Molecular clones with mutated HIV gag/pol, SIV gag and SIV env genes

Information

  • Patent Grant
  • 6656706
  • Patent Number
    6,656,706
  • Date Filed
    Friday, June 1, 2001
    23 years ago
  • Date Issued
    Tuesday, December 2, 2003
    21 years ago
Abstract
Nucleic acid constructs containing HIV-1 gag/pol and SIV gag or SIV env genes which have been mutated to remove or reduce inhibitory/instability sequences are disclosed. Viral particles and host cells containing these constructs and/or viral particles are also disclosed. The exemplified constructs and viral particles of the invention may be useful in gene therapy for numerous disorders, including HIV infection, or as a vaccine for HIV-1 immunotherapy and immunoprophylaxis.
Description




I. TECHNICAL FIELD




The invention relates to nucleic acids comprising mutated HIV-1 gag/pol and SIV gag gene sequences which are capable of being expressed independently of any SIV or HIV regulatory factors. The invention also relates to nucleic acids comprising a mutated SIV env gene sequence, which is capable of being expressed independently of any SIV or HIV regulatory factors. The preferred nucleic acids of the invention are capable of producing infectious viral particles.




The invention also relates to vectors, vector systems and host cells comprising the mutated HIV-1 gag, HIV-1 pol, SIV gag and/or SIV env gene sequences. The invention also relates host cells comprising these nucleic acids and/or vectors or vector systems. The invention also relates to the use of these nucleic acids, vectors, vector systems and/or host cells for use in gene therapy or as vaccines.




II. BACKGROUND




Until recently, gene therapy protocols have often relied on vectors derived from retroviruses, such as murine leukemia virus (MLV). These vectors are useful because the genes they transduce are integrated into the genome of the target cells, a desirable feature for long-term expression. However, these retroviral vectors can only transduce dividing cells, which limits their use for in vivo gene transfer in nonproliferating cells, such as hepatocytes, myofibers, hematopoietic stem cells, and neurons.




Lentiviruses are a type of retrovirus that can infect both dividing and nondividing cells. They have proven extremely efficient at providing long-term gene expression (for up to 6 months) in a variety of nondividing cells (such as, neurons and macrophages) in animal models. See, e.g., Amado et al., Science 285:674-676 (July 1999). It has been proposed that the optimal gene transfer system would include a vector based on HIV, or other lentivirus, that can integrate into the genome of nonproliferating cells. Because retroviruses integrate in the genome of the target cells, repeated transduction is unnecessary. Therefore, in contrast to an adenoviral vector capable of in vivo gene delivery, problems linked to the humoral response to injected viral antigens can be avoided. See, e.g., Naldini et al., Science, 272:263-267 (1996), p. 263.




HIV and other lentiviruses have a complex genome that, in addition to the essential structural genes (env, gag, and pol), contains regulatory (tat and rev) and accessory genes (vpr, vif vpu, and nef). HIV has evolved to efficiently infect and express its genes in human cells, and is able to infect nondividing cells such as macrophages because its preintegration complex can traverse the intact membrane of the nucleus in the target cell. This complex contains, in addition to the viral DNA, the enzyme integrase, the product of the vpr gene, and a protein encoded by the gag gene called matrix. The matrix protein enables the preintegration complex to pass into the nucleus to access the host DNA. Lentiviruses cannot efficiently transduce truly quiescent cells (cells in the G


0


state). However, unlike murine retroviral vectors, in addition to being able to infect dividing cells, HIV-based vectors can achieve effective and sustained transduction and expression of therapeutic genes in nondividing cells, such as hematopoietic stem cells and in terminally differentiated cells such as neurons, retinal photoreceptors, muscle, and liver cells. See, e.g., Amado et al. (July 1999) and Klimatcheva et al., Frontiers in Bioscience 4:d481-496 (June 1999), and the references cited therein.




Although lentiviral vectors can be efficient gene delivery vehicles, there are safety concerns due to their origin. Therefore, the field has turned its attention to the development of vectors and production systems with built-in safety features to prevent the emergence of replication competent lentivirus (RCL). For example, in most laboratory applications, lentiviral vectors are generally created in a transient system in which a cell line is transfected with three separate constructs: a packaging construct, a transfer construct, and an envelope encoding construct. The packaging construct contains the elements necessary for vector packaging (except for env) and the enzymes required to generate vector particles. The transfer construct contains genetic cis-acting sequences necessary for the vector to infect the target cell and for transfer of the therapeutic (or reporter) gene. The lentivirus env gene is generally deleted from the packaging construct and instead the envelope gene of a different virus is supplied in a third vector “the env-coding vector”, although the lentiviruses env gene may be used if it is desired that the vector be intended to infect CD4


+


T cells. A commonly used envelope gene is that encoding the G glycoprotein of the vesicular stomatitis virus (VSV-G), which can infect a wide variety of cells and in addition confers stability to the particle and permits the vector to be concentrated to high titers (see, e.g., Naldini et al., Science 272:263-267 (1996) and Akkina et al. J. Virol. 70:2581 (1996). The use of three separate constructs and the absence of overlapping sequences between them minimizes the possibility of recombination during lentivirus (transfer) vector production. In addition, because no viral proteins are expressed by the lentiviral (transfer) vector itself, they do not trigger an effective immune response against cells expressing vector in animal models (a particular problem with vectors based on adenovirus). See, e.g., Amado et al., Science 285:674-676 (July 1999) and the references cited therein. See also Naldini et al. Science 272:263-267 (1996).




The initial packaging plasmids contained most HIV genes except for env. In an effort to improve safety, subsequent HIV vectors have been produced in which the packaging plasmid is devoid of all accessory genes. This process does not interfere with efficient vector production and significantly increases the safety of the system because potential RCLs lack the accessory genes necessary for efficient replication of HIV in humans. Although these vectors can transduce growth-arrested cell lines and neurons in vivo, they have been reported to not efficiently transduce macrophages. The accessory gene vpr is believed to be necessary for HIV infection of these cells using these HIV vectors. See, Zufferey et al., Nature Biotechnol. 15:871-875 (1997). In contrast, as discussed later herein, the HIV-based lentiviral vectors of the present invention do not need any HIV accessory genes in order to be able to infect human macrophages and the other cells tested.




The requirement of vpr or vif for efficient transduction of liver cells has also been reported. See, e.g., Kafri et al., Nature Genet. 17:314 (1997). These results indicate that the requirement of accessory genes for efficient lentivirus-mediated gene transfer is dependent on the type of cell chosen as target, suggesting that future applications of lentiviral vectors may involve vector constructs with different accessory genes, as needed.




Zufferey et al., (1997) describe an HIV vector system in which the virulence genes, env, vif, vpr, vpu, and nef have been deleted. This multiply attenuated vector conserved the ability to transduce growth-arrested cells and monocyte-derived macrophages in culture, and could efficiently deliver genes in vivo into adult neurons. The packaging plasmids described Zufferey et al. (1 997) and Naldini et al. (1996) encode Rev and Tat, in addition to Gag and Pol.




Lentiviral vectors engineered to become packaged into virions in the absence of the regulatory gene tat have also been described. See, e.g., Kim et al., J. Virol. 72:811-816 (1998) and Miyoshi et al. J. Virol. 72:8150-8157 (1998). In these vectors the tat gene has been removed from the packaging plasmid. Kim et al. state that tat is not necessary as long as the serial 5′ LTR promoter is replaced with a strong constitutive promoter. It also has other advantages for HIV therapy. Replacement of the HIV-1 LTR with a constitutive HCMV promoter permits the use of anti-Tat molecules such as Tat transdominant mutants or Tat activation response element decoys as therapeutic agents, since they will not affect vector production. (see p. 814, col. 2). The removal of the tat gene eliminates an essential virulence factor that could contribute to a possible RCL. Kim et al. (1998) describe a vector system which does not contain tat, vf vpr, vpu and nef The preferred vector system includes the rev gene which, the authors state “with RRE, is required for efficient RNA handling in this system.” (p. 811, col. 2). However, Kim et al. also constructed Rev independent constructs using CTE. Kim et al. state that the rev/RRE components could be removed by using a sequence such as the Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE), thereby eliminating all accessory proteins, but this leads to a significant reduction in titer.




Srinivasakumar et al., J. Virol. 71:5841-5848 (1997) describes the generation of stable HIV-1 packaging lines that constitutively express high levels of HIV-1 structural proteins in either a Rev-dependent or a Rev-independent fashion. These cell lines were used to assess gene transfer by using a HIV-1 vector expressing the hygromycin B resistance gene and to study the effects of Rev, Tat, and Nef on the vector titer. The Rev-independent cell lines were created by using gag-pol and env expression vectors that contain the MPMV CTE. This article describes the construction of four plasmids, among others: CMV gagpol-RRE and pCMVenv, which require Rev coexpression for HIV-1 structural gene expression, and pCMV gagpol-CTE and pCMVenv-CTE, which do not. To create Rev-containing and Rev-independent packaging, cell lines, CMT3 cells were transfected with vectors expressing Gag, Gag-Pol, and Env, using a calcium phosphate transfection procedure.




By creating an HIV vector which contained the MPMV CTE (pTR167-CTE) and a packaging cell line which expressed the HIV structural proteins in a Rev-independent fashion, the authors were able to obtain a HIV vector system that functions completely without Rev. The titer of the vector obtained from this system was essentially the same as that obtained from a parallel system which contained Rev. The authors state that, in this context, the CTE seemed to substitute completely for Rev-RRE functions, similar to what was previously observed in transient-expression assays with Rev-dependent constructs. This is in contrast to situations where several rounds of HIV replication were measured. In those cases, titers from CTE-containing viruses were always reduced by at least 1 log unit compared to viruses utilizing Rev and the RRE. (See, Srinivasakumar et al., p. 5847).




The authors state that the advantages of having a HIV vector system that works in the absence of Rev opens the possibility of using it as a delivery vehicle for intracellular immunization against Rev function. Genes encoding Rev antagonists that have dramatic inhibitory effects on HIV replication, such as Rev M10 or RRE decoys, could be introduced into an HIV vector and put into cells normally injectable by HIV. Expression of the “anti-Rev” gene would be expected to dampen HIV infection. Any residual HIV replication should lead to activation of the vector LTR (by Tat) and create a vector-derived RNA that would be packaged by proteins derived from the infectious virus. In this scenario, the wild-type virus would act as a helper that may allow the spread of vector particles to previously nonimmunized cells. Because of the additional vector spread, it is likely that this type of scheme will be more effective in modulating HIV infection in vivo than one based on traditional retrovirus vectors. The authors state that they are currently testing this approach in model systems. (See, Srinivasakumar et al., p. 5847).




Another development in the quest for a safe system is the so-called self-inactivating (SIN) vector. See, e.g., Yu et al., Proc Natl Acad Sci USA 83:3194-8 (1986) and Miyoshi et al., J. Virol. 72:8150 (1998). In Yu et al., a retrovirus-derived vector SIN vector was designed for the transduction of whole genes into mammalian cells. The SIN vector of Yu et al. contains a deletion of 299 base pairs in the 3′ long terminal repeat (LTR), which includes sequences encoding the enhancer and promoter functions. When viruses derived from such vectors were used to infect NIH 3 T3 cells, the deletion was transferred to the 5′ LTR, resulting in the transcriptional inactivation of the provirus in the infected cell. Introduction of a hybrid gene (human metallothionein-promoted c-fos) into cells via a SIN vector was not associated with rearrangements and led to the formation of an authentic mRNA transcript, which in some cases was induced by cadmium. The vector described in Miyoshi et al. also contains a deletion the 3′ (downstream) LTR. A sequence within the upstream LTR serves as a promoter under which the viral genome is expressed. The deletion introduced in the downstream LTR is transferred to the upstream LTR during reverse transcription. This deletion inactivates the LTR promoter and eliminates the production of vector RNA. The gene (or genes) to be transferred (e.g., a reporter or therapeutic gene) is expressed from an exogenous viral or cellular promoter that is inserted into the lentivirus vector. An important safety feature of SIN vectors is that inactivation of the promoter activity of the LTR reduces the possibility of insertional mutagenesis (of the transfer vector) into the host genome. In addition, because the expression of the (transfer) vector RNA is eliminated, the potential for RCL production in the target cell is further minimized. SIN vectors should be particularly useful in gene transfer experiments designed to study the regulated expression of genes in mammalian cells. Absence of enhancer and promoter sequences in both LTRs of the integrated provirus should also minimize the possibility of activating cellular oncogenes and may provide a safer alternative to be used in human gene therapy. Other modifications to enhance safety and specificity include the use of specific internal promoters that regulate gene expression, either temporally or with tissue or cell specificity.




