The present disclosure relates to multi-voltage domain wordline decoding logic for a memory array and more specifically relates to mimicking multi-voltage domain wordline decoding logic for a memory array.
Particularly for mobile devices, power consumption is a major issue. Memory is one component for which a reduction in power consumption is desired. Modern low power memory designs typically include multiple voltage domains, which include a low voltage domain for wordline decoding logic and a high voltage domain for the memory array and read and write circuits. Specifically, due to relatively high minimum voltage requirements, the memory array must use a higher supply voltage than what is needed for the wordline decoding logic. As a result of implementing the wordline decoding logic in the low voltage domain, power consumption is reduced.
One issue that arises in multi-voltage domain memory is that device variations in the low voltage domain significantly impact the high voltage domain. More specifically, because devices typically operate much faster in the high voltage domain than in the low voltage domain, timing glitches that result from device variation in the low voltage domain translate to large timing glitches in the high voltage domain. For example, a 50 pico second glitch in the low voltage domain may be considered a relatively small timing glitch, but the same 50 pico second timing glitch in the high voltage domain may be considered a large timing glitch. As a result of device variation and the corresponding timing glitch, control signals for multi-voltage domain memory (e.g., wordlines, pre-charge control signal, sense amplifier enable signal, etc.) may not maintain a stable relationship between one another, which in turn may cause the multi-voltage domain memory to fail. As such, there is a need for systems and methods for maintaining a stable relationship between control signals in multi-voltage domain memory.
Systems and methods for adaptively mimicking wordline decoding logic for multi-voltage domain memory are disclosed. In one embodiment, the multi-voltage domain memory includes a memory array implemented in a high voltage domain and a multi-voltage domain control circuit. The multi-voltage domain control circuit includes multi-voltage domain decoding logic that generates a wordline for the memory array and a multi-voltage domain mimic logic that mimics the multi-voltage domain decoding logic to generate a dummy wordline. Preferably, the multi-voltage domain control circuit includes multiple multi-voltage domain decoding logic circuits each configured to generate a corresponding wordline for the memory array, and the multi-voltage domain mimic logic mimics the multiple multi-voltage domain decoding logic circuits.
In one embodiment, the dummy wordline is utilized to trigger an ending edge (e.g., a falling edge) of the wordline once the wordline is asserted. In addition or alternatively, the dummy wordline is utilized to generate one or more control signals for the memory array such as, for example, a pre-charge control signal and/or a sense amplifier enable signal.
In one embodiment, the multi-voltage domain decoding logic includes low voltage domain decoding logic, high voltage domain decoding logic, and final decoding logic configured to combine and level-shift outputs of the low voltage domain decoding logic and the high voltage domain decoding logic to generate the wordline. The multi-voltage domain mimic logic includes low voltage domain mimic logic configured to mimic the low voltage domain decoding logic, high voltage domain mimic logic configured to mimic the high voltage domain decoding logic, and final mimic logic configured to mimic the final decoding logic by combining and level-shifting outputs of the low voltage domain mimic logic and the high voltage domain mimic logic to generate the dummy wordline. By generating the dummy wordline using both the low voltage domain mimic logic and the high voltage domain mimic logic, the multi-voltage domain mimic logic generates the dummy wordline such that the dummy wordline tracks the wordline generated by the multi-voltage domain decoding logic. Using the dummy wordline, stable relationships between the wordline and/or control signals for the memory array can be maintained.
With reference now to the drawing figures, several exemplary embodiments of the present disclosure are described. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
Systems and methods for adaptively mimicking wordline decoding logic for multi-voltage domain memory are disclosed. In one embodiment, the multi-voltage domain memory includes a memory array implemented in a high voltage domain and a multi-voltage domain control circuit. The multi-voltage domain control circuit includes multi-voltage domain decoding logic that generates a wordline for the memory array and a multi-voltage domain mimic logic that mimics the multi-voltage domain decoding logic to generate a dummy wordline. Preferably, the multi-voltage domain control circuit includes multiple multi-voltage domain decoding logic circuits each configured to generate a corresponding wordline for the memory array, and the multi-voltage domain mimic logic mimics the multiple multi-voltage domain decoding logic circuits. In one embodiment, the dummy wordline is utilized to trigger an ending edge (e.g., a falling edge) of the wordline once the wordline is asserted. In addition or alternatively, the dummy wordline is utilized to generate one or more control signals for the memory array such as, for example, a pre-charge control signal and/or a sense amplifier enable signal.
