The present invention relates to a module.
Japanese Patent Laid-Open No. 2015-012250 (hereinafter Patent Document 1”) discloses a configuration of a module. The module disclosed therein includes a main substrate, a heat generating component, other components, a first resin layer, a second resin layer, a third resin layer, and a connection conductor. The heat generating component is mounted on one main surface of the main substrate. The other components are mounted on the other main surface of the main substrate. The first resin layer is formed by coating one main surface of the main substrate and the heat generating component with a resin material. The second resin layer is disposed closer to one wall surface of a housing than the first resin layer. The third resin layer is formed by coating the other main surface of the main substrate and the other components with the same resin material as that of the first resin layer. Moreover, the connection conductor is provided on the third resin layer and has: one end connected to the other main surface of the main substrate; and the other end exposed on the surface of the third resin layer and connected to a motherboard.
In a conventional module, a plurality of connection terminals to be connected to a motherboard are provided on a substrate. In recent years, size reduction of such a module has been demanded, and the interval between the connection terminals has been narrowed. However, the narrowed interval between the connection terminals leads to degraded isolation between the connection terminals.
The exemplary embodiments of the present invention provide a module with improved in electrical characteristics by enhancing isolation between connection terminals.
Accordingly, in a first exemplary aspect of the present invention, a module is provided that includes a substrate, an electronic component, a first sealing resin, a plurality of first connection terminals, a second connection terminal, and a second sealing resin. The substrate has a first main surface and a second main surface that opposes the first main surface. The electronic component is disposed on the first main surface. The first sealing resin is provided on the first main surface and seals the electronic component. Each of the first connection terminals is disposed on the second main surface and the second connection terminal is disposed on the second main surface. Moreover, the second sealing resin is disposed on the second main surface in a state where an end portion of each of the first connection terminals and the second connection terminal is exposed, with the end portion being located opposite to the second main surface. When the substrate is viewed in a direction perpendicular to the second main surface, the second connection terminal is larger in area than each of the first connection terminals. In addition, when the substrate is viewed in the direction perpendicular to the second main surface, the second connection terminal is disposed on a straight line connecting the first connection terminals. The second connection terminal serves to establish an electrical connection.
According to the exemplary aspects of the present invention, a module is provided with improved electrical characteristics by enhancing isolation between the connection terminals.
In the following, a module according to each of the exemplary embodiments of the present invention will be described with reference to the accompanying drawings. In the following description of the embodiments, the same or corresponding portions in the accompanying drawings are denoted by the same reference characters, and the description thereof will not be repeated.
As shown in
As shown in
Substrate 110 includes a wiring line 113. In the present embodiment, wiring line 113 is a multilayer wiring line.
As shown in
It is noted that the outer shape of substrate 110 when viewed from second main surface 112 is not limited to a rectangular shape. In this case, when substrate 110 is viewed in a direction perpendicular to second main surface 112, each of corner portions 114 may form an acute interior angle of less than 90 degrees or may form an obtuse interior angle of more than 90 degrees and less than 180 degrees.
As shown in
Electronic component 120 has a plurality of connection electrodes 121. Moreover, electronic component 120 is mounted on first main surface 111 of substrate 110 by connection of each connection electrode 121 to substrate 110 with a joining material such as solder. Each connection electrode 121 is made of metal such as Cu, Ag, or Al according to exemplary aspects.
As shown in
In the present embodiment, first other component 130A is disposed substantially at the center on first main surface 111 of substrate 110. In the present embodiment, the first other component 130A can be a heat generating component such as an IC.
Moreover, the first other component 130A has a plurality of connection electrodes 131. The first other component 130A is mounted on first main surface 111 of substrate 110 by connection of each connection electrode 131 to substrate 110 with a joining material such as solder. Each connection electrode 131 is made of metal such as Cu, Ag, or Al according to exemplary aspects.
Module 100 according to the present embodiment includes a plurality of other components 130. As shown in
In the present embodiment, second other component 130B is disposed substantially at the center on second main surface 112 of substrate 110. Second other component 130B is a heat generating component, such as an IC, for example.