Other strategies to improve safety in human studies would be to use nonhuman lentiviruses such as simian immunodeficiency virus, bovine immunodeficiency virus, or equine infectious anemia virus. Of these, vectors derived from the feline immunodeficiency virus have been engineered to efficiently transduce nondividing human cells. See, e.g., Poeschla et al., Nature Med. 4:354-357 (1998) and WO 99/15641. In addition, White et al., J. Virol. 73:2832-2840 (April 1999) described lentiviral vectors using human and simian immunodeficient virus elements in attempt to improve safety by reducing the likelihood of recombination between packaging constructs and transfer constructs.




The development of efficient packaging lines has proven challenging because expression of the VSV-G envelope and a number of HIV proteins is toxic to cells. Recently, a producer line has been designed in which the expression of packaging genes and VSV-G, and therefore the production of vector, can be turned on at will. Kafri et al., J. Virol. 73-576-584 (1999). The cell line can be expanded for scale-up vector production when the expression of toxic genes is turned off. This cell line produces high titer vector without generating RCL. Hematopoietic stem cells transduced with an HIV vector were transplanted into rhesus macaques as described by Donahue et al. Blood 92 (suppl. 1), abstract 4648.5 (1998) with at least a 14-month follow-up. At that time the procedure proved to be safe; all animals in the study have remained healthy without evidence of circulating HIV or vector. See, Amado et al., Science 285:674-676 (July 1999).




Many gene therapy protocols have been designed to correct a number of inherited metabolic, infectious, or malignant diseases using the hematopoietic stem cell. This cell has the capacity to self-renew and to differentiate into all of the mature cells of the blood and immune systems. Many diseases that affect these systems could potentially be treated by the stable introduction of therapeutic genes into stem cells. Recently, lentiviral vectors were shown to bypass the need for ex vivo stem cell stimulation (which is necessary when using murine retroviral vectors), by mediating efficient gene transfer into very primitive human stem cells that contributed to stable, long-term reconstitution of SCID mouse bone marrow with many hematopoietic lineages. See, e.g., Miyoshi et al., Science 283:682 (1999). Similarly, in a rhesus macaque model of autologous transplantation with lentivirus-transduced stem cells, multilineage gene expression was found, suggesting transduction of an early blood cell progenitor under conditions of minimal stem cell stimulation, ordinarily insufficient for transduction with murine retroviruses. See, Donahue et al., Blood 92 (suppl. 1), abstract 4648.5 (1999) and Amado et al., Science 285:674-676 (July 1999).




In HIV infection, another advantage of lentiviral vectors designed against HIV is their potential to be mobilized by HIV in the infected patient, because the virus supplies all of the necessary elements for packaging of the vector. If these mobilized vectors contained the HIV envelope, they could efficiently transfer their genes (for example, genes custom-designed to confer resistance against HIV) into CD4


+


T cells, protecting them from subsequent HIV infection. Lentiviral vectors can also be designed to efficiently express their genes only in CD4


+


T cells that are infected with HIV (so called tat-inducible vectors). In these vectors, all HIV genes, including tat and rev, are ablated; cis-acting sequences required for integration, expression, and packaging are retained, and expression is dependent on the activity of the HIV LTR (which requires transactivation by Tat). It has been shown that in this system, vector expression is induced efficiently upon HIV infection. Moreover, in the absence of genes that confer resistance against HIV, stable integration of this vector in permissive cell lines resulted in inhibition of HIV replication. Although the mechanism of HIV inhibition has not been completely elucidated, preliminary results suggest that this vector competes with HIV at the level of reverse transcription. See, An et al., J. Virol., in press, and Amado et al., Science 285:674-676 (1999).




A number of other potential medical applications, where the modification of the genetic material of quiescent cells could result in the prevention or reversal of a disease process, are beginning to be explored. For example, the finding that lentiviral vectors can mediate stable and long-term gene transfer by direct injection of vector into the rat and mouse retina has lent support to the notion of gene therapy for the treatment of retinitis pigmentosa. This degenerative disease of the retina is characterized by photoreceptor cell death, resulting in a slow progression to blindness. Mutations in the CGMP phosphodiesterase β subunit (PDEβ) gene of rod photoreceptors lead to an autosomal recessive form of retinitis pigmentosa in humans, and in the rd mouse model of the disease. Previous studies have shown that adenovirus and adeno-associated virus-mediated PDEP subretinal gene transfer results in a delay in photoreceptor cell death. Using the rd mouse model, a recent study demonstrated that photoreceptors could be rescued in up to 50% of eyes injected with a lentivirus vector containing the murine PDEβ gene. In contrast with the short-term expression previously obtained with adenovirus vectors, PDEβ expression in this study persisted for at least 24 weeks. This finding points to the potential success of gene therapy in a disease that currently lacks effective treatment. See, Takahashi et al., J. Virol., 73:7812-7816 (September 1999) and Amado et al. Science, 285:674-676 (1999).




In nature, the expression of gag, pol, and env of HIV-1 depends on the presence of the viral Rev protein. This dependence is, at least in part, due to the presence of negatively acting sequences (inhibitory or instability elements [INS]) located within unspliced and partially spliced mRNAs. The positive interaction of Rev with the Rev-responsive element [RME] in these mRNAs counteracts the negative effects of the inhibitory sequences.




None of the above references teach or suggest that the gag and/or pol genes described therein may be replaced with the gag and/or pol genes in which the inhibitory/instability have been mutated to render their expression Rev-idependent. Furthermore, there is no disclosure of the specific HIV-1 gag/pol or SIV gag mutated genes described herein.




The gag/pol clone of the invention was made using the method for eliminating inhibitory/instability regions from a gene as first described in U.S. patent application Ser. No. 07/858,747, filed Mar. 27, 1992 (which issued as U.S. Pat. No. 6,174,666) entitled “Method of Eliminating Inhibitory/Instability Regions from mRNA” and later described in a Continuation-in-Part (“CIP”) application, filed as PCT application PCT/US93/02908 on Mar. 29, 1993 and U.S. Pat. Nos. 5,972,596 and 5,965,726. The disclosure of the CIP application was published as International Publication No. WO 93/20212 on Oct. 14, 1993. (The disclosures of these patents and patent applications are specifically incorporated by reference herein in their entirety.) The method was also described in Schwartz et al., J. Virol. 66:7176-7182 (1992).




Schneider et al., J. Virol. 71:4892-4903 (1997), extend the work described in the patent applications and in Schwartz et al. by identifying and characterizing additional INS within gag, protease and pol genes and mutating them in a similar manner. Schneider et al. disclose nucleic acid constructs which contain completely mutated HIV-1 gag genes, but only partially mutated HIV-1 pol genes.




Schneider et al. demonstrate that expression vectors containing an intact or nearly intact p55


gag


region allow the production of immature viral particles in mammalian cells in the absence of any other HIV proteins. The introduction of additional mutations in the protease region allowed efficient production of Gag/protease, which resulted in processing of the Pr55


gag


precursor and production of mature Gag particles with a lentivirus-like conical-core structure.




Schneider et al. disclose that Rev-independent expression vectors allow the efficient expression of Gag proteins in many cell lines that are not able to support efficient Rev-RRE-dependent rescue of these RNAs. Schneider et al. also disclose that gag/pol expression vectors may be important for vaccination approaches against HIV-1, since the gag/pol region is more conserved than is the env region and may be important for an effective immune response against HIV and for protection against infection. They also state that efficient HIV gene expression in many cells is also of interest for possible gene transfer experiments using lentiviral vectors in nondividing or slowly dividing cells, since HIV and the other lentiviruses are able to infect quiescent cells.




Pavlakis et al., Natl Conf Hum Retroviruses Relat Infect (2nd). (1995), 91, state that Rev-independent Gag expression vectors were able to produce viral particles in human and mouse cells in the absence of any other HIV proteins, and that additional mutations in the pol region allowed the expression of the protease and the processing of the p55 gag precursor. Direct DNA injection of TAT and Rev independent Gag expression vectors in mouse muscle resulted in Gag expression detected by ELISA and in anti-gag antibody response. Several Rev-and Tat-independent Gag expression cassettes were inserted into retroviral vectors and cell lines expressing Gag or Gag fragments that are dominant negative inhibitors of HIV-1 were constructed.




Shiver et al. (1 996) describe the results of DNA vaccination of mice and non-human primates with mutated plasmid DNA encoding either mutated genes encoding HIV-1 gag (p55 gag) or env (gp120 or gp160). Both gag and env vaccine recipients exhibited antigen-specific cytotoxic and helper T lymphocyte (CTL, Th) responses. The results are stated to demonstrate that DNA vaccines elicited long-lived T cell responses in both mice and nonhuman primates that were disseminated throughout the lymphatics.




III. SUMMARY OF THE INVENTION




The invention relates to nucleic acids comprising the nucleic acid sequence of the mutated HIV-1 gag/pol gene shown in

FIG. 1

(SEQUENCE ID NO: 1) and vectors and vector systems comprising these nucleic acids.




The invention also relates to nucleic acids comprising the nucleic acid sequence of the mutated SIV gag gene shown in FIG.


3


and vectors and vector systems comprising these nucleic acids.




The invention also relates to nucleic acids comprising the mutated SIV env gene shown in FIG.


17


and vectors and vector systems comprising these nucleic acids.




The invention also relates to products produced by the nucleic acids, e.g., mRNA, protein, and infectious viral particles.




The invention also relates to compositions comprising these nucleic acids and/or their expression products.




The invention also relates to host cells comprising these nucleic acids, vector systems or viral particles.




The invention also relates to uses of these nucleic acids, vector systems, host cells, expression products, and/or compositions to produce mRNA, proteins, and/or infectious viral particles, and/or to induce antibodies and/or cytotoxic or helper T lymphocytes.




The invention also relates to the use of these nucleic acid constructs, vectors, vector systems and or host cells for use in immunotherapy and immunoprophylaxis, e.g., as a vaccine, or in genetic therapy after expression, preferably in humans. The nucleic acid constructs of the invention can include or be incorporated into lentiviral vectors or other expression vectors or they may also be directly injected into tissue cells resulting in efficient expression of the encoded protein or protein fragment. These constructs may also be used for in-vivo or in-vitro gene replacement, e.g., by homologous recombination with a target gene in-situ.











IV. BRIEF DESCRIPTION OF THE DRAWINGS





FIGS. 1A-1D

. DNA sequence of a mutated HIV-1 gag/pol molecular clone (SEQUENCE ID NO: 1). The gagpol terminator is located at positions 4305-4397 of SEQUENCE ID NO: 1.





FIGS. 2A-2F

. Comparison of the sequence of the wild—type and mutated poi region in pCMVgagpolBNkan. Position #1 in the figure is position 2641 in plasmid pCMVgagpolBNkan. The comparison starts at position 1872 from the gag initiator ATG.