As illustrated, the multi-voltage domain control circuit 14 includes a number of dynamic latches 16, a pre-decoding logic level shifter 18, a number of multi-voltage domain decoding logic circuits 20-1 through 20-M, multi-voltage domain mimic logic 22, and a control logic 24 connected as shown. The dynamic latches 16 operate in the low voltage domain. In operation, the dynamic latches 16 dynamically latch the index bits n2 through nN when both a clock signal (CLK) and a latch enable signal (EN) are asserted. In the preferred embodiment discussed herein, the dynamic latches 16 output both true and complement values for each of the latched index bits n2 through nN when both the clock signal (CLK) and the latch enable signal (EN) are asserted. When either or both of the clock signal (CLK) and the latch enable signal (EN) are not asserted, the dynamic latches 16 set both the true and complement values for the latched index bits n2 through nN to a default value, which in the preferred embodiment described herein is logic 0.
The pre-decoding logic level shifter 18 generally receives a single latched index bit, which in the preferred embodiment described herein is the latched index bit nN. The pre-decoding logic level shifter 18 level-shifts the latched index bit nN from the low voltage domain to the high voltage domain. As used herein, the low voltage domain is a domain of the multi-voltage domain memory 10 that utilizes a first, relatively low supply voltage whereas the high voltage domain is a domain of the multi-voltage domain memory 10 that utilizes a second, relatively high supply voltage. The supply voltage for the low voltage domain is lower than the supply voltage for the high voltage domain (e.g., the supply voltage for the low voltage domain may be 3 Volts (V) and the supply voltage for the high voltage domain may be 5 V).
The multi-voltage domain decoding logic circuits 20-1 through 20-M include corresponding low voltage domain decoding logic circuits 26-1 through 26-M, high voltage domain decoding logic circuits 28-1 through 28-M, and high voltage domain final decoding logic circuits 30-1 through 30-M, respectively. The multi-voltage domain decoding logic circuits 20-1 through 20-M are generally referred to herein collectively as multi-voltage domain decoding logic circuits 20 and individually as multi-voltage domain decoding logic 20. Likewise, the low voltage domain decoding logic circuits 26-1 through 26-M are generally referred to herein collectively as low voltage domain decoding logic circuits 26 and individually as low voltage domain decoding logic 26, the high voltage domain decoding logic circuits 28-1 through 28-M are generally referred to herein collectively as high voltage domain decoding logic circuits 28 and individually as high voltage domain decoding logic 28, and the high voltage domain final decoding logic circuits 30-1 through 30-M are generally referred to herein collectively as high voltage domain final decoding logic circuits 30 and individually as high voltage domain final decoding logic 30.
The low voltage domain decoding logic 26 generally receives the latched index bits n2 through nN-1 from the dynamic latches 16 and processes the latched index bits n2 through nN-1 in the low voltage domain to provide a number of output signals. The high voltage domain decoding logic 28 generally receives the level-shifted index bit nN,HVD from the pre-decoding logic level shifter 18 and processes the level-shifted index bit nN,HVD in the high voltage domain to provide an output signal. The final decoding logic 30 receives the outputs from the low voltage domain decoding logic 26 and the high voltage domain decoding logic 28 and processes the outputs from the low voltage domain decoding logic 26 and the high voltage domain decoding logic 28 to provide the corresponding wordline (WL). In general, the multi-voltage domain decoding logic 20 operates to assert the corresponding wordline (WL) when the latched index bits n2 through nN match an index of the corresponding wordline (WL).
The multi-voltage domain mimic logic 22 generally operates to mimic the multi-voltage domain decoding logic 20 to thereby generate a dummy wordline (WLDUMMY). By mimicking the multi-voltage domain decoding logic 20, the multi-voltage domain mimic logic 22 generates the dummy wordline (WLDUMMY) such that the dummy wordline (WLDUMMY) tracks the wordlines (WL1 through WLM) (i.e., rising and falling edges of the dummy wordline (WLDUMMY) are time-aligned with rising and falling edges of the asserted wordline (WL) indexed by the index bits n2 through nN).
