claim 6, wherein:the first cantilevered beam includes a CMOS micromachined beam; and the second cantilevered beam includes a CMOS micromachined beam.
  • 9. The pixel of claim 6, wherein:the first spring portion includes a metal layer and a dielectric layer with different coefficients of thermal expansion; and the second spring portion includes a metal layer and a dielectric layer with different coefficients of thermal expansion.
  • 10. The pixel of claim 9, wherein:the metal layer of the first spring portion includes aluminum and the dielectric layer of the first spring portion includes silicon dioxide; and the metal layer of the second spring portion includes aluminum and the dielectric layer of the second spring portion includes silicon dioxide.
  • 11. The pixel of claim 6, wherein:the first cantilevered beam has a shape selected from the group consisting of straight, meandering and curved; and the second cantilevered beam has a shape selected from the group consisting of straight, meandering and curved.
  • 12. The pixel of claim 6, further comprising a frame connected to the substrate assembly and positioned around the first and second cantilevered beams.
  • 13. The pixel of claim 12, further comprising:at least one post connected to the frame; a plate connected to the post; and an IR absorbing material located on the plate.
  • 14. The pixel of claim 6, wherein:the first capacitor plate portion includes a beam having a plurality of finger beams extending therefrom; and the second capacitor plate portion includes a beam having a plurality of finger beams extending therefrom such that the finger beams of the first capacitor plate portion are interleaved with the finger beams of the second capacitor plate portion.
  • 15. The pixel of claim 6 wherein a resonant mechanical frequency of the first cantilevered beam does not equal a resonant mechanical frequency of the second cantilevered beam.
  • 16. The pixel of claim 6, further comprising:at least one post connected to one of the first and second cantilevered beams; a plate connected to the post; and an IR absorbing material located on the plate.
  • 17. A micromachined pixel for an IR sensor, comprising:a substrate assembly having a cavity defined by at least one sidewall; a first CMOS micromachined, cantilevered beam connected to the substrate assembly and disposed in the cavity, the first CMOS micromachined, cantilevered beam including a first spring portion and a first capacitor plate portion, wherein the first spring portion includes a metal layer and a dielectric layer having different coefficients of thermal expansion; and a second CMOS micromachined cantilevered beam connected to the substrate assembly and disposed in the cavity, the second cantilevered beam including a second spring portion and a second capacitor plate portion, wherein the second spring portion includes a metal layer and a dielectric layer having different coefficients of thermal expansion, such that incident IR radiation causes the first and second spring portions to move laterally relative to the sidewall thereby creating a variable capacitance between the first and second capacitor plate portions.
  • 18. The pixel of claim 17, wherein:the first CMOS micromachined, cantilevered beam further includes a first thermal isolation portion between the substrate assembly and the first spring portion; and the second CMOS micromachined cantilevered beam further includes a second thermal isolation portion between the substrate assembly and the second spring portion.
  • 19. The pixel of claim 18, wherein:the first thermal portion includes at least one slotted metal line; and the second thermal portion includes at least one slotted metal line.
  • 20. The pixel of claim 19, further comprising a frame connected to the substrate assembly and positioned around the first and second CMOS micromachined, cantilevered beams.
  • 21. The pixel of claim 20, further comprising:at least one post connected to the frame; a plate connected to the post; and an IR absorbing material located on the plate.
  • 22. The pixel of claim 19, wherein:the first capacitor plate portion includes a beam having a plurality of finger beams extending therefrom; and the second capacitor plate portion includes a beam having a plurality of finger beams extending therefrom such that the finger beams of the first capacitor plate portion are interleaved with the finger beams of the second capacitor plate portion.
  • 23. The pixel of claim 19, further comprising:at least one post connected to one of the first and second CMOS micromachined, cantilevered beams; a plate connected to the post; and an IR absorbing material located on the plate.
  • 24. The pixel of claim 17, wherein a resonant mechanical frequency of the first CMOS micromachined, cantilevered beam does not equal a resonant mechanical frequency of the second CMOS micromachined, cantilevered beam.