FIG.


3


. DNA sequence of a mutated SIV gag molecular clone (SIVgagDX).





FIGS. 4A-4D

. Comparison of the mutated SIV gag DNA sequence in SIVgagDX with the wild type SIV sequence from Simian (macaque) immunodeficiency virus isolate 239, clone lambda siv 239-1 (GenBank accession No. M33262).




FIG.


5


. Schematic diagram of some components of sample versions of a lentiviral system. BGH poly (A): bovine growth hormone poly (A) signal; MSD: mutated splice donor site; ψ: encapsidation signal; SD, splice donor site; SA, splice acceptor site; “X” indicates that the ATG codon of the partial gag gene sequence is mutated so that translation of this gene does not occur.




FIG.


6


. Schematic diagram of the packaging construct pCMVgagpolBNkan.




FIG.


7


. Schematic diagram of transfer construct


1


: pmBCwCNluci. The packaging signal, the CMV promoter and the coding region for the luciferase gene are flanked by the 5′ and 3 HIV-1 LTRs, which provide promoter and polyadenylation signals, as indicated by the arrows. Three consecutive arrows indicate the U5, R, and U3 regions of the LTR, respectively. The transcribed portions of the LTRs are shown in black. Some restriction endonuclease cleavage sites are also indicated.




FIG.


8


. Schematic diagram of transfer construct


1


: pmBCmCNluci. Symbols are as above.





FIGS. 9A-9D

. DNA sequence of packaging construct pCMVgagpolBNkan.





FIGS. 10A-10E

. DNA sequence of transfer construct


1


: pmBCwCNluci.





FIGS. 11A-11E

. DNA sequence of transfer construct


1


: pmBCmCNluci.




FIG.


12


. Nucleotide sequence of the region BssHII (711) to ClaI (830) in wild-type HIV-1 molecular clones HXB2 and NL4-3, and in the transfer constructs. The translation initiator signal for Gag protein (ATG) is underlined. pmBCwCNluci and pmBCmCNluci (transfer constructs


1


and


2


) contain the sequence mBCwCN. Transfer construct


3


contains the sequence m2BCwCN. In contrast to the sequence mBCwCN, m2BCwCN has different mutations at the 5′ splice site region and has an intact Gag ATG.




FIG.


13


. Bar graph showing levels of gag protein that is released from cells upon transient transfection with pCMVgagpolBNkan (labeled pCMVBNKan in the figure).




FIG.


14


. Bar graph showing reverse transcriptase activity from the Rev-independent gag-pol HIV-1 vector pCMVgagpolBNkan (labeled pCMVBNKan in the figure).





FIGS. 15A-15D

. Bar graphs showing the amount of luciferase per nanogram of p24 Gag protein detected in cells transducted with PCMVgagpolBNkan Rev-independent gag-HIV-1 based retroviral vectors. The results show that with PCMVgagpolBNkan Rev-independent gag-HIV-1 based retroviral vectors display high transduction efficiency in (A) 293 cells, (B) human lymphoid cells, (C) human myeloid cells (U937), as well as (D) non-dividing cells such as primary human macrophages.




FIG.


16


. Schematic diagram of the SIV envelope encoding vector CMVkan/R-R-SIVgp160CTE.





FIGS. 17A-17D

. DNA sequence of the SIV envelope encoding vector CMVkan/R-R-SIVgp160CTE containing a mutated SIV env gene.











V. MODES FOR CARRYING OUT THE INVENTION




It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention, as claimed. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention and, together with the description, serve to explain the principles of the invention.




One aspect of the invention comprises vectors that encode the Gag and/or Pol of HIV-1 in a Rev-independent manner. An example of such a vector which is described herein is the plasmid pCMVgagpolBNkan, which encodes the complete Gag and Pol of HIV-1 in a Rev-independent manner, and also contains a gene conferring kanamycin resistance. This plasmid is Tat and Rev-independent and was generated by eliminating the inhibitory/instability sequences present in the gag/pol mRNA without altering the amino acid sequence of the proteins coded by the genes.




The gag/pol clone of the invention is a DNA construct of the gag/pol region of HIV which has had the inhibitory/instability regions removed. The construct is expected to be useful as a component a new type of lentivirus vector for use in gene therapy or as a vaccine.




The gag, pol or gag/pol sequences of the invention can be highly expressed in human and other mammalian cells in the absence of any other regulatory and structural protein of HIV, including Rev. When the gag/pol sequences are combined with a sequence encoding an envelope protein, such as the VSV G protein or the HIV envelope protein (e.g., in the same vector or in another expression vector), infectious virus is produced after transfection into human cells. When a gene encoding a non-HIV envelope protein is used, for example, in the presence of the HIV gag/pol gene, the virus particles produced would contains only the HIV proteins Gag and Pol.




Lentiviral vectors or vector systems based on the gag, pol or gag/pol sequences of this invention, as exemplified by the Rev-independent pCMVgagpol BNkan construct described herein, may be used for gene therapy in vivo (e.g., parenteral inoculation of high titer vector) or ex vivo (e.g., in vitro transduction of patient's cells followed by reinfusion into the patient of the transduced cells). These procedures are been already used in different approved gene therapy protocols.




The HIV gag/pol clone and SIV gag clone of the invention were made using the method for eliminating inhibitory/instability regions from a gene as described in U.S. Pat. No. 6,174,666, and also in related U.S. Pat. Nos. 5,972,596 and 5,965,726, which are incorporated by reference herein. This method does not require the identification of the exact location or knowledge of the mechanism of function of the INS. Generally, the mutations are such that the amino acid sequence encoded by the mRNA is unchanged, although conservative and non-conservative amino acid substitutions are also envisioned where the protein encoded by the mutated gene is substantially similar to the protein encoded by the non-mutated gene. The mutated genes can be synthetic (e.g., synthesized by chemical synthesis), semi-synthetic (e.g., a combination of genomic DNA, cDNA, or PCR amplified DNA and synthetic DNA), or recombinantly produced. The genes also may optionally not contain introns. The nucleic acids of the invention may also contain Rev-independent fragments of these genes which retain the desired function (e.g., for antigenicity of Gag or Pol, particle formation (Gag) or enzymatic activity (Pol)), or they may also contain Rev-independent variants which have been mutated so that the encoded protein loses a function that is unwanted in certain circumstances. In the latter case, for example, the gene may be modified to encode mutations (at the amino acid level) in the active site of reverse transcriptase or integrase proteins to prevent reverse transcription or integration. Rev-independent fragments of the gag gene are described in U.S. patent application Ser. No. 07/858,747, filed Mar. 27, 1992, and also in related U.S. Pat. Nos. 5,972,596 and 5,965,726, which are incorporated by reference herein.




In addition to being capable of producing HIV Gag and Pol proteins in the absence of Rev regulatory protein in a cell in vivo, the HIV gag/pol clone and SIV gag clone of the invention are also capable of producing HIV Gag and Pol proteins in the absence of any added cis acting transport element, such as CTE or CTE-like elements (collectively referred herein as RNA Transport Elements (RTE)). Experiments indicate that the mutated vectors of the invention for SIV gag are far superior to those adding CTE (see Qiu et al., J. Virol. 73:9145-52 (1999)).




The expression of the proteins encoded by these vectors after transfection into human cells may be monitored at both the level of RNA and protein production. RNA levels are quantitated by methods known in the art, e.g., Northern blots, S1 mapping or PCR methods. Protein levels may also be quantitated by methods known in the art, e.g., western blot or ELISA or fluorescent detection methods. A fast non-radioactive ELISA protocol can be used to detect gag protein (DUPONT or COULTER gag antigen capture assay).




At least three types of lentiviral vectors based on the gag/pol genes of the invention for use in gene therapy and/or as a vaccine are envisioned, i.e., lentiviral vectors having




a) no round of replication (i.e., a zero replication system)




b) one round of replication




c) a fully replicating system




For a system with no round of replication, a gag/pol gene, or separate gag and pol genes, or fragments of these genes, expressed using appropriate transcription units, e.g., a CMV promoter and a BGH poly (A) site. This will allow expression of the gag/pol unit (or gag or pol or fragment(s) thereof) for vaccine purposes. This expression can be accomplished without the production of any functional retroviral enzymes, provided that the appropriate mutation(s), e.g., a missense mutation, are introduced. In a zero replication system, a virus stock will be administered to the cells or animals of interest. For example, if one creates and uses a virus stock with the exemplified system using the packaging vector PCMVgagpolBNkan, the transfer construct pmBCwCNluci or pmBCmCNluci, and the envelope containing vector pHCMV-G, one obtains a zero replication system. The virus particles produced by such system can infect cells, and the reverse transcribed transfer construct DNA will go into the nucleus but, because the coding regions for viral structural proteins are not present, there will be no virus expression and replication (0 rounds). If one transfects cells in vivo with the same 3 DNAs, they will go to the nucleus, express viral proteins, make infectious virus particles and go out and infect another cell or cells (1 round). Since in vivo delivery of three plasmids may result in lower expression, at least two different embodiments are envisioned. In the first, two plasmids may be used, e.g., MV1 shown in FIG.


5


and an envelope expression plasmid such as pHCMV-G. Other plasmids encoding functional envelopes from HIV, SIV, or other retroviruses can also be used. Transfection by the two plasmids results in infectious virus that can infect and integrate into new cells (1 round). The infected cells produce gagpol but virus propagation is not possible in the absence of env.




For a system with one round of replication, at least two additional embodiments are envisioned. In the first method, a combination of the genes, e.g., a gag/pol gene, an env encoding gene and, preferably, a gene encoding a reporter protein or other polynucleotide or protein of interest, are delivered into the cells of interest in vivo. As discussed above for the exemplified system, if one transfects cells in vivo with the same 3 DNAs, they will go to the nucleus, express viral proteins, make infectious virus particles, be released and infect another cell or cells (1 round).




In another embodiment, the same result (i.e., only one round of replication) can be obtained by using transfer vectors that have deletions in the 3′ LTR and in which a heterologous-promoter (e.g., the CMV-promoter, or inducible promoter, or tissue-specific promoter), is used in place of the ‘3’ LTR promoter. The mutations in the 3′ LTR making it inactive upon reverse transcription and integration. This is because the integrated provirus derives both its 5′ LTR and its 3′ LTR from the 3′ LTR of the starting (transfer) construct. (This is a well-known property of all retroviruses and has been used to make self-inactivating vectors (SIN)). There are several reasons one may want to inactivate the incoming LTR promoter, one of which is to use a different tissue specific or regulated promoter for expression of a gene of interest in the integrated provirus. Note that, with SIN vectors, if one uses a viral stock made in vitro after transfection into cells and collection of infectious virus, there will be no round of replication. If one transfects cells with the DNAs in vivo, there will be one round of replication. If functional gag, pol, or env are not included in the DNA mix, there will not be any infection at all (i.e., infectious viruses will not be made).




A fully replicating Rev-independent system has not been constructed yet, although it is expected that a functional system can be constructed using Rev-independent gag/pol and env sequences. If desired, extra posttranscriptional control elements such as the CTE element, which can replace Rev and give infectious virus (see e.g., Zolotukhin et al., J. Virol.68:944-7952 (1994)) are included. The fully replicating system should be in one piece, containing the LTR, packaging signal, gag/pol, splice site, env, tat, one or more CTE or CTE-like elements (if desired for optimal results), and LTR. Tat is thought to be required in this construct, at least in non-permissive cells. Such a system is depicted in

FIG. 5

, (construct MV


2


). In this system, a cell or animal of interest (preferably human) would be infected with virus stock that then propagates. CTE or CTE-like elements (depicted in construct MV


2


as RTE (RNA Transport Elements)) are desirable since they have been shown to improve expression, and since many retroviruses require the presence of posttranscriptional control elements. There are several types of CTE and CTE-like elements, and these elements appear to work via a different pathway from the Rev-RRE pathway. See, e.g., Tabernero et al., J. Virol. 71:95-101 (1997). See also, Pavlakis and Nappi, PCT/US99/11082, filed May 22, 1999, published as WO 99/61596 on Dec. 2, 1999 (and incorporated herein by reference), which describes a new type of post-transcriptional control element that is able to replace CTE and HIV RRE/Rev. The Pavlakis-Nappi element does not work in the same way as CTE and does not have any sequence or structure homology.




