1. Technical Field of the Invention
The present invention relates to the field of integrated circuit, and more particularly to three-dimensional memory (3D-M).
2. Prior Art
Three-dimensional memory (3D-M) is a monolithic semiconductor memory comprising a plurality of vertically stacked memory levels. It includes three-dimensional read-only memory (3D-ROM) and three-dimensional random-access memory (3D-RAM). The 3D-ROM can be further categorized into three-dimensional mask-programmed read-only memory (3D-MPROM) and three-dimensional electrically-programmable read-only memory (3D-EPROM). The 3D-EPROM could be one-time-programmable (3D-OTP) or multiple-time-programmable (3D-MTP). A 3D-M may further comprise at least one of a memristor, a resistive random-access memory (RRAM or ReRAM), a phase-change memory, a programmable metallization cell (PMC), a conductive-bridging random-access memory (CBRAM) or other memory devices.
U.S. Pat. No. 5,835,396 issued to Zhang on Nov. 3, 1998 discloses a 3D-ROM (
Each of the memory levels (e.g. 10, 20) comprises a plurality of upper address-lines (i.e. y-lines, e.g. 12a-12d, 22a-22d), a plurality of lower address-lines (i.e. x-lines, e.g. 11a, 21a) and a plurality of memory devices (e.g. 1aa-1ad, 2aa-2ad) at the intersections between the upper and lower address-lines. Each memory level (e.g. 20) comprises at least a memory array (e.g. 200A). A memory array 200A is a collection of memory devices (e.g. 2aa-2ad) in a memory level 20 that share at least one address-line (e.g. 21a, 22a-22d). Within a single memory array 200A, all address-lines (e.g. 21a, 22a-22d) are continuous; between adjacent memory arrays, address-lines are not continuous.
A 3D-M die 1000 comprises a plurality of memory blocks (e.g. 1aa, 1ab . . . 1dd) (
Each memory device 1aa is a two-terminal device having at least two possible states. Each memory device 1aa further comprises a diode or a diode-like device. To be more specific, the memory cell 1aa comprises a diode layer and a programmable layer. The diode layer is broadly interpreted as any layer whose resistance at the read voltage is substantially lower than when the applied voltage has a magnitude smaller than or polarity opposite to that of the read voltage. The states of the programmable layer (which represent the data stored therein) are written during manufacturing (i.e. mask-programmed, as in
When the storage capacity of a memory die is small, generally only a single type of information is stored in a single memory die. However, as the storage capacity of a 3D-M increases (e.g. a single 3D-M die can store 1 Tb and even higher), more types of information will be stored in a single 3D-M die. For example, both data (e.g. digital books, digital maps, digital music, digital movies, and/or digital videos) and codes (e.g. operating systems, software, and/or digital games) will be stored in a single 3D-M die. Although data may tolerate slow access, codes require fast access. Additionally, data generally has a stringent requirement on the memory cost. In prior art, all memory arrays (or, all memory blocks) in a 3D-M die have the same size. This causes several problems. If the memory array is too small, a high die cost may meet the cost requirement of the data. On the other hand, if the memory array is too large, slow access speed may not meet the speed requirement of the codes.
It is a principle object of the present invention to provide a three-dimensional memory (3D-M) which stores both data and codes.
It is a further object of the present invention to provide a three-dimensional memory (3D-M) with an optimized array efficiency and memory speed.
In accordance with these and other objects of the present invention, a mixed 3D-M (3D-Mx) is disclosed.
In order to store both data and codes in a same 3D-M die while meeting their respective requirements on cost and speed, a mixed 3D-M (3D-Mx) is disclosed. It comprises memory arrays (or, memory blocks) of different sizes. Data (e.g. digital books, digital maps, digital music, digital movies, and/or digital videos), which require a lower cost per bit and can tolerate slow access, are stored in large memory arrays (or, memory blocks), whereas codes (e.g. operating systems, software, and/or digital games), which require fast access and can tolerate a higher cost per bit, are stored in small memory arrays (or, memory blocks). The 3D-Mx die could comprise mixed memory blocks, mixed memory arrays, or a combination thereof. In a 3D-Mx with mixed memory blocks, the memory blocks with different sizes are formed side-by-side. In a 3D-Mx with mixed memory arrays, a plurality of small memory arrays are formed side-by-side underneath a single large memory array.
Accordingly, the present invention discloses a mixed three-dimensional memory (3D-Mx), comprising: a first memory block for storing data, said first memory block comprising a plurality of vertically stacked memory levels including a first topmost memory level, said first topmost memory level comprising only a first memory array; a second memory block for storing codes, said second memory block comprising another plurality of vertically stacked memory levels including a second topmost level, said second topmost memory level comprising only a second memory array; wherein said second memory block is located side-by-side from said first memory block, said first memory array is larger than said second memory array.
The present invention further discloses a mixed three-dimensional memory (3D-Mx) comprising a 3D-M block, said 3D-M block further comprising a plurality of vertically stacked memory levels including a topmost memory level and at least an intermediate memory level, wherein: said topmost memory level comprises only a first memory array; said intermediate memory level comprises at least second and third memory arrays, wherein said second and third memory arrays do not share any address-lines; wherein said first memory array fully covers both said second and third memory arrays.