As illustrated, the multi-voltage domain mimic logic 22 includes low voltage domain mimic logic 32 that mimics the low voltage domain decoding logic 26, high voltage domain mimic logic 34 that mimics the high voltage domain decoding logic 28, and high voltage domain final mimic logic 36 that mimics the high voltage domain final decoding logic 30. More specifically, the low voltage domain mimic logic 32 receives true and complement values for one of the latched index bits, which in this preferred embodiment is the latched index bit nN. The low voltage domain mimic logic 32 processes the true and complement values for the latched index bit nN in the low voltage domain to generate an output signal. The high voltage domain mimic logic 34 receives true and complement values for the level-shifted index bit nN and processes those true and complement values in the high voltage domain to generate an output signal. The final mimic logic 36 processes the output signals from the low voltage domain mimic logic 32 and the high voltage domain mimic logic 34 to generate the dummy wordline (WLDUMMY).
In operation, initially when the clock signal (CLK) and/or the dynamic latch enable signal (EN) are de-asserted, both the true and complement values for the latched index bit nN are set to a default logic value, which in the preferred embodiment is logic 0. At this point, the multi-voltage domain mimic logic 22 forces the dummy wordline (WLDUMMY) to logic 0. Thereafter, when the clock signal (CLK) and the dynamic latch enable signal (EN) are both asserted, either the true value or the complement value for the latched index bit nN flips from the default logic value to the opposite logic value (e.g., flips from logic 0 to logic 1) as a result of latching the index bit nN input into the corresponding dynamic latch 16. In response, the multi-voltage domain mimic logic 22 mimics the multi-voltage domain decoding logic 20 to thereby assert the dummy wordline (WLDUMMY). Because the multi-voltage domain mimic logic 22 is triggered by the flip in state of either the true value or the complement value of the latched index bit nN, the multi-voltage domain mimic logic 22 asserts the dummy wordline (WLDUMMY) regardless of which of the wordlines (WL1 through WLM) is asserted in response to the latched index bits n2 through nN.
As discussed below in detail, the control logic 24 utilizes the dummy wordline (WLDUMMY) to trigger an ending edge, which in this preferred embodiment is the falling edge, of the wordline (WL1 through WLM) asserted in response to the latched index bits n2 through nN and generate control signals for the memory array 12 (e.g., a pre-charge control signal for pre-charging bit lines for the memory array 12 for read and/or write operations, a sense amplifier enable signal for enabling sense amplifier(s) in the memory array 12 during read operations, or the like). By using the dummy wordline (WLDUMMY), stable relationships are maintained between the wordlines (WL1 through WLM) and the control signals for the memory array 12 in the multi-voltage domain memory 10.
The pre-decoding logic level shifter 18 also includes a complement branch that includes transistors 54 through 62 and inverters 64 and 66 connected as shown. In general, the complement branch receives the complement value for the index bit nN, which is denoted herein as
Lastly, when the wordline reset control signal (WL RESET) is asserted low, the transistors 38 and 54 are on and the transistors 42 and 58 are off. As a result, the internal nodes 52 and 68 are pulled to the supply voltage for the high voltage domain (VDD,HVD) regardless of the state of the true and complement values for the index bit nN. As a result, the level-shifted true and complement values nN,HVD and
As illustrated, the low voltage domain decoding logic 26 includes a pair of NAND gates 70 and 72 and a pair of inverters 74 and 76. The low voltage domain decoding logic 26 performs an initial decoding process for index bits n2 through n7 in the low voltage domain. Specifically, in this embodiment, depending on the particular wordline to be generated (i.e., WL1, WL2, . . . , or WLM where in this example M=128), the NAND gates 70 and 72 receive either the true or the complement values for the index bits n2 through n7 from the dynamic latches 16 and generate corresponding output signals. For example, if the wordline (WL) generated by the multi-voltage domain decoding logic 20 is to be asserted high when the index bits n2 through n8 are all logic 0 (i.e., the index for WL1 is 0000000), then the inputs to the NAND gates 70 and 72 would be the complement values for the index bits n2 through n7. Conversely, if the wordline (WL) generated by the multi-voltage domain decoding logic 20 is to be asserted high when the index bits n2 through n8 are all logic 1 (i.e., the index for WL1 is 1111111), then the inputs to the NAND gates 70 and 72 would be the true values for the index bits n2 through n7. As a final example, if the wordline (WL) generated by the multi-voltage domain decoding logic 20 is to be asserted high when the index bits n2 through n8 are 0111111, respectively, then the inputs to the NAND gates 70 and 72 would be the complement value for the index bit n2 and the true values for the index bits n3 through n7.