In a preferred embodiment, a lentiviral system of the invention comprises the following three components:




1. a packaging vector containing nucleic acid sequences encoding the elements necessary for vector packaging such as structural proteins (except for HIV env) and the enzymes required to generate vector particles, the packaging vector comprising at least a mutated HIV or SIV gag/pol gene of the invention;




2. a transfer vector containing genetic cis-acting sequences necessary for the vector to infect the target cell and for transfer of the therapeutic or reporter or other gene(s) of interest, the transfer vector comprising the encapsidation signal and the gene(s) of interest or a cloning site for inserting the gene(s) of interest; and




3. a vector containing sequences encoding an element necessary for targeting the viral particle to the intended recipient cell, preferably the gene encoding the G glycoprotein of the vesicular stomatis virus (VSV-G) or amphotrophic MuLV or lentiviral envs.




Using the CMV promoter or other strong, high efficiency, promoter instead of the HIV-1 LTR promoter in the packaging vector, high expression of gag, pol or gag/pol can be achieved in the total absence of any other viral protein. The exchange of the HIV-1 LTR promoter with other promoters is beneficial in the packaging vector or other vectors if constitutive expression is desirable and also for expression in other mammalian cells, such as mouse cells, in which the HIV-1 promoter is weak. Vectors containing the sequences of the invention can be used for the Rev independent production of HIV-1 Gag/Pol, HIV-1 Gag, HIV-1 Pol, and SIV Gag proteins. In certain embodiments, the presence of heterologous promoters will also be desired in the transfer vector and the envelope encoding vector, when such vectors are used.




The gene(s) of interest are chosen according to the effect sought to be achieved. For gene therapy purposes there will be at least one therapeutic gene encoding a gene product which is active against the condition it is desired to treat or prevent. Alternatively or additionally, there may be a gene which acts as a marker by encoding a detectable product. Therapeutic genes may encode, for example, an anti-sense RNA, a ribozyme, a transdominant negative mutant of a target protein, a toxin, a conditional toxin, an antigen that induces antibodies or helper T-cells or cytotoxic T-cells, a single chain antibody or a tumor suppresser protein. See, e.g., WO 98/17816.




An even more extensive list of genes of interest for use in lentiviral vectors is described, e.g., in WO 99/04026 on page 10, line 20 to page 12, line 7. Table 2 of Klimatcheva et al. (1999) also provides a list of disorders and target cells for gene therapy, as well as a number of lentiviral vectors used by others. This list includes genetic/metabolic deficiencies, viral infection and cancer. Inherited genetic defects such as adenosine deaminase deficiency, familial hypercholesterolemia, cystic fibrosis, mucopolysaccharidosis type VII, types I and II diabetes, classical phenylketonuria and Gaucher disease are diseases which are listed as being possible to overcome by lentiviral vector-mediated gene therapy because they constitute single-gene deficiencies for which the involved genes are known. Viral diseases are also listed as constituting appropriate targets for lentiviral gene delivery. In particular, a number of gene therapy approaches have been proposed for the treatment of HIV infection and, for some of these strategies, phase I studies have recently begun in humans. The article states that preliminary studies have dealt with defective murine oncoviruses for delivery of anti-sense RNAs, ribozymes and trans-dominant proteins against HIV replication.




In any of the vectors, but preferably in the transfer vector, an inserted gene could have an internal ribosomal entry site (IRES), e.g., from picornaviral RNA. An IRES will be used in circumstances that one wants to express two proteins from the same promoter. For example one protein of interest and a marker gene, e.g., green fluorescent protein (GFP) or a marker gene and a drug resistance gene (e.g. the firefly luciferase gene and neomycin phosphotransferase gene) as described on p. 58 of WO 99/04026, for example. Using an IRES the expression of the two proteins is coordinated. A further gene or genes may also be present under the control of a separate promoter. Such a gene may encode for example a selectable marker, or a further therapeutic agent which may be among the therapeutic agents listed above. Expression of this gene may be constitutive; in the case of a selectable marker this may be useful for selecting successfully transfected packaging cells, or packaging cells which are producing particularly high titers of the retroviral vector particles. Alternatively or additionally, the selectable marker may be useful for selecting cells which have been successfully infected with the lentiviral vector and have the provirus integrated into their own genome.




One way of performing gene therapy is to extract cells from a patient, infect the extracted cells with a lentiviral vector and reintroduce the cells back into the patient. A selectable marker may be used to provide a means for enriching for infected or transduced cells or positively selecting for only those cells which have been infected or transduced, before reintroducing the cells into the patient. This procedure may increase the chances of success of the therapy. Selectable markers may be for instance drug resistance genes, metabolic enzyme genes, or any other selectable markers known in the art. Typical selection genes encode proteins that confer resistance to antibiotics and other toxic substances, e.g., histidinol, puromycin, hygromycin, neomycin, methotrexate etc. and cell surface markers.




However, it will be evident that for many gene therapy applications of lentiviral vectors, selection for expression of a marker gene may not be possible or necessary. Indeed expression of a selection marker, while convenient for in vitro studies, could be deleterious in vivo because of the inappropriate induction of cytotoxic T lymphocytes (CTLs) directed against the foreign marker protein. Also, it is possible that for in vivo applications, vectors without any internal promoters will be preferable. The presence of internal promoters can affect for example the transduction titres obtainable from a packaging cell line and the stability of the integrated vector. Thus, single transcription unit vectors, which may be bi-cistronic or poly-cistronic, coding for one or two or more therapeutic genes, may be the preferred vector designed for use in vivo. See, e.g., WO 98/17816.




Suitable host or producer cells for use in the invention are well known in the art. May lentiviruses have already been split into replication defective genomes and packaging components. For those which have not the technology is available for doing so. The producer cell encodes the viral components not encoded by the vector genome such as the Gag, Pol and Env proteins. The gag, pol and env genes may be introduced into the producer cell transiently, or may be stably integrated into the cell genome to give a packaging cell line. The lentiviral vector genome is then introduced into the packaging cell line by transfection or transduction to create a stable cell line that has all of the DNA sequences required to produce a lentiviral vector particle. Another approach is to introduce the different DNA sequences that are required to produce lentiviral vector particle, e.g., the env coding constrict, the gag-pol coding construct and the transfer construct into the cell simultaneously by transient triple transfection.




Target cells identified by Klimatcheva et al. (1999), and the references cited therein, include airway epithelial cells for cystic fibrosis; retinal photoreceptor cells for retinitis pigmentosa; progenitors for red blood cells, macrophages, and lymphocytes for hematopoietic disorders, sickle cell anemia, β-thalassemia, lysosomal storage disorders, mucopolysaccharidoses, and severe combined immunodeficiency syndrome; bone marrow cells and macrophages for Gaucher's disease; liver cells for familial hypercholesterolaemia; T-lymphocytes and macrophages for HIV infection; brain tissue, neurons, and glial cells for neurodegenerative diseases such as Parkinson's and Alzheimer's diseases; endothelial cells and cardiac myocytes for cardiovascular diseases; and cancer cells in various tissues (e.g. liver or brain) for cancer. Target cells for other diseases would be apparent to one of skill in the art.




Vaccines and pharmaceutical compositions comprising at least one of the nucleic acid sequences, vectors, vector systems, or transduced or transfected host cells of the invention and a physiologically acceptable carrier are also part of the invention.




As used herein, the term “transduction” generally refers to the transfer of genetic material into the host via infection, e.g., in this case by the lentiviral vector. The term “transfection” generally refers to the transfer of isolated genetic material into cells via the use of specific transfection agents (e.g., calcium phosphate, DEAE Dextran, lipid formulations, gold particles, and other microparticles) that cross the cytoplasmic membrane and deliver some of the genetic material into the cell nucleus.




Systems similar to those described herein can be produced using elements of lentiviruses in addition to the HIV and/or SIV genes described herein.




Pharmaceutical Compositions




The pharmaceutical compositions of the invention contain a pharmaceutically and/or therapeutically effective amount of at least one nucleic acid construct, vector, vector system, viral particle/virus stock, or host cell (i.e., agents) of the invention. In one embodiment of the invention, the effective amount of an agent of the invention per unit dose is an amount sufficient to cause the detectable expression of the gene of interest. In another embodiment of the invention, the effective amount of agent per unit dose is an amount sufficient to prevent, treat or protect against deleterious effects (including severity, duration, or extent of symptoms) of the condition being treated. The effective amount of agent per unit dose depends, among other things, on the species of mammal inoculated, the body weight of the mammal and the chosen inoculation regimen, as is well known in the art. The dosage of the therapeutic agents which will be most suitable for prophylaxis or treatment will also vary with the form of administration, the particular agent chosen and the physiological characteristics of the particular patient under treatment. The dose is administered at least once. Subsequent doses may be administered as indicated.




To monitor the response of individuals administered the compositions of the invention, mRNA or protein expression levels may be determined. In many instances it will be sufficient to assess the expression level in serum or plasma obtained from such an individual. Decisions as to whether to administer another dose or to change the amount of the composition administered to the individual may be at least partially based on the expression levels.




The term “unit dose” as it pertains to the inocula refers to physically discrete units suitable as unitary dosages for mammals, each unit containing a predetermined quantity of active material (e.g., nucleic acid, virus stock or host cell) calculated to produce the desired effect in association with the required diluent. The titers of the virus stocks to be administered to a cell or animal will depend on the application and on type of delivery (e.g., in vivo or ex vivo). The virus stocks can be concentrated using methods such as centrifugation. The titers to be administered ex vivo are preferably in the range of 0.001 to 1 infectious unit/cell. Another method of generating viral stocks is to cocultivate stable cell lines expressing the virus with the target cells. This method has been used to achieve better results when using traditional retroviral vectors because the cells can be infected over a longer period of time and they have the chance to be infected with multiple copies of the vector.




For in vivo administration of nucleic acid constructs, vectors, vector systems, virus stocks, or cells which have been transduced or transfected ex vivo, the dose is to be determined by dose escalation, with the upper dose being limited by the onset of unacceptable adverse effects. Preliminary starting doses may be extrapolated from experiments using lentiviral vectors in animal models, by methods known in the art, or may be extrapolated from comparisons with known retroviral (e.g., adenoviral) doses. Generally, small dosages will be used initially and, if necessary, will be increased by small increments until the optimum effect under the circumstances is reached. Exemplary dosages are within the range of 10


8


up to approximately 5×10


15


particles.




Inocula are typically prepared as a solution in a physiologically acceptable carrier such as saline, phosphate-buffered saline and the like to form an aqueous pharmaceutical composition.




The agents of the invention are generally administered with a physiologically acceptable carrier or vehicle therefor. A physiologically acceptable carrier is one that does not cause an adverse physical reaction upon administration and one in which the nucleic acids are sufficiently soluble to retain their activity to deliver a pharmaceutically or therapeutically effective amount of the compound. The pharmaceutically or therapeutically effective amount and method of administration of an agent of the invention may vary based on the individual patient, the indication being treated and other criteria evident to one of ordinary skill in the art. A therapeutically effective amount of a nucleic acid of the invention is one sufficient to prevent, or attenuate the severity, extent or duration of the deleterious effects of the condition being treated without causing significant adverse side effects. The route(s) of administration useful in a particular application are apparent to one or ordinary skill in the art.