As shown in
According to an exemplary aspect, first sealing resin 140 is made of an epoxy resin, for example. Such an epoxy resin may contain a silica filler or an alumina filler that has relatively high thermal conductivity.
As shown in
In the present embodiment, each of the plurality of first connection terminals 150A may be electrically connected to electronic component 120 through wiring line 113. Each of the plurality of first connection terminals 150A may be electrically connected to one of the plurality of other components 130 through wiring line 113 or through a pillar-shaped conductor (not shown) that penetrates through substrate 110.
Moreover, each of the plurality of first connection terminals 150A is to be connected to a terminal of the motherboard on its end surface opposite to second main surface 112. Each of the plurality of first connection terminals 150A is a signal terminal or a ground terminal. Each of the plurality of first connection terminals 150A may be a power supply terminal.
As shown in
As shown in
The module according to the present embodiment may further include a third other component as other component 130.
In module 100 according to the first exemplary embodiment, the plurality of pillar-shaped conductors 151 are arranged in a matrix shape when substrate 110 is viewed in the direction perpendicular to second main surface 112. Each of the plurality of pillar-shaped conductors 151 penetrates through substrate 110 from first main surface 111 to second main surface 112. It is noted that in
Moreover, second connection terminal 150B is disposed at a position where second connection terminal 150B overlaps with electronic component 120 when substrate 110 is viewed in the direction perpendicular to second main surface 112.
Second connection terminal 150B is to be connected to a terminal of the motherboard on its end surface opposite to second main surface 112. In the present embodiment, second connection terminal 150B is a ground terminal.
As shown in
When substrate 110 is viewed in the direction perpendicular to second main surface 112, second connection terminal 150B is disposed on a straight line connecting the plurality of first connection terminals 150A. In other words, second connection terminal 150B is disposed between the plurality of first connection terminals 150A. Second connection terminal 150B is disposed such that its longitudinal direction extends along the above-mentioned imaginary line L having a rectangular frame shape. Each of the plurality of first connection terminals 150A, second connection terminal 150B, and the plurality of pillar-shaped conductors 151 is made of metal such as Cu, Au, Ag, or Al according to exemplary aspects.
In the present embodiment, each of the plurality of first connection terminals 150A and second connection terminal 150B may be formed by mounting a pin made of the above-mentioned metal on second main surface 112 with solder or an electrically conductive adhesive. Each of the plurality of first connection terminals 150A and second connection terminal 150B may be formed by a process in which a via hole formed in second sealing resin 160 is filled with a conductive paste containing the above-mentioned metal or is subjected to via-filling plating. Alternatively, each of the plurality of first connection terminals 150A and second connection terminal 150B may be a protruding electrode.
In the present embodiment, pillar-shaped conductor 151 shown in
As shown in
Second sealing resin 160 is made of an epoxy resin, for example. Such an epoxy resin may contain a silica filler or an alumina filler that has relatively high thermal conductivity.
Module 100 according to the present embodiment further includes a shield layer 170. Shield layer 170 is provided so as to entirely cover the upper surface of first sealing resin 140 and the peripheral side surfaces of first sealing resin 140, substrate 110 and second sealing resin 160. The shield layer is made of metal such as Cu, Ag, or Al according to exemplary aspects.
As described above, in module 100 according to the first exemplary embodiment, when substrate 110 is viewed in the direction perpendicular to second main surface 112 as shown in
By this configuration of the exemplary aspect, isolation between first connection terminals 150A can be enhanced, so that module 100 has improved electrical characteristics. In particular, when each of the plurality of first connection terminals 150A disposed to sandwich second connection terminal 150B is a signal terminal, second connection terminal 150B is larger in area than first connection terminal 150A when substrate 110 is viewed in the direction perpendicular to second main surface 112. Accordingly, the distance between these signal terminals can be increased, and thus, the isolation characteristics can be further improved.
Further, in module 100 according to the first exemplary embodiment, electronic component 120 is a heat generating component. Second connection terminal 150B is disposed at a position where second connection terminal 150B overlaps with electronic component 120 when substrate 110 is viewed in the direction perpendicular to second main surface 112.
Thereby, module 100 can be reduced in size by the plurality of first connection terminals 150A each having a relatively small area, while allowing second connection terminal 150B having a relatively large area to efficiently dissipate heat generated by electronic component 120.