  • 25. A micromachined structure, comprising:a substrate assembly having a cavity defined by at least one sidewall; a first cantilevered beam connected to the substrate assembly and disposed in the cavity, the first cantilevered beam including a first spring portion and a first capacitor plate portion, wherein the first spring portion includes at least two materials having different coefficients of thermal expansion; and a second capacitor plate portion, such that incident IR radiation causes the first spring portion of the cantilevered beam to move laterally relative to the sidewall, thereby creating a variable capacitance between the first capacitor plate portion of the first cantilevered beam and the second capacitor plate portion.
  • 26. The micromachined structure of claim 25, wherein the first cantilevered beam further includes a first thermal isolation portion between the substrate assembly and the first spring portion.
  • 27. The micromachined structure of claim 25, wherein the first cantilevered beam includes a CMOS micromachined beam.
  • 28. The micromachined structure of claim 25, wherein the second capacitor plate portion is part of a second cantilevered beam that is connected to the substrate assembly and disposed in the cavity, the second cantilevered beam including a spring portion connected to the second capacitor plate portion, wherein the second spring portion includes at least two materials having different coefficients of thermal expansion, such that incident IR radiation causes the second spring portion to move laterally relative to the sidewall.
  • 29. The micromachined structure of claim 28, wherein:the first capacitor plate portion includes a beam having a plurality of finger beams extending therefrom; and the second capacitor plate portion includes a beam having a plurality of finger beams extending therefrom such that the finger beams of the first capacitor plate portion are interleaved with the finger beams of the second capacitor plate portion.
  • 30. The micromachined structure of claim 25, further comprising a frame connected to the substrate assembly and positioned around the first and second cantilevered beams.
  • 31. An infrared (IR) imager, comprising:an addressing circuit; and a pixel array coupled to the addressing circuit, wherein the pixel array includes a plurality of IR sensitive pixels, each pixel including: a first cantilevered beam connected to a substrate assembly and disposed in a cavity of the substrate assembly, wherein the cavity is defined by a sidewall, wherein the first cantilevered beam includes a first spring portion and a first capacitor plate portion, and wherein the first spring portion includes at least two materials having different coefficients of thermal expansion; and a second capacitor plate portion, such that incident IR radiation causes the first spring portion of the cantilevered beam to move laterally relative to the sidewall, thereby creating a variable capacitance between the first capacitor plate portion of the first cantilevered beam and the second capacitor plate portion.
  • 32. The IR imager of claim 31, wherein the first cantilevered beam further includes a first thermal isolation portion between the substrate assembly and the first spring portion.
  • 33. The IR imager of claim 31, wherein the first cantilevered beam includes a CMOS micromachined beam.
  • 34. The IR imager of claim 31, wherein the second capacitor plate portion is part of a second cantilevered beam that is connected to the substrate assembly and disposed in the cavity, the second cantilevered beam including a spring portion connected to the second capacitor plate portion, wherein the second spring portion includes at least two materials having different coefficients of thermal expansion, such that incident IR radiation causes the second spring portion to move laterally relative to the sidewall.
  • 35. The IR imager of claim 34, wherein:the first capacitor plate portion includes a beam having a plurality of finger beams extending therefrom; and the second capacitor plate portion includes a beam having a plurality of finger beams extending therefrom such that the finger beams of the first capacitor plate portion are interleaved with the finger beams of the second capacitor plate portion.
  • 36. The IR imager of claim 31, further comprising a frame connected to the substrate assembly and positioned around the first and second cantilevered beams.
  • 37. The IR imager of claim 31, further comprising an interface circuit coupled to each pixel.
  • 38. The IR imager of claim 37, further comprising a capacitance detection circuit coupled to the addressing circuit.
  • 39. An infrared (IR) imager, comprising:an addressing circuit; and a pixel array coupled to the addressing circuit, wherein the pixel array includes a plurality of IR sensitive pixels, each pixel including: a first cantilevered beam connected to a substrate assembly and disposed in a cavity of the substrate assembly, wherein the cavity is defined by a sidewall, the first cantilevered beam including a first spring portion and a first capacitor plate portion, wherein the first spring portion includes at least two materials having different coefficients of thermal expansion; and a second cantilevered beam connected to the substrate assembly and disposed in the cavity, the second cantilevered beam including a second spring portion and a second capacitor plate portion, wherein the second spring portion includes at least two materials having different coefficients of thermal expansion such that incident IR radiation causes the first and second spring portions to move laterally relative to the sidewall thereby creating a variable capacitance between the first and second capacitor plate portions.