Routes of administration of the agents of the invention include, but are not limited to, parenteral, and direct injection into an affected site. Parenteral routes of administration include but are not limited to intravenous, intramuscular, intraperitoneal and subcutaneous. The route of administration of the agents of the invention is typically parenteral and is preferably into the bone marrow, into the CSF intramuscular, subcutaneous, intradermal, intraocular, intracranial, intranasal, and the like. See, e.g., WO 99/04026 for examples of formulations and routes of administration.




The present invention includes compositions of the agents described above, suitable for parenteral administration including, but not limited to, pharmaceutically acceptable sterile isotonic solutions. Such solutions include, but are not limited to, saline and phosphate buffered saline for nasal, intravenous, intramuscular, intraperitoneal, subcutaneous or direct injection into a joint or other area.




In providing the agents of the present invention to a recipient mammal, preferably a human, the dosage administered will vary depending upon such factors as the mammal's age, weight, height, sex, general medical condition, previous medical history and the like.




The administration of the pharmaceutical compositions of the invention may be for either “prophylactic” or “therapeutic” purpose. When provided prophylactically, the compositions are provided in advance of any symptom. The prophylactic administration of the composition serves to prevent or ameliorate any subsequent deleterious effects (including severity, duration, or extent of symptoms) of the condition being treated. When provided therapeutically, the composition is provided at (or shortly after) the onset of a symptom of the condition being treated.




For all therapeutic, prophylactic and diagnostic uses, one or more of the agents of the invention, as well as antibodies and other necessary reagents and appropriate devices and accessories, may be provided in kit form so as to be readily available and easily used.




Where immunoassays are involved, such kits may contain a solid support, such as a membrane (e.g., nitrocellulose), a bead, sphere, test tube, rod, and so forth, to which a receptor such as an antibody specific for the target molecule will bind. Such kits can also include a second receptor, such as a labeled antibody. Such kits can be used for sandwich assays to detect toxins. Kits for competitive assays are also envisioned.




VI. INDUSTRIAL APPLICABILITY




Mutated genes of this invention can be expressed in the native host cell or organism or in a different cell or organism. The mutated genes can be introduced into a vector such as a plasmid, cosmid, phage, virus or mini-chromosome and inserted into a host cell or organism by methods well known in the art. In general, the mutated genes or constructs containing these mutated genes can be utilized in any cell, either eukaryotic or prokaryotic, including mammalian cells (e.g., human (e.g., HeLa), monkey (e.g., Cos), rabbit (e.g., rabbit reticulocytes), rat, hamster (e.g., CHO and baby hamster kidney cells) or mouse cells (e.g., L cells), plant cells, yeast cells, insect cells or bacterial cells (e.g.,


E. coli.


The vectors which can be utilized to clone and/or express these mutated genes are the vectors which are capable of replicating and/or expressing the mutated genes in the host cell in which the mutated genes are desired to be replicated and/or expressed. See, e.g., F. Ausubel et al.,


Current Protocols in Molecular Biology,


Greene Publishing Associates and Wiley-Interscience (1992) and Sambrook et al. (1989) for examples of appropriate vectors for various types of host cells. The native promoters for such genes can be replaced with strong promoters compatible with the host into which the gene is inserted. These promoters may be inducible. The host cells containing these mutated genes can be used to express large amounts of the protein useful in enzyme preparations, pharmaceuticals, diagnostic reagents, vaccines and therapeutics.




Mutated genes or constructs containing the mutated genes may also be used for in-vivo or in-vitro gene therapy. For example, a mutated gene of the invention will produce an mRNA in situ to ultimately increase the amount of protein expressed. Such gene include viral genes and/or cellular genes. Such a mutated gene is expected to be useful, for example, in the development of a vaccine and/or genetic therapy.




The constructs and/or proteins made by using constructs encoding the mutated gag, env, and pol genes could be used, for example, in the production of diagnostic reagents, vaccines and therapies for AIDS and AIDS related diseases. The inhibitory/instability elements in the HIV-1 gag gene may be involved in the establishment of a state of low virus production in the host. HIV-1 and the other lentiviruses cause chronic active infections that are not cleared by the immune system. It is possible that complete removal of the inhibitory/instability sequence elements from the lentiviral genome would result in constitutive expression. This could prevent the virus from establishing a latent infection and escaping immune system surveillance. The success in increasing expression of the entire gag/pol gene by eliminating the inhibitory sequence element suggests that one could produce lentiviruses without any negative elements. Such lentiviruses could provide a novel approach towards attenuated vaccines.




For example, vectors expressing high levels of Gag can be used in immunotherapy and immunoprophylaxis, after expression in humans. Such vectors include retroviral vectors and also include direct injection of DNA into muscle cells or other receptive cells, resulting in the efficient expression of gag, using the technology described, for example, in Wolff et al.,


Science


247:1465-1468 (1990), Wolff et al.,


Human Molecular Genetics


1(6):363-369 (1992) and Ulmer et al.,


Science


259:1745-1749 (1993). Further, the gag constructs could be used in transdominant inhibition of HIV expression after the introduction into humans. For this application, for example, appropriate vectors or DNA molecules expressing high levels of p55


gag


or p37


gag


would be modified to generate transdominant gag mutants, as described, for example, in Trono et al.,


Cell


59:113-120 (1989). The vectors would be introduced into humans, resulting in the inhibition of HIV production due to the combined mechanisms of gag transdominant inhibition and of immunostimulation by the produced gag protein. In addition, the gag constructs of the invention could be used in the generation of new retroviral vectors based on the expression of lentiviral gag proteins. Lentiviruses have unique characteristics that may allow the targeting and efficient infection of non-dividing cells. Similar applications are expected for vectors expressing high levels of env.




Identification of similar inhibitory/instability elements in SIV indicates that this virus is a convenient model to test these hypotheses. SIV similarly modified could be used in place of HIV in an effort to further minimize the possibility of rearrangement events that would lead to the generation of infectious HIV.




The following examples illustrate certain embodiments of the present invention, but should not be construed as limiting its scope in any way. Certain modifications and variations will be apparent to those skilled in the art from the teachings of the foregoing disclosure and the following examples, and these are intended to be encompassed by the spirit and scope of the invention.




EXAMPLE 1




Rev-Independent HIV-1 Gag/Pol Molecular Clone





FIG. 1

shows the DNA sequence of a Rev-independent HIV-1 gag/pol molecular clone. This DNA sequence shown encodes the complete Gag and Pol of HIV-1 and can be expressed in a Rev-independent manner when operably linked to a promoter. The Rev-independent gag sequence was described in U.S. Pat. Nos. 6,174,666, 5,972,596 and 5,965,726 and the Rev-independent pol sequence was generated by eliminating the inhibitory/instability sequences using the methods described in those,patents. Others have reportedly made Rev independent gag sequences by optimizing codon usage for human cells (see, e.g., WO 98/34640).





FIG. 2

shows an alignment of the sequence of the wild-type and mutated pol region in pCMVgagpolBNkan. Position #1 in the figure is position 2641 in plasmid pCMVgagpolBNkan.




The elimination of INS in gag, pol and env regions allows the expression of high levels of authentic HIV-1 structural proteins in the absence of the Rev regulatory factor of HIV-1.




EXAMPLE 2




Rev-Independent SIV Gag Molecular Clone





FIG. 3

shows the DNA sequence of a Rev-independent SIV gag molecular clone, SIVgagDX.

FIG. 4

shows the comparison of wild type (WT) and mutant (SIVgagDX) sequences. The wild type SIV sequence is from Simian (macaque) immunodeficiency virus isolate 239, clone lambda siv 239-1 (GenBank accession No. M33262).




EXAMPLE 3




Rev-Independent SIV Env Molecular Clone





FIG. 16

shows a schematic diagram, and

FIG. 17

shows the DNA sequence, of the “env-coding” vector CMVkan/R-R-SIVgp160CTE, which is an example of a vector comprising a mutated lentiviral env gene sequence which is capable of being expressed independently of any SIV or HIV regulatory factors. “CMV” denotes the cytomegalovirus promoter, “SRV-CTE” denotes the constitutive transport element (CTE) of Simian Retrovirus Type 1; “all-STOP” denotes a sequence providing translational stops in all three reading frames; “BGH terminator” denotes the bovine growth hormone polyadenylation signal. Other posttranscriptional control elements can be used instead of the indicated SRV-CTE, for example the one described by Pavlakis and Nappi, PCT/US99/11082, filed May 22, 1999, which was published as WO 99/61596 on Dec. 2, 1999 (and which is incorporated herein by reference).




As mentioned previously above, such a vector encoding a lentiviral env gene may be used if it is desired that the vector infect CD4


+


T cells. Also as mentioned previously above, the CTE element (i.e., the SRV-CTE element in the case of vector CMVkan/R-R-SIVgp160CTE), can be replaced with another post-transcriptional control element, such as the Pavlakis-Nappi element, that is able to replace CTE and HIV RRE/Rev. See Pavlakis and Nappi, PCT/US99/11082, filed May 22, 1999, which was published as WO 99/61596 on Dec. 2, 1999 (and which is incorporated herein by reference).




EXAMPLE 4




Lentivirial Vector System





FIG. 5

is a schematic of some of the components of a preliminary version of the Rev-independent lentiviral vector system exemplified herein, including a packaging construct and three different transfer vectors which may be used. In the lentiviral system exemplified herein, the packaging construct also contains the gene for kanamycin resistance. The lentiviral system exemplified herein also contains the vector pHCMV-G, which is shown in FIG.


5


.




In the packaging construct shown in

FIG. 5

, “CMV” denotes the cytomegalovirus promoter, “Gag” denotes the gag gene, which generates components of the virion core, “Pro” denotes “protease” “RT” denotes “reverse transcriptase,” “Int” denotes “integrase” and “BGH poly (A)” denotes the bovine growth hormone polyadenylation signal. The protease, reverse transcriptase, and integrase genes comprise the “pol” gene. In transfer construct


1


, “LTR” denotes the HIV “long terminal repeat”, which contains a HIV promoter; “mSD” denotes “mutated splice donor site,” which is present in the construct so that splicing of the RNA transcript does not occur; “ψ” denotes the encapsidation signal; “wGA” denotes part of the wild-type gag gene which contains sequences believed to be necessary for encapsidation; “X” indicates that the ATG codon of the partial gag gene sequence is mutated so that translation of this gene does not occur; “CMV” denotes the cytomegalovirus promoter and luciferase is used as a reporter gene. Luciferase can be replaced with any gene of interest. Another HIV LTR is present at the 3′ end of transfer construct


1


. Replacement of this LTR in constructs such as the transfer construct


1


,


2


, or


3


with a promoter-enhancer deleted HIV LTR leads to inactivation of LTR after integration. Transfer construct


2


is similar to transfer construct


1


, the difference being that a mutated part of the gag gene (denoted “mGa”) is used instead of the wild-type part of the gag gene. Transfer construct


3


(pm2BCwCNluci) has different mutations at the 5′ splice site and has an intact ATG codon so that translation of part of the mutated gag gene occurs. Transfer construct


3


also has a 5′ CMV promoter instead of a 5′ LTR promoter. This construct is expressed independent of the presence of HIV Tat protein. The transfer constructs expressed from the LTR promoter are partially dependent on Tat protein. In 293 cells significant expression can be achieved in the absence of Tat. See, e.g., Valentin et al., Proc. Natl Acad. Sci. U S A. 95:8886-91 (1988).