In the present embodiment, second connection terminal 150B is connected to electronic component 120 through the plurality of pillar-shaped conductors 151 provided in substrate 110. Thereby, the heat generated by electronic component 120 can be efficiently dissipated through the plurality of pillar-shaped conductors 151.
The following describes a module according to the second exemplary embodiment. The module according to the second exemplary embodiment is different in position of the second connection terminal from module 100 according to the first exemplary embodiment. Thus, the description of the same configurations as those of the module according to the first embodiment will not be repeated.
When substrate 110 is viewed in the direction perpendicular to second main surface 112, at least a part of second connection terminal 250B extends to be orthogonal to a straight line connecting the plurality of first connection terminals 150A. This configuration further enhances isolation between first connection terminals 150A.
When substrate 110 is viewed in the direction perpendicular to second main surface 112, second connection terminal 250B is disposed to surround one first connection terminal 250A of the plurality of first connection terminals 150A at least on the inner peripheral side of imaginary line L. This configuration prevents the electric signal at the above-mentioned one first connection terminal 250A from flowing around from the inner peripheral side of imaginary line L and reaching other first connection terminal 150A that faces this one first connection terminal 250A with second connection terminal 250B interposed therebetween. Therefore, isolation between the above-mentioned one first connection terminal 250A and other first connection terminal 150A can be further enhanced. In the present embodiment, the above-mentioned one first connection terminal 250A is disposed near corner portion 114 of substrate 110. Specifically, the above-mentioned one first connection terminal 250A is disposed on a vertex point of a rectangular frame shape represented by imaginary line L.
The following describes a module according to the third exemplary embodiment. The module according to the third exemplary embodiment is different from module 100 according to the first exemplary embodiment in that it further includes a connection terminal different from first connection terminal 150A and second connection terminal 150B. Thus, the description of the same points as those of module 100 according to the first exemplary embodiment will not be repeated.
At least one third connection terminal 350C is disposed on second main surface 112. At least one third connection terminal 350C is electrically connected to at least one of electronic component 120 and at least one other component 130, in the same manner as with first connection terminal 150A in the first embodiment of the present invention.
In the present embodiment, at least one third connection terminal 350C may be a ground terminal or a power supply terminal according to exemplary aspects.
As shown in
As shown in
Further, at least one third connection terminal 350C is disposed closer to corner portion 114 of substrate 110 than any one of the plurality of first connection terminals 150A and second connection terminal 150B. Specifically, at least one third connection terminal 350C is disposed on a vertex point of a rectangular frame shape represented by imaginary line L. In the present embodiment, four third connection terminals 350C are disposed on respective ones of four vertex points of the rectangular frame shape represented by imaginary line L.
Third connection terminal 350C is made of metal such as Cu, Au, Ag, or Al according to exemplary aspects. Moreover, third connection terminal 350C may be formed by any one of the above-mentioned methods of forming first connection terminal 150A and second connection terminal 150B.
When module 300 is mounted on a motherboard, a significant repeated strain is applied to a joining material such as solder that connects the motherboard and a connection terminal among the connection terminals provided on second main surface 112 that is provided near corner portion 114 of substrate 110. In the present embodiment, third connection terminal 350C located near the corner portion has a relatively large area, which can suppress reliability decrease in the joint with the motherboard due to fatigue failure of the joining material caused by the above-mentioned repeated strain. In addition, by the plurality of first connection terminals 150A each having a relatively small area, module 300 can be reduced in size.
The following describes a module according to the fourth exemplary embodiment. The module according to the fourth exemplary embodiment is different from module 100 according to the first exemplary embodiment in that it further includes a connection terminal different from first connection terminal 150A and second connection terminal 150B. Thus, the description of the same points as those of module 100 according to the first exemplary embodiment will not be repeated.
As shown in
As shown in
The plurality of pillar-shaped conductors 451 are arranged in a matrix shape when substrate 110 is viewed in the direction perpendicular to second main surface 112. Each of the plurality of pillar-shaped conductors 451 penetrates through substrate 110 from first main surface 111 to second main surface 112. Each of the plurality of pillar-shaped conductors 451 is not directly connected to wiring line 113 in substrate 110.