Specifically, in this example, the NAND gate 70 receives as its inputs either the true or the complement values for the index bits n2 through n4 and generates a corresponding output signal, which is logic 0 if all of the inputs to the NAND gate 70 are logic 1 and is otherwise logic 1. Similarly, the NAND gate 72 receives as its inputs either the true or the complement values for the index bits n5 through n7 and generates a corresponding output signal, which is logic 0 if all of the inputs to the NAND gate 72 are logic 1 and is otherwise logic 1. The outputs of the NAND gates 70 and 72 are inverted by the inverters 74 and 76 to provide corresponding outputs of the low voltage domain decoding logic 26. In general, the outputs of the low voltage domain decoding logic 26 are high when the values for the index bits n2 through n7 match the corresponding bits of the index for the wordline (WL) generated by the multi-voltage domain decoding logic 20. Otherwise, the outputs of the low voltage domain decoding logic 20 are low.
The high voltage domain decoding logic 28 operates in the high voltage domain. The high voltage domain decoding logic 28 includes an inverter 78 that receives as its input either the true or complement value of the level-shifted index bit n8 (n8,HVD or
The final decoding logic 30 operates in the high voltage domain. In general, the final decoding logic 30 receives as its inputs the two outputs from the low voltage domain decoding logic 26 and the output from the high voltage domain decoding logic 28 and then processes theses inputs to generate the wordline (WL). In this embodiment, the wordline (WL) is asserted high when the two outputs of the low voltage domain decoding logic 26 and the output of the high voltage domain decoding logic 28 are all logic 1 and otherwise is deasserted low. More specifically, in this embodiment, the final decoding logic 30 includes transistors 80 through 92 and an inverter 94 connected as shown. When the two outputs of the low voltage domain decoding logic 26 and the output of the high voltage domain decoding logic 28 are all logic 1, the transistors 80, 90, and 92 are all off and the transistors 82, 84, and 86 are all on. As a result, an internal node 96 of the final decoding logic 30 is pulled to the low reference voltage (VSS), which represents logic 0. The logic 0 at the internal node 96 is then inverted by the inverter 94 to thereby assert the wordline (WL) high (i.e., to logic 1). Conversely, if any one or more of the two outputs of the low voltage domain decoding logic 26 and the output of the high voltage domain decoding logic 28 is logic 0, the internal node 96 is pulled to the supply voltage (VDD,HVD) for the high voltage domain, which represents logic 1. The logic 1 at the internal node 96 is then inverted by the inverter 94 to deassert the wordline (WL) low (i.e., to logic 0).
Like the NAND gates 70 and 72, the NAND gates 98 and 100 each have three inputs. However, each of the three inputs of the NAND gate 98 is connected to the true value of the index bit n8 from the corresponding dynamic latch 16, and each of the three inputs of the NAND gate 100 is connected to the complement value of the index bit n8 (
More specifically, initially when the clock signal (CLK) and/or the dynamic latch enable signal (EN) are deasserted (e.g., low), both the true and the complement values for the index bit n8 output by the corresponding dynamic latch 16 are logic 0. As such, the NAND gates 98 and 100 both output logic 1. The NAND gate 102 receives the outputs of the NAND gates 98 and 100 as its inputs and therefore outputs logic 0 when both the output of the NAND gate 98 and the output of the NAND gate 100 are logic 1. This keeps node WLDUMMY to logic 0 through pullup transistor 106, which is a PMOS transistor that is forced on by the NAND gate 104 when the clock signal (CLK) and/or the dynamic latch enable signal (EN) are deasserted. However, once the clock signal (CLK) and the dynamic latch enable signal (EN) are asserted high, either the true value or the complement value of the index bit n8 flips from the default value of logic 0 to logic 1. At that point, the output of either the NAND gate 98 or the NAND gate 100 will be logic 0 while the output of the other one of the NAND gates 98 and 100 will be logic 1. In response to the logic 0 and logic 1 inputs from the NAND gates 98 and 100, the NAND gate 102 outputs logic 1. In this manner, the low voltage domain mimic logic 32 outputs logic 1 each time the low voltage domain decoding logic 26 of any one of the multi-voltage domain decoding logic circuits 20 outputs all logic 1's, which as discussed below results in the dummy wordline (WLDUMMY) tracking any one of the wordlines (WL1 through WLM) that is asserted.