EXAMPLE 5




Generation of Packaging Construct pCMVgagpol BNkan





FIG. 6

shows a schematic map of the packaging construct pCMV gagpolBNKan. The nucleotide numbering is that of the HXB2R sequence (Genbank accession number K03455 and M38432), where +1 is the start of transcription.




The sequence in HIV-1 gag/pol region was mutated in order to eliminate all the INS. The fragment from the beginning of gag to BsrGI site in pol and the fragment KE [KpnI(3700)-EcoRI(4194)] were previously mutated described in Schneider et al., J. Virol. 71:4892-4903 (1997) and in U.S. Pat. Nos. 6,174,666, 5,972,596 and 5,965,726.




To generate pCMVgagpolBNkan, three fragments within HIV-1 pol region were mutated. They are fragment BP [BsrGI(2207)PflMI(3032)], fragment PK [PflMI(3032)-KpnI(3700)] and fragment EN [EcoRI(4194)-NdeI(4668)]. Mutagenesis was performed using a modified version of the method described by Ho et al., Gene 77:51-59 (1989) and DNA shuffling (Zhao and Arnold, Nucl. Acid Res. 25(6), 1307-1308 (1997). Sixteen oligonucleotides extending over the complete sequence of the three fragments were designed. Six oligos corresponded to fragment BP, six to fragment PK, and four to fragment EN (the oligonucleotides ranged from 130 to 195 bases in length; adjacent oligos overlapped by twenty nucleotides). Each fragment was assembled in two steps:




1) PCR; the reaction was carried out in standard pfu buffer with 10 pmol of each purified big oligo, 0.2 mM of each dNTPs and 2.5 u pfu DNA polymerase enzyme (Stratagene) in a 50 μl final volume. The PCR program was: 3 min 96° C. followed by 50 cycles of 1 min 94° C., 1 min 55° C., and 1 min +5 s/cycle 72° C., ended by 7 min at 72° C. After PCR, the big oligonucleotides were removed from the assembled mutated fragment.




2) The second step was to specifically amplify the assembled products with 30 mer primers located at the 5′ and 3′ end of each mutated fragment. One microliter of the assembled PCR product was used as template in a 25-cycle PCR reaction with 50 pmol of each primer, 1×pfu buffer, 0.2 mM of each dNTP and 2.5 u pfu DNA polymerase in a 50 μl final volume. The PCR program was: 3 min 96° C., 10 cycles of 30 s 94° C., 30 s 55° C., 45 s 72° C., followed by another 14 new line cycles of 30 s 94° C., 30 s 55° C., 45 s +20 s/cycle 72° C., and finally 7 min 72° C. This program gave a single PCR product of the correct size. The amplified BP, PK and EN fragments were individually cloned into PCR-script™ vector using PCR-script™ Amp SK(+) Cloning Kit (Stratagene). Clones were randomly selected and sequenced. The correct BP, PK and EN fragments together with fragment KE previously mutated by Schneider et al. were ligated between BsrGI and KpnI site of p55AM1-R5 (which was previously described in Schneider et al., J. Virol. 71: 4892-4903 (1997)) to produce a completely mutated gagpol ORF. The new plasmid containing the completely mutated gag/pol was named pLTRgagpolBN. BN stands for the modification of the fragment between


B


srGI and


N


deI. The mutated gag/pol was then cloned into a CMVkan vector containing the cytomegalovirus major late promoter (GenBank accession no. X17403) and the kanamycin resistance gene, resulting in pCMVgagpolBNkan. The plasmid backbone comes from pVR1332 provided by Vical Inc., and described in Hartikka et al., Hum Gene Ther. 7:1205-17 (1996).




It is understood that different plasmid backbones can be used, e.g., to provide good expression in vivo, in the case of DNA injection, for example.




EXAMPLE 6




Construction of Transfer Vectors pmBCwCNluci and pmBCmCNluci




The HIV-1 sequence BC, between BssHII (257) and ClaI (376), contains the major splice donor site and the encapsidation signal. Six oligos (33 to 46 bases) were designed to introduce mutations on the splice donor site and the AUG start codon of gag. The BC fragment was assembled, amplified and sequenced as described in the section concerning the construction of pCMVgagpolBN.




The mutated BC fragment and a fragment of wild type gag between ClaI (376) and Nsi (793) were placed between the BssHII and Nsi sites of p55RRE (Schneider et al., J. Virol. 71:4892-4903 (1997)) to generate pmBCwCN. In parallel, the fragment between ClaI (376) and NsiI sites of mutated gag from p55BM1-10SD+ was used to generate pmBCmCN. (p55BM1-10OSD+ is similar to p55BM1-10, which is described in Schneider et al. (1997), but contains in addition the intact splice donor and encapsidation site upstream of gag). The region between NsiI and XhoI containing 3′ part of gag and RRE in pmBCwCN and pmBCmCN was replaced by a ClaI-XhoI fragment containing CMV promoter and luciferase gene from pHR′-CMVluci (vector from D. Trono) to generate pmBCwCNluci and pmBCmCNluci (which are shown as transfer constructs


1


and


2


in

FIG. 5

, and schematically depicted in

FIGS. 7 and 8

, respectively). The sequences of these plasmids are shown in

FIGS. 10 and 11

, respectively. Different versions of these plasmids have also been created, by standard procedures, with variations in the region of the encapsidation site, the first splice donor site, and the initiator gag AUG. For example, the transfer construct pm2BcwCNluci (which is shown as transfer construct 3 in

FIG. 5

) has different mutations in the 5′ splice site region and has an intact ATG. A comparison of the sequences in the BssHII-Cla I region of transfer constructs


1


and


2


(mBCwCN frag), transfer construct


3


(m2BCwCN frag), HXB2 and NL43 is shown in FIG.


12


.




EXAMPLE 7




Preparation of Viral Particles




Lentiviral particles were generated by transient cotransfection of 293 human kidney cells with a combination of three plasmids: pCMVgagpolBNkan, pmBCwCNluci or pmBCmCNluci (transfer vector) and pHCMV-G (Yee et al., Proc. Natl. Acad. Sci., USA, 91:9564-9568 (1994) a plasmid coding for the envelope VSV-G (glycoprotein of vesicular stomatitis virus).




The day before the transfection, 293 cells were plated at a density of 10


6


cells/plate on a 60 mm plate. Plasmid DNA was transfected by the Ca-phosphate precipitation method in the following proportions: 3 μg packaging construct, 6 μg transfer construct and 100 ng VSV-G encoding construct, pHCMV-G. [Note that the LTR promoter can be expressed in 293 cells in the absence of Tat with a moderate decrease in efficiency. The transfer constructs can be fully Tat independent after replacement of the LTR promoter with a CMV (see, e.g., transfer construct


3


in

FIG. 5

) or other promoter in such a way that the mRNA start site is at the beginning of the LTR R region.] In the present experiments for preparation of viral particles 500 ng of a Tat expression plasmid was included in the transfection.




Cells were washed the day after transfection and were kept in DMEM medium for another 48 hours before the supernatants were harvested. Supernatants were spun at 1,200 rpm for 7 mins to eliminate any floating cells. pCMVgagpolBNkan produces high levels of Gag protein that is efficiently released from the cells (FIG.


13


), and also produces high levels of functional Pol as judged by levels of reverse transcriptase activity similar to those found upon expression of complete HIV-1 (FIG.


14


).




Supernatants from 293 transfected cells were used to transduce several human cell lines (293, Jurkat, U937) and non-dividing human primary macrophages.




EXAMPLE 8




Cell Transduction




Transduction was performed by incubating for 3-4 hours at 37° C. the target cells with 1-2 ml of supernatant containing the retroviral vectors. The amount of retroviral vector present in the supernatant was normalized by p24 content (measured by ELISA). Equal amounts of p24 gag protein were used for infection of cells. This way, differences in production of the different preparations was minimized.




The macrophages used for transduction were isolated from the peripheral blood of healthy donors by adherence to plastic. Cells were cultured in RPMI +20% fetal calf serum (FCS) +10% human serum (HS). After 1 week, non-adherent cells were washed off with PBS and the macrophages were kept in culture for another 1-2 weeks in the absence of human serum. The cells were washed 2-4 times with PBS before transduction.




Cells were harvested 48 hours after transduction (seven days for primary macrophages) and the transduction efficiency was determined by measuring luciferase activity in cell extracts from the cultures. The results of the transduction experiments in 293 Jurkat, U937 and primary macrophages are shown in

FIGS. 15A-D

. These results demonstrate that Rev-independent gag-HIV-1 based retroviral vectors display high transduction efficiency in (A) 293 cells, (B) human lymphoid cells, (C) human myeloid cells (U937), as well as (D) non-dividing cells such as primary human macrophages.




EXAMPLE 9




Use Of Nucleic Acids of the Invention In Immunoprophylaxis or Immunotherapy




In postnatal gene therapy, new genetic information has been introduced into tissues by indirect means such as removing target cells from the body, infecting them with viral vectors carrying the new genetic information, and then reimplanting them into the body; or by direct means such as encapsulating formulations of DNA in liposomes; entrapping DNA in proteoliposomes containing viral envelope receptor proteins; calcium phosphate co-precipitating DNA; and coupling DNA to a polylysine-glycoprotein carrier complex. In addition, in vivo infectivity of cloned viral DNA sequences after direct intrahepatic injection with or without formation of calcium phosphate coprecipitates has also been described. mRNA sequences containing elements that enhance stability have also been shown to be efficiently translated in


Xenopus laevis


embryos, with the use of cationic lipid vesicles. See, e.g., J. A. Wolff, et al.,


Science


247:1465-1468 (1990) and references cited therein.




Recently, it has also been shown that injection of pure RNA or DNA directly into skeletal muscle results in significant expression of genes within the muscle cells. J. A. Wolff, et al.,


Science


247:1465-1468 (1990). Forcing RNA or DNA introduced into muscle cells by other means such as by particle-acceleration (N. -S. Yang, et al.


Proc. Natl. Acad. Sci. USA


87:9568-9572 (1990); S. R. Williams et al.,


Proc. Natl. Acad. Sci. USA


88:2726-2730 (1991)) or by viral transduction should also allow the DNA or RNA to be stably maintained and expressed. In the experiments reported in Wolff et al., RNA or DNA vectors were used to express reporter genes in mouse skeletal muscle cells, specifically cells of the quadriceps muscles. Protein expression was readily detected and no special delivery system was required for these effects. Polynucleotide expression was also obtained when the composition and volume of the injection fluid and the method of injection were modified from the described protocol. For example, reporter enzyme activity was reported to have been observed with 10 to 100 μl of hypotonic, isotonic, and hypertonic sucrose solutions, Opti-MEM, or sucrose solutions containing 2 mM CaCl


2


and also to have been observed when the 10- to 100-μl injections were performed over 20 min. with a pump instead of within 1 min.




Enzymatic activity from the protein encoded by the reporter gene was also detected in abdominal muscle injected with the RNA or DNA vectors, indicating that other muscles can take up and express polynucleotides. Low amounts of reporter enzyme were also detected in other tissues (liver, spleen, skin, lung, brain and blood) injected with the RNA and DNA vectors. Intramuscularly injected plasmid DNA has also been demonstrated to be stably expressed in non-human primate muscle. S. Jiao et al.,


Hum. Gene Therapy


3:21-33 (1992).




It has been proposed that the direct transfer of genes into human muscle in situ may have several potential clinical applications. Muscle is potentially a suitable tissue for the heterologous expression of a transgene that would modify disease states in which muscle is not primarily involved, in addition to those in which it is. For example, muscle tissue could be used for the heterologous expression of proteins that can immunize, be secreted in the blood, or clear a circulating toxic metabolite. The use of RNA and a tissue that can be repetitively accessed might be useful for a reversible type of gene transfer, administered much like conventional pharmaceutical treatments. See J. A. Wolff, et al.,


Science


247:1465-1468 (1990) and S. Jiao et al.,


Hum. Gene Therapy


3:21-33 (1992).