Moreover, fourth connection terminal 450D is disposed at a position where it overlaps with first other component 130A when substrate 110 is viewed in the direction perpendicular to second main surface 112.
Fourth connection terminal 450D is to be connected to the terminal of the motherboard on the side opposite to second main surface 112. In the present embodiment, fourth connection terminal 450D may be a ground terminal or a power supply terminal according to exemplary aspects.
As shown in
When substrate 110 is viewed in the direction perpendicular to second main surface 112, fourth connection terminal 450D is disposed on a straight line connecting the plurality of first connection terminals 150A. Fourth connection terminal 450D is disposed substantially at the center on second main surface 112 of substrate 110. Fourth connection terminal 450D is disposed on the inner peripheral side of the above-mentioned imaginary line L having a rectangular frame shape.
Fourth connection terminal 450D is made of metal such as Cu, Au, Ag, or Al according to exemplary aspects. Moreover, it is noted that fourth connection terminal 450D may be formed by any one of the above-described methods of forming first connection terminals 150A and second connection terminal 150B.
In the present embodiment, fourth connection terminal 450D is disposed on a straight line connecting the plurality of first connection terminals 150A. Thus, fourth connection terminal 450D can also enhance isolation between the terminals, so that module 400 can be further improved in electrical characteristics.
In general, it should be appreciated that the above description of the embodiments, the configurations that can be combined may be combined with each other. It should also be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect.
Number | Date | Country | Kind |
---|---|---|---|
2019-063682 | Mar 2019 | JP | national |
The present application is a continuation of PCT/JP2020/013659 filed Mar. 26, 2020, which claims priority to Japanese Patent Application No. 2019-063682, filed Mar. 28, 2019, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5640048 | Selna | Jun 1997 | A |
6038133 | Nakatani | Mar 2000 | A |
6057600 | Kitazawa | May 2000 | A |
6350952 | Gaku | Feb 2002 | B1 |
6384344 | Asai | May 2002 | B1 |
6714422 | Okubora | Mar 2004 | B2 |
6807061 | Harris | Oct 2004 | B1 |
6873529 | Ikuta | Mar 2005 | B2 |
6961245 | Ikuta | Nov 2005 | B2 |
8035224 | Poeppel | Oct 2011 | B2 |
8432033 | Shinohara | Apr 2013 | B2 |
8847371 | Otsuka et al. | Sep 2014 | B2 |
10312193 | Gu | Jun 2019 | B2 |
11444002 | Lai | Sep 2022 | B2 |
11646273 | Otsubo | May 2023 | B2 |
11699670 | Otsubo | Jul 2023 | B2 |
20030036020 | Kubota | Feb 2003 | A1 |
20070049122 | Kimura | Mar 2007 | A1 |
20110037170 | Shinohara | Feb 2011 | A1 |
20130200504 | Otsuka et al. | Aug 2013 | A1 |
20140185256 | Ogawa | Jul 2014 | A1 |
20160307814 | Kobayashi | Oct 2016 | A1 |
20200043866 | Fujii | Feb 2020 | A1 |
20220007494 | Yamamoto | Jan 2022 | A1 |
20230230951 | Otsubo | Jul 2023 | A1 |
20230253341 | Kitadume | Aug 2023 | A1 |
20230260929 | Otsubo | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
2007235176 | Sep 2007 | JP |
2007317712 | Dec 2007 | JP |
2008053351 | Mar 2008 | JP |
2013179246 | Sep 2013 | JP |
2015012250 | Jan 2015 | JP |
2016207743 | Dec 2016 | JP |
6079480 | Feb 2017 | JP |
2017183301 | Oct 2017 | JP |
2018074059 | May 2018 | JP |
Entry |
---|
JP 2013-179246 A English translation (Year: 2013). |
International Search Report issued in PCT/JP2020/013659, dated Jun. 30, 2020. |
Written Opinion of the International Searching Authority issued in PCT/JP2020/013659, dated Jun. 30, 2020. |
Number | Date | Country | |
---|---|---|---|
20220007494 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2020/013659 | Mar 2020 | WO |
Child | 17478355 | US |