The high voltage domain mimic logic 34 includes a NAND gate 104 that mimics the inverter 78 of the high voltage domain decoding logic 28. In operation, the NAND gate 104 receives both the level-shifted true value for the index bit n8 (n8,HVD) and the level-shifted complement value for the index bit n8 (
The final mimic logic 36 mimics the final decoding logic 30 of the multi-voltage decoding logic 20. In this particular embodiment, the final mimic logic 36 has the same circuit arrangement as the final decoding logic 30. More specifically, the final mimic logic 36 includes transistors 106 through 118 and an inverter 120 connected as shown. When both the output of the low voltage domain mimic logic 32 and the output of the high voltage domain mimic logic 34 are logic 0, the transistors 108, 110, and 112 are off and the transistors 106, 114, 116, and 118 are on such that an internal node 122 is pulled to the supply voltage for the high voltage domain (VDD,HVD), which represents logic 1. The logic 1 at the internal node 122 is inverted by the inverter 120 to deassert the dummy wordline (WLDUMMY) low. Conversely, when both the output of the low voltage domain mimic logic 32 and the output of the high voltage domain mimic logic 34 are logic 1, the transistors 106, 116, and 118 are off and the transistors 108, 110, and 112 are on such that the internal node 122 of the final mimic logic 36 is pulled to the low reference voltage (VSS), which represents logic 0. The logic 0 at the internal node 122 is inverted by the inverter 120 to assert the dummy wordline (WLDUMMY) high.
Because the outputs of the low voltage domain mimic logic 32 and the high voltage domain mimic logic 34 are driven high in response the flip in the state of either the true or the complement value of the index bit n8 from the default logic 0 to logic 1, the outputs of both the low voltage domain mimic logic 32 and the high voltage domain mimic logic 34 are asserted high when the outputs of both the low voltage domain decoding logic 26 and the high voltage domain decoding logic 28 of any one of the multi-voltage domain decoding logic circuits 20 are asserted high. As a result, the final mimic logic 36 asserts the dummy wordline (WLDUMMY) when any one of the multi-voltage domain decoding logic circuits 20 asserts its corresponding wordline (WL).
In this embodiment, the control logic 24 includes a transistor 124 that mimics a read operation for the memory array 12, a pair of transistors 126 and 128 that mimic a pre-charge operation in which bit lines of the memory array 12 are pre-charged prior to a read or write operation, a pre-charge circuit 130, a mimic massage circuit 132, and a wordline (WL) reset circuit 134 connected as shown. The pre-charge circuit 130 generally operates to assert an output of the pre-charge circuit 130, which is referred to herein as a pre-charge control signal (PRECH), low when the dummy wordline (WLDUMMY) and the clock signal (CLK) are low (i.e., are logic 0) and otherwise deasserts the output of the pre-charge circuit 130 high. Here, the pre-charge control signal (PRECH) is used internally by the control logic 24. However, the pre-charge control signal (PRECH) is preferably also provided to the memory array 12 to control pre-charging of the bit lines in the memory array 12 for read and/or write operations.
As illustrated, the pre-charge circuit 130 includes inverters 136 and 138 and a NAND gate 140 connected as shown. The inverter 136 inverts the dummy wordline (WLDUMMY) to provide a first input of the NAND gate 140, and the inverter 138 inverts the clock signal (CLK) to provide a second input of the NAND gate 140. As such, when the dummy wordline (WLDUMMY) and the clock signal (CLK) are both low, both of the inputs of the NAND gate 140 are high. As a result, the pre-charge control signal (PRECH) output by the NAND gate 140 is asserted low. Otherwise, the pre-charge control signal (PRECH) output by the NAND gate 140 is deasserted high.