It should be noted that all the drawings are schematic and not drawn to scale. Relative dimensions and proportions of parts of the device structures in the figures have been shown exaggerated or reduced in size for the sake of clarity and convenience in the drawings. The same reference symbols are generally used to refer to corresponding or similar features in the different embodiments. Although the examples shown in these figures are 3D-MPROM, this concept can be readily extended to other types of 3D-M.
Those of ordinary skills in the art will realize that the following description of the present invention is illustrative only and is not intended to be in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons from an examination of the within disclosure.
Referring now to
In order to store both data and codes in a same 3D-M die while meeting their respective requirements on cost and speed, a mixed 3D-M (3D-Mx) is disclosed. It comprises memory arrays (or, memory blocks) of different sizes. Data (e.g. digital books, digital maps, digital music, digital movies, and/or digital videos), which require a lower cost per bit and can tolerate slow access, are stored in large memory arrays (or, memory blocks), whereas codes (e.g. operating systems, software, and/or digital games), which require fast access and can tolerate a higher cost per bit, are stored in small memory arrays (or, memory blocks). The 3D-Mx die could comprise mixed memory blocks or mixed memory arrays. In the mixed memory blocks (
Referring now to
Referring now to
While illustrative embodiments have been shown and described, it would be apparent to those skilled in the art that many more modifications than that have been mentioned above are possible without departing from the inventive concepts set forth therein. For example, the mixed 3D-M disclosed in the present invention could be 3D-RAM or 3D-ROM. It could be either mask-programmed, or electrically-programmable. It could be further one-time-programmable, or multiple-time-programmable. The invention, therefore, is not to be limited except in the spirit of the appended claims
Number | Date | Country | Kind |
---|---|---|---|
2017 1 0109704 | Feb 2017 | CN | national |
2017 1 0119051 | Mar 2017 | CN | national |
This application is a continuation-in-part of application “Mixed Three-dimensional memory”, application Ser. No. 14/636,353, filed Mar. 3, 2015, which claims benefit of a provisional application, “Three-dimensional memory with Mixed Memory Arrays”, Application Ser. No. 61/979,504, filed Apr. 14, 2014.
Number | Name | Date | Kind |
---|---|---|---|
4404655 | Naiff | Sep 1983 | A |
4424579 | Roesner | Jan 1984 | A |
4598386 | Roesner et al. | Jul 1986 | A |
4603341 | Bertin et al. | Jul 1986 | A |
4646266 | Ovshinsky et al. | Feb 1987 | A |
4796074 | Roesner | Jan 1989 | A |
4939568 | Kato et al. | Jul 1990 | A |
5257224 | Nojiri et al. | Oct 1993 | A |
5272370 | French | Dec 1993 | A |
5375085 | Gnade et al. | Dec 1994 | A |
5455435 | Fu et al. | Oct 1995 | A |
5468983 | Hirase et al. | Nov 1995 | A |
5721169 | Lee | Feb 1998 | A |
5751012 | Wolstenholme et al. | May 1998 | A |
5825686 | Schmitt-Landsiedel et al. | Oct 1998 | A |
5835396 | Zhang | Nov 1998 | A |
5838530 | Zhang | Nov 1998 | A |
5841150 | Gonzalez et al. | Nov 1998 | A |
5843824 | Chou et al. | Dec 1998 | A |
5847442 | Mills, Jr. et al. | Dec 1998 | A |
5854111 | Wen | Dec 1998 | A |
5904526 | Wen et al. | May 1999 | A |
5907778 | Chou et al. | May 1999 | A |
5943255 | Kutter et al. | Aug 1999 | A |
6015738 | Levy et al. | Jan 2000 | A |
6021079 | Worley | Feb 2000 | A |
6034882 | Johnson et al. | Mar 2000 | A |
6049481 | Yamasaki | Apr 2000 | A |
6055180 | Gudesen et al. | Apr 2000 | A |
6185122 | Johnson et al. | Feb 2001 | B1 |
6221723 | Kunitou | Apr 2001 | B1 |
6236587 | Gudesen et al. | May 2001 | B1 |
6380597 | Gudesen et al. | Apr 2002 | B1 |
6385074 | Johnson et al. | May 2002 | B1 |
6515888 | Johnson et al. | Feb 2003 | B2 |
6624485 | Johnson | Sep 2003 | B2 |
6794253 | Lin et al. | Sep 2004 | B2 |
7952904 | Zhang | May 2011 | B2 |
8547719 | Park | Oct 2013 | B2 |
8699257 | Zhang | Apr 2014 | B2 |
8735902 | Tang | May 2014 | B2 |
8803214 | Tang | Aug 2014 | B2 |
9190412 | Zhang | Nov 2015 | B2 |
9396764 | Zhang | Jul 2016 | B2 |
9576612 | Park | Feb 2017 | B2 |
9666237 | Zhang | May 2017 | B2 |
Entry |
---|
Spence et al. “Mask Data Volume—Historical Perspective and Future Requirements”, 22nd European Mask & Lithography Conf. , 2006, Proc. of SPIE vol. 6281. |
Number | Date | Country | |
---|---|---|---|
20170229158 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
61979504 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14636353 | Mar 2015 | US |
Child | 15494539 | US |