It had been proposed by J. A. Wolff et al., supra, that the intracellular expression of genes encoding antigens might provide alternative approaches to vaccine development. This hypothesis has been supported by a recent report that plasmid DNA encoding influenza A nucleoprotein injected into the quadriceps of BALB/c mice resulted in the generation of influenza A nucleoprotein-specific cytotoxic T lymphocytes (CTLs) and protection from a subsequent challenge with a heterologous strain of influenza A virus, as measured by decreased viral lung titers, inhibition of mass loss, and increased survival. J. B. Ulmer et al.,


Science


259:1745-1749 (1993).




Therefore, it appears that the direct injection of RNA or DNA vectors encoding the viral antigen can be used for endogenous expression of the antigen to generate the viral antigen for presentation to the immune system without the need for self-replicating agents or adjuvants, resulting in the generation of antigen-specific CTLs and protection from a subsequent challenge with a homologous or heterologous strain of virus.




CTLs in both mice and humans are capable of recognizing epitopes derived from conserved internal viral proteins and are thought to be important in the immune response against viruses. By recognition of epitopes from conserved viral proteins, CTLs may provide cross-strain protection. CTLs specific for conserved viral antigens can respond to different strains of virus, in contrast to antibodies, which are generally strain-specific.




Thus, direct injection of RNA or DNA encoding the viral antigen has the advantage of being without some of the limitations of direct peptide delivery or viral vectors. See J. A. Ulmer et al., supra, and the discussions and references therein). Furthermore, the generation of high-titer antibodies to expressed proteins after injection of DNA indicates that this may be a facile and effective means of making antibody-based vaccines targeted towards conserved or non-conserved antigens, either separately or in combination with CTL vaccines targeted towards conserved antigens. These may also be used with traditional peptide vaccines, for the generation of combination vaccines. Furthermore, because protein expression is maintained after DNA injection, the persistence of B and T cell memory may be enhanced, thereby engendering long-lived humoral and cell-mediated immunity.




1. Vectors for the Immunoprophylaxis or Immunotherapy Against HIV-1




The mutated gag, pol or gag/pol sequences will be inserted in expression vectors using a strong constitutive promoter such as CMV or RSV, or an inducible promoter such as HIV-1.




The vector will be introduced into animals or humans in a pharmaceutically acceptable carrier using one of several techniques such as injection of DNA directly into human tissues; electroporation or transfection of the DNA into primary human cells in culture (ex vivo), selection of cells for desired properties and reintroduction of such cells into the body, (said selection can be for the successful homologous recombination of the incoming DNA to an appropriate preselected genomic region); generation of infectious particles containing the gag gene, infection of cells ex vivo and reintroduction of such cells into the body; or direct infection by said particles in vivo.




Substantial levels of protein will be produced leading to an efficient stimulation of the immune system.




In another embodiment of the invention, the described constructs will be modified to express mutated Gag proteins that are unable to participate in virus particle formation. It is expected that such Gag proteins will stimulate the immune system to the same extent as the wild-type Gag protein, but be unable to contribute to increased HIV-1 production. This modification should result in safer vectors for immunotherapy and immunophrophylaxis.




EXAMPLE 10




Inhibition of HIV-1 Expression Using Transdominant (TD)-TD-Gag-TD Rev or Td Gap-Pro-TD Rev Genes




Direct injection of DNA or use of vectors other than retroviral vectors will allow the constitutive high level of trans-dominant Gag (TDgag) in cells. In addition, the approach taken by B. K. Felber et al.,


Science


239:184-187 (1988) will allow the generation of retroviral vectors, e.g. mouse-derived retroviral vectors, encoding HIV-1 TDgag, which will not interfere with the infection of human cells by the retroviral vectors. In the approach of Felber, et al., supra, it was shown that fragments of the HIV-1 LTR containing the promoter and part of the polyA signal can be incorporated without detrimental effects within mouse retroviral vectors and remain transcriptionally silent. The presence of Tat protein stimulated transcription from the HIV-1 LTR and resulted in the high level expression of genes linked to the HIV-1 LTR.




The generation of hybrid TDgag-TDRev or TDgag-pro-TDRev genes and the introduction of expression vectors in human cells will allow the efficient production of two proteins that will inhibit HIV-1 expression. The incorporation of two TD proteins in the same vector is expected to amplify the effects of each one on viral replication. The use of the HIV-1 promoter in a matter similar to one described in B. K. Felber, et al., supra, will allow high level Gag and Rev expression in infected cells. In the absence of infection, expression will be substantially lower. Alternatively, the use of other strong promoters will allow the constitutive expression of such proteins. This approach could be highly beneficial, because of the production of a highly immunogenic gag, which is not able to participate in the production of infectious virus, but which, in fact, antagonizes such production. This can be used as an efficient immuniprophylactic or immunotherapeutic approach against AIDS.




Examples of trans-dominant mutants are described in Trono et al.,


Cell


59:112-120 (1989).




1. Generation of Constructs Encoding Transdominant Gag Mutant Proteins




Gag mutant proteins that can act as trans-dominant mutants, as described, for example, in Trono et al., supra, will be generated by modifying vector p37M1-10OD or p55M1-13P0 to produce transdominant Gag proteins at high constitutive levels.




The transdominant Gag protein will stimulate the immune system and will inhibit the production of infectious virus, but will not contribute to the production of infectious virus.




The added safety of this approach makes it more acceptable for human application.




VII. REFERENCES




U.S. Pat. No. 6,174,666 issued Jan. 16, 2001 (Pavlakis and Felber)




U.S. Pat. No. 5,972,596 issued Oct. 26, 1999 (Pavlakis and Felber)




U.S. Pat. No. 5,965,726 issued Oct. 12, 1999 (Pavlakis and Felber)




WO 98/17816 Lentiviral Vectors (Kingsman & Kingsman) (Oxford Biomedica Ltd)




WO 98/34640 (Shiver, J. W., Davies, M-E M., Freed, D. C., Liu, M. A. and Perry, H. C. -Merck & Co., Inc.)




WO 98/46083 Use of Lentiviral Vectors for Antigen Presentation in Dendritic Cells (Wong-Staal, Li; Kan-Mitchell) (Univ. of Cal.)




WO 99/04026 Lentiviral Vectors (Chen, Gasmi, Yee and Jolly) (Chiron)




WO 99/15641 Non-Primate Lentiviral Vectors and Packaging Systems (Poeschia, Looney and Wong-Staal) (Univ. of Cal.)




WO 99/30742 Therapeutic Use of Lentiviral Vectors (Naldini and Song)




WO 99/51754 Infectious Pseudotyped Lentiviral Vectors Lacking Matrix Protein and Uses Thereof (Goettlinger, Reil and Bukovsky) (Dana Farber Cancer Inst Inc)




PCT/US99/11082 Post-Transcriptional Regulatory Elements and Uses Thereof (Pavlakis and Nappi), filed May 22, 1999, published as WO 99/61596 on Dec. 2, 1999




Akkina, R. K., Walton, R. W., Chen, M. L., Li, Q-X, Planelles, V and Chen, I. S. Y., “High-efficiency gene transfer into CD34


+


cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G,”


J. Virol.


70:2581-2585 (1996)




Amado, R. G. & Chen, I. S. Y., “Letinviral vectors-the promise of gene therapy within reach?,”


Science


285:674-676 (July 1999)




Donahue, R. E., An, D. S., Wersto, R. P., Agricola, B. A., Metzger, M. E. and Chen, I. S. Y., “Transplantation of immunoselected CD34


+


cells transduced with a EGFP-expressing lentiviral vector in non-human primates,”


Blood


92(suppl. 1):383b, Abstract #4648.5 (1998)




Fox, J. L., “Researchers wary of fear-based ban on lentivirus gene therapy,”


Nature Biotechnology


16:407-408 (1998)




Goldman, M. J., Lee, P. S., Yang, J. S. & Wilson, J. M., “Lentiviral vectors for gene therapy of cystic fibrosis,”


Hum Gene Ther.


8, 2261-2268 (1997)




Hartikka J, Sawdey M, Cornefert-Jensen F, Margalith M, Barnhart K, Nolasco M, Vahlsing H L, Meek J, Marquet M, Hobart P, Norman J, and Manthorpe M., “An improved plasmid DNA expression vector for direct injection into skeletal muscle,”


Hum Gene Ther.


7:1205-17 (1996)




Kafri, T., Blomer, U., Peterson, D. A., Gage, F. H. & Verma, I. M., “Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors,”


Nat Genet.


17, 314-317 (1997)




Kafri, T., van Praag, H., Ouyang, L., Gage, F. G. and Verma, I. M., “A packaging cell line for lentivirus vectors,”


J. Virol.


73:576-584 (1999)




Kim, V. N., Mitrophanous, K., Kingsman, S. M., and Kingsman, A. J., “Minimal Requirement for a Lentivirus Vector Based on Human Immunodeficiency Virus Type 1”,


J. Virol.


72:811-816 (1998)




Klimatcheva, E., Rosenblatt, J. D. and Planelles, V., “Lentiviral vectors and gene therapy,”


Frontiers in Bioscience


4:d481-496 (June 1999)




Miyoshi, H., Takahashi, M., Gage, F. H. & Verma, I. M., “Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector,”


Proc Natl Acad Sci USA.


94: 10319-10323 (1997)




Miyoshi, H., Blomer,U., Takahashi, M., Gage, F. H., and Verma, I. M., “Development of self-inactivating lentivirus vector,”


J. Virol.


72:8150-8157 (1998)




Miyoshi, H., Smith, K. A., Mosier, D. E., Verma, I. M. and Torbett, B. E., “Transduction of human CD34


+


cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors,”


Science


283:682-686 (1999)




Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M. & Trono, D., “In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector,”


Science.


272, 263-267 (1996)




Naviaux, R. K, Costanzi, E., Haas, M. and Verma, I., “The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses,”


J Virol.


70:5701-5705 (1996)




Pavlakis, G. N., Schneider, R.; Song, S., Nasioulas, G., Zolotukhin, A., Felber, B. K., Trauger, R., Cox, J., and Manthorpe, M., “Use of simple Rev-independent HIV-1 gag expression vectors in gene therapy and gene vaccine applications,”


Natl Conf Hum Retroviruses Relat Infect


(2nd), Jan. 29-Feb. 2,(1995); 91.




Poeschla, E. M., Wong-Staal, F. & Looney, D. J., “Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors,”


Nature Med.


4:354-357 (1998)




Qiu, J. T., R. Song, M. Dettenhofer, C. Tian, T. August, B. K. Felber, G. N. Pavlakis and X. F. Yu, “Evaluation of novel human immunodeficiency virus type 1 Gag DNA vaccines for protein expression in mammalian cells and induction of immune responses,” J.


Virol.


73: 9145-52 (Nov. 1999)




Reynolds, P. N. and Curiel, D. T., “Viral vectors show promise in Colorado,”


Nature Biotechnology


16:422423 (1998)




Schneider, R., Campbell, M., Nasioulas, G., Felber, B. K., and Pavlakis, G. N., Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/protease and particle formation, “


J. Virol.


71:4892-4903 (1997)




Schwartz, S., M. Campbell, G. Nasioulas, J. Harrison, B. K. Felber and G. N. Pavlakis, “Mutational inactivation of an inhibitory sequence in human immunodeficiency virus type-1 results in Rev-independent gag expression,”


J. Virol.


66:7176-7182 (1992)




Shiver, J. W., Yasutomi, Y., Free, D. C., Davies, M.-E., Perry, H. C., Pavlakis, G. N., Letvin, N. L., and Liu, M. A., “DNA Vaccine-Mediated Cellular Immunity Against HIV-1 gag and env”, presented at the Conference on Advances in AIDS Vaccine Development: 8


th


Annual Meeting of the National Cooperative Vaccine Development Groups for AIDS (NCVDGs) from Feb. 11-15, 1996.