When the pre-charge circuit 130 asserts the pre-charge control signal (PRECH) low, the transistors 126 and 128 are turned on such that mimic bit lines (BLMIMIC and BLNMIMIC) are pre-charged to the supply voltage for the high voltage domain (VDD,HVD), which represents logic 1 in the high voltage domain. In this embodiment, the mimic bit line (BLMIMIC) is connected to an input of the mimic massage circuit 132. When the pre-charge control signal (PRECH) is subsequently deasserted high as a result of either the clock signal (CLK) or the dummy wordline (WLDUMMY) going high, pre-charging is complete. When the dummy wordline (WLDUMMY) is asserted high by the multi-voltage domain mimic logic 22, the transistor 124, which is also referred to herein as a read operation mimic transistor, is turned on. When the transistor 124 is turned on, the mimic bit line (BLMIMIC), and thus the input to the mimic massage circuit 132, is discharged to logic 0.
The mimic massage circuit 132 has an input connected to the mimic bit line (BLMIMIC) and generates an output that is logic 1 when the input is logic 1. However, when the input to the mimic massage circuit 132 is logic 0, the output of the mimic massage circuit 132 transitions to logic 0 after an additional dynamic delay is added by the mimic massage circuit 132. The additional dynamic delay is a function of the supply voltage for the low voltage domain (VDD,LVD) and generally increases as the supply voltage for the low voltage domain (VDD,LVD) decreases. As illustrated, in this embodiment, the mimic massage circuit 132 includes an inverter 142 that is in the high voltage domain (i.e., supply voltage of VDD,HVD), a NAND gate 144 that is in the low voltage domain (i.e., supply voltage of VDD,LVD), and transistors 146, 148, and 150 that are in the high voltage domain connected as shown. In operation, when the input of the mimic massage circuit 132 is logic 1, the input is inverted by the inverter 142 to provide logic 0 to the gates of the transistors 146 and 150. As a result, the transistor 146 is on such that the output of the mimic massage circuit 132 is pulled to the supply voltage for the high voltage domain (VDD,HVD), which represents logic 1 in the high voltage domain. Conversely, when the input of the mimic massage circuit 132 is logic 0, the input is inverted by the inverter 142 to provide logic 1 to the gates of the transistors 146 and 150. As a result, the transistor 146 is off and the transistor 150 is on. In addition, the input of the mimic massage circuit 132 is provided to a first input of the NAND gate 144. While the inverter 142 is in high voltage domain, the NAND gate 144 is in the low voltage domain. As such, when the input of the mimic massage circuit 132 is low, the output of the NAND gate 144 transitions to logic 1. However, the speed of this transition is a function of the supply voltage for the low voltage domain (VDD,LVD). Specifically, as the supply voltage for the low voltage domain (VDD,LVD) decreases, the amount of time needed to transition the output of the NAND gate 144 to logic 1 increases. Once the output of the NAND gate 144 has transitioned to logic 1, the transistor 148 is turned on. At that point, the transistor 146 is off and the transistors 148 and 150 are on. As a result, the output of the mimic massage circuit 132 is pulled low (i.e., pulled to logic 0). Notably, the amount of time needed for the transition of the output of the NAND gate 144 from logic 0 to logic 1 when the input of the mimic massage circuit 132 is logic 0 is the additional delay introduced by the mimic massage circuit 132.
Notably, one input of the NAND gate 144 is connected to the input of the mimic massage circuit 132, which is also the input of the inverter 142. The other input of the NAND gate 144 is normally a logic 1. In this case, the NAND gate 144 operates like an inverter. However, when the high voltage domain is turned off to, for example, conserve power, the input of the mimic massage circuit 132 will be floating. If the low voltage domain is still one, there may be a leaking path from the low voltage supply to ground. In this case, the other input of the NAND gate 144 can be forced to a logic low (e.g., ground) to cut the this leaking path. Thus, in sum, the other input of the NAND gate 144 is used to clamp the floating voltage domain to avoid leaking paths in the voltage domain that is on. This give the high and low voltage domains freedom to be on or off independently.