  • 40. The IR imager of claim 39, wherein:the first cantilevered beam of each pixel further includes a first thermal isolation portion between the substrate assembly and the first spring portion; and the second cantilevered beam of each pixel further includes a second thermal isolation portion between the substrate assembly and the second spring portion.
  • 41. The IR imager of claim 39, wherein:the first cantilevered beam of each pixel includes a CMOS micromachined beam; and the second cantilevered beam of each pixel includes a CMOS micromachined beam.
  • 42. The IR imager of claim 39, wherein:the first spring portion of each pixel includes a metal layer and a dielectric layer with different coefficients of thermal expansion; and the second spring portion of each pixel includes a metal layer and a dielectric layer with different coefficients of thermal expansion.
  • 43. The IR imager of claim 39, wherein each pixel further includes a frame connected to the substrate assembly and positioned around the first and second cantilevered beams.
  • 44. The IR imager of claim 43, wherein each pixel further includes:at least one post connected to the frame; a plate connected to the post; and an IR absorbing material located on the plate.
  • 45. The IR imager of claim 39, wherein each pixel further includes:at least one post connected to one of the first and second cantilevered beams; a plate connected to the post; and an IR absorbing material located on the plate.
  • 46. The IR imager of claim 39, wherein:the first capacitor plate portion of each pixel includes a beam having a plurality of finger beams extending therefrom; and the second capacitor plate portion of each pixel includes a beam having a plurality of finger beams extending therefrom such that the finger beams of the first capacitor plate portion are interleaved with the finger beams of the second capacitor plate portion.
  • 47. The IR imager of claim 39, further comprising an interface circuit coupled to each pixel.
  • 48. The IR imager of claim 47, further comprising a capacitance detection circuit coupled to the addressing circuit.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional patent application Serial No. 60/252,714, filed Nov. 22, 2000, which is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

This research was funded in part by the U.S. Government. The U.S. Government may have certain rights in any patent awarded as provided by Grant No. F30602-97-2-0323, awarded in 1997 and Grant No. F30602-99-2-0545, awarded in 1999 by the Defense Advanced Research Projects Agency (DARPA).

US Referenced Citations (11)
Number Name Date Kind
4660090 Hynecek Apr 1987 A
4902895 Hanson Feb 1990 A
4967082 Cooke et al. Oct 1990 A
5144133 Dudley et al. Sep 1992 A
5420428 Bullington et al. May 1995 A
5717631 Carley et al. Feb 1998 A
5844238 Sauer et al. Dec 1998 A
5965886 Sauer et al. Oct 1999 A
5970315 Carley et al. Oct 1999 A
6118124 Thundat et al. Sep 2000 A
6469301 Suzuki et al. Oct 2002 B1
Foreign Referenced Citations (1)
Number Date Country
0 716 293 Jun 1996 EP
Non-Patent Literature Citations (8)
Entry
Flannery et al., “Status of uncooled infrared imagers,” Infrared Imaging Systems, SPIE vol. 1689, pp. 379-395, 1992.
Jensen, “Limitations to Room Temperature IR Imaging Systems,” Infrared Technology XIX, SPIE vol. 2020, pp. 340-350, 1993.
Amantea et al., “An Uncooled IR Imager with 5 mK NEDT,” SPIE vol. 3061, pp. 210-222, 1997.
Radford et al., “Microbolometer Uncooled Infrared Camera With 20 mK NETD,” SPIE Conf. on Infrared Technology and Applications XXIV, SPIE vol. 3436, pp. 636-646, Jul. 1998.
Cole et al., “Monolithic Two-Dimensional Arrays of Micromachined Microstructures for Infrared Applications,” Proceedings of the IEEE, vol. 86, No. 8, pp. 1679-1686, Aug. 1998.
Liu et al., “A CMOS Uncooled Heat-Balancing Infrared Imager,” IEEE Journal of Soild State Circuits, vol. 35, No. 4, pp. 527-535, Apr. 2000.
Amantea et al., “Progress towards an Uncooled IR Imager With 5 mK NEΔT,” SPIE vol. 3436, Jul. 1998, pp. 647-659.
Binnie et al., “An Integrated 16×16 PVDF Pyroelectric Sensor Array,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, No. 6, Nov. 2000, pp. 1413-1420.
Provisional Applications (1)
Number Date Country
60/252714 Nov 2000 US