Soneoka, Y., Cannon, P. M., Ransdale, E. E., Griffiths, J. C., Romano, G., Kingsman, S. M. and Kingsman, A. J., “A transient three-plasmid expression system for the production of high titer retroviral vectors,”


Nuc. Acids Res.


23:628-633 (1995).




Srinivasakumar, N., Chazal, N., Helga-Maria, C., Prasad, S., Hammarskjöld, M.-L., and Rekosh, D., “The Effect of Viral Regulatory Protein Expression on Gene Delivery by Human Immunodeficiency Virus Type 1 Vectors Produced in Stable Packaging Cell Lines,”


J. Virol.,


71:5841-5848 (1997)




Sutton, R. E., Wu, H. T., Rigg, R., Bohnlein, E. & Brown, P. O., “Human immunodeficiency virus type 1 vectors efficiently transduce human hematopoietic stem cells,”


J. Virol.


72, 5781-5788 (1998)




Tabemero, C., A. S. Zolotukhin, J. Bear, R. Schneider, G. Karsenty and B. K. Felber, “Identification of an RNA sequence within an intracisternal-A particle element able to replace Rev-mediated posttranscriptional regulation of human immunodeficiency virus type 1,” J. Virol. 71:95-101 (1997). (see also my email message)




Takahashi, M.; Miyoshi, H.; Verma, I. M.; Gage, F. H., “Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer,”


J. Virol.


73: 7812-7816 (September 1999)




Uchida, N., Sutton, R. E., Friera, A. M., He, D., Reitsma, M. J., Chang, W. C., Veres, G., Scollay, R. & Weissman, I. L., “HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells,”


Proc. Natl Acad. Sci. USA.


95, 11939-11944 (1998)




Valentin, A., W. Lu, M. Rosati, R. Schneider, J. Albert, A. Karlsson and G. N. Pavlakis. “Dual effect of interleukin 4 on HIV-1 expression: Implications for viral phenotypic switch and disease progression,”


Proc. Natl Acad. Sci. USA.


95: 8886-91 (1998)




White, S. M., Renda, M, Nam, N-Y, Klimatcheva, E., Hu, Y, Fisk, J, Halterman, M, Rimel, B. J., Federoff, H, Pandya, S., Rosenblatt, J. D. and Planelles, V, “Lentivirus vectors using human and simian immunodeficiency virus elements,”


J Virol.


73:2832-2840 (April 1999)




Wolff, J. A. and Trubetskoy, V. S., “The Cambrian period of nonviral gene delivery,”


Nature Biotechnology


16:421-422 (1998)




Zolotukhin, J., Valentin, A., Pavlakis, G. N. and Felber, B. K. “Continuous propagation of RRE(−)and Rev(−)RRE(−) human immunodeficiency virus type 1 molecular clones containing a cis-acting element of Simian retrovirus type 1 in human peripheral blood lymphocytes,”


J. Virol.


68:7944-7952 (1994)




Zufferey, R., Nagy, D. Mandel, R. J., Naldini, L. and Trono, D., “Multiply Attenuated Lentiviral Vector Achieves Efficient Gene-Delivery In Vivo”,


Nature Biotechnology


15:871-875 (1997)




Zufferey, R., Dull, T., Mandel. R. J., Bukovsky, A., Quiroz, D., Naldini, L. & Trono, D., “Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery,”


J. Virol.


72:9873-9880 (1998)




Those skilled in the art will recognize that any gene encoding a mRNA containing an inhibitory/instability sequence or sequences can be modified in accordance with the exemplified methods of this invention or their functional equivalents.




Modifications of the above described modes for carrying out the invention that are obvious to those of skill in the fields of genetic engineering, virology, immunology, medicine, and related fields are intended to be within the scope of the following claims.




Every reference cited hereinbefore throughout the application is hereby incorporated by reference in its entirety.

















                  






#             SEQUENCE LISTING




















<160> NUMBER OF SEQ ID NOS: 19













<210> SEQ ID NO 1






<211> LENGTH: 4338






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  Mutated






      Human Immunodeficiency Virus - 1 






#Gag/Pol gene













<400> SEQUENCE: 1













atgggtgcga gagcgtcagt attaagcggg ggagaattag atcgatggga aa






#aaattcgg     60













ttaaggccag ggggaaagaa gtacaagcta aagcacatcg tatgggcaag ca






#gggagcta    120













gaacgattcg cagttaatcc tggcctgtta gaaacatcag aaggctgtag ac






#aaatactg    180













ggacagctac aaccatccct tcagacagga tcagaggagc ttcgatcact at






#acaacaca    240













gtagcaaccc tctattgtgt gcaccagcgg atcgagatca aggacaccaa gg






#aagcttta    300













gacaagatag aggaagagca aaacaagtcc aagaagaagg cccagcaggc ag






#cagctgac    360













acaggacaca gcaatcaggt cagccaaaat taccctatag tgcagaacat cc






#aggggcaa    420













atggtacatc aggccatatc acctagaact ttaaatgcat gggtaaaagt ag






#tagaagag    480













aaggctttca gcccagaagt gatacccatg ttttcagcat tatcagaagg ag






#ccacccca    540













caggacctga acacgatgtt gaacaccgtg gggggacatc aagcagccat gc






#aaatgtta    600













aaagagacca tcaatgagga agctgcagaa tgggatagag tgcatccagt gc






#atgcaggg    660













cctattgcac caggccagat gagagaacca aggggaagtg acatagcagg aa






#ctactagt    720













acccttcagg aacaaatagg atggatgaca aataatccac ctatcccagt ag






#gagagatc    780













tacaagaggt ggataatcct gggattgaac aagatcgtga ggatgtatag cc






#ctaccagc    840













attctggaca taagacaagg accaaaggaa ccctttagag actatgtaga cc






#ggttctat    900













aaaactctaa gagctgagca agcttcacag gaggtaaaaa attggatgac ag






#aaaccttg    960













ttggtccaaa atgcgaaccc agattgtaag accatcctga aggctctcgg cc






#cagcggct   1020













acactagaag aaatgatgac agcatgtcag ggagtaggag gacccggcca ta






#aggcaaga   1080













gttttggccg aggcgatgag ccaggtgacg aactcggcga ccataatgat gc






#agagaggc   1140













aacttccgga accagcggaa gatcgtcaag tgcttcaatt gtggcaaaga ag






#ggcacacc   1200













gccaggaact gccgggcccc ccggaagaag ggctgttgga aatgtggaaa gg






#aaggacac   1260













caaatgaaag attgtactga gagacaggct aattttttag ggaagatctg gc






#cttcctac   1320













aagggaaggc cagggaattt tcttcagagc agaccagagc caacagcccc ac






#cagaagag   1380













agcttcaggt ctggggtaga gacaacaact ccccctcaga agcaggagcc ga






#tagacaag   1440













gaactgtatc ctttaacttc cctcagatca ctctttggca acgacccctc gt






#cacagtaa   1500













ggatcggggg gcaactcaag gaagcgctgc tcgatacagg agcagatgat ac






#agtattag   1560













aagaaatgag tttgccagga agatggaaac caaaaatgat aggggggatc gg






#gggcttca   1620













tcaaggtgag gcagtacgac cagatactca tagaaatctg tggacataaa gc






#tataggta   1680













cagtattagt aggacctacc tacacctgtc aacataattg gaagaaatct gt






#tgacccag   1740













atcggctgca ccttgaactt ccccatcagc cctattgaga cggtgcccgt ga






#agttgaag   1800













ccggggatgg acggccccaa ggtcaagcaa tggccattga cgaaagagaa ga






#tcaaggcc   1860













ttagtcgaaa tctgtacaga gatggagaag gaagggaaga tcagcaagat cg






#ggcctgag   1920













aacccctaca acactccagt cttcgcaatc aagaagaagg acagtaccaa gt






#ggagaaag   1980













ctggtggact tcagagagct gaacaagaga actcaggact tctgggaagt tc






#agctgggc   2040













atcccacatc ccgctgggtt gaagaagaag aagtcagtga cagtgctgga tg






#tgggtgat   2100













gcctacttct ccgttccctt ggacgaggac ttcaggaagt acactgcctt ca






#cgatacct   2160













agcatcaaca acgagacacc aggcatccgc taccagtaca acgtgctgcc ac






#agggatgg   2220













aagggatcac cagccatctt tcaaagcagc atgaccaaga tcctggagcc ct






#tccgcaag   2280













caaaacccag acatcgtgat ctatcagtac atggacgacc tctacgtagg aa






#gtgacctg   2340













gagatcgggg cagcacagga ccaagatcga ggagctgaga cagcatctgt tg






#aggtgggg   2400













actgaccaca ccagacaaga agcaccagaa ggaacctccc ttcctgtgga tg






#ggctacga   2460













actgcatcct gacaagtgga cagtgcagcc catcgtgctg cctgagaagg ac






#agctggac   2520













tgtgaacgac atacagaagc tcgtgggcaa gttgaactgg gcaagccaga tc






#tacccagg   2580













catcaaagtt aggcagctgt gcaagctgct tcgaggaacc aaggcactga ca






#gaagtgat   2640













cccactgaca gaggaagcag agctagaact ggcagagaac cgagagatcc tg






#aaggagcc   2700













agtacatgga gtgtactacg acccaagcaa ggacctgatc gcagagatcc ag






#aagcaggg   2760













gcaaggccaa tggacctacc aaatctacca ggagcccttc aagaacctga ag






#acaggcaa   2820













gtacgcaagg atgaggggtg cccacaccaa cgatgtgaag cagctgacag ag






#gcagtgca   2880













gaagatcacc acagagagca tcgtgatctg gggcaagact cccaagttca ag






#ctgcccat   2940













acagaaggag acatgggaga catggtggac cgagtactgg caagccacct gg






#atccctga   3000













gtgggagttc gtgaacaccc ctcccttggt gaaactgtgg tatcagctgg ag






#aaggaacc   3060













catcgtggga gcagagacct tctacgtgga tggggcagcc aacagggaga cc






#aagctggg   3120













caaggcaggc tacgtgacca accgaggacg acagaaagtg gtgaccctga ct






#gacaccac   3180













caaccagaag actgagctgc aagccatcta cctagctctg caagacagcg ga






#ctggaagt   3240













gaacatcgtg acagactcac agtacgcatg ggcatcatcc aagcacaacc ag






#accaatcc   3300













gagtcagagc tggtgaacca gatcatcgag cagctgatca agaaggagaa ag






#tgtacctg   3360













gcatgggtac cagcacacaa aggaattgga ggaaatgaac aagtagataa at






#tagtcagt   3420













gctgggatcc ggaaggtgct gttcctggac gggatcgata aggcccaaga tg






#aacatgag   3480













aagtaccact ccaactggcg cgctatggcc agcgacttca acctgccacc tg






#tagtagca   3540













aaagaaatag tagccagctg tgataaatgt cagctaaaag gagaagccat gc






#atggacaa   3600













gtagactgta gtccaggaat atggcagctg gactgcacgc acctggaggg ga






#aggtgatc   3660













ctggtagcag ttcatgtagc cagtggatat atagaagcag aagttatccc tg






#ctgaaact   3720













gggcaggaaa cagcatattt tcttttaaaa ttagcaggaa gatggccagt aa






#aaacaata   3780













cacacggaca acggaagcaa cttcactggt gctacggtta aggccgcctg tt






#ggtgggcg   3