The wordline (WL) reset circuit 134 generally operates to provide the wordline (WL) reset control signal (WL RESET) to the pre-decoding logic level shifter 18 (
The control logic 24 of
Once the input of the mimic massage circuit 132 is pulled to logic 0, the mimic massage circuit 132 operates to pull the output of the mimic massage circuit 132 to logic 0, but with an additional delay that is a function of the supply voltage for the low voltage domain (VDD,LVD). Thus, there is a delay between the time that the dummy wordline (WLDUMMY) is asserted and the transition of the output of the mimic massage circuit 132 to logic 0. This delay includes an amount of time required for the transistor 124 to discharge the input of the mimic massage circuit 132 to logic 0 plus the amount of time required for the NAND gate 144 or the inverter 142 (whichever is slower) to transition its output from logic 0 to logic 1 in response to discharging of the input of the mimic massage circuit 132 to logic 0.
Once the output of the mimic massage circuit 132 is pulled low, the wordline (WL) reset circuit 134 forces all of the wordlines (WL1 to WLM) and the dummy wordline (WLDUMMY) low, thereby triggering a falling edge of the asserted wordline (WL) and the dummy wordline (WLDUMMY). The delay between the time that the dummy wordline (WLDUMMY) is asserted and the time that the output of the mimic massage circuit 132 is pulled low defines a duration of a pulse of the asserted wordline (WL) indexed by the index bits n2 through nN. Preferably, the additional delay introduced by the mimic massage circuit 132 provides sufficient margin for read and write operations in the memory array 12. However, it should be noted that the additional delay, and thus the mimic massage circuit 132, is optional and may not be desired in some applications.
Those of skill in the art would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithms described in connection with the embodiments disclosed herein may be implemented as electronic hardware, instructions stored in memory or in another computer-readable medium and executed by a processor or other processing device, or combinations of both. The embodiments of the multi-voltage domain memory 10 described herein may be employed in any circuit, hardware component, integrated circuit (IC), or IC chip, as examples. Memory disclosed herein may be any type and size of memory and may be configured to store any type of information desired. To clearly illustrate this interchangeability, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. How such functionality is implemented depends upon the particular application, design choices, and/or design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The embodiments disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside, for example, in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of computer readable medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a remote station. In the alternative, the processor and the storage medium may reside as discrete components in a remote station, a base station, or a server.
It is also noted that the operational steps described in any of the exemplary embodiments herein are described to provide examples and discussion. The operations described may be performed in numerous different sequences other than the illustrated sequences. Furthermore, operations described in a single operational step may actually be performed in a number of different steps. Additionally, one or more operational steps discussed in the exemplary embodiments may be combined. It is to be understood that the operational steps \may be subject to numerous different modifications as will be readily apparent to one of skill in the art. Those of skill in the art would also understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The present application claims priority to U.S. Patent Provisional Application Ser. No. 61/587,214 filed on Jan. 17, 2012 and entitled MIMICING MULTI-VOLTAGE DOMAIN WORDLINE DECODING LOGIC FOR A MEMORY ARRAY, which is incorporated herein by references in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5386150 | Yonemoto | Jan 1995 | A |
6018255 | Campardo | Jan 2000 | A |
7492341 | Tachibana | Feb 2009 | B2 |
7755964 | Jung | Jul 2010 | B2 |
7839682 | Tran | Nov 2010 | B2 |
20070070703 | Tran et al. | Mar 2007 | A1 |
20080074942 | Kobayashi | Mar 2008 | A1 |
20100290292 | Tanizaki et al. | Nov 2010 | A1 |
20110007590 | Katayama | Jan 2011 | A1 |
20110110174 | Cho et al. | May 2011 | A1 |
20120188816 | Kim et al. | Jul 2012 | A1 |
Entry |
---|
International Search Report and Written Opinion—PCT/US2013/021824—ISA/EPO—Mar. 21, 2013. |
Number | Date | Country | |
---|---|---|---|
20130182514 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
61587214 | Jan 2012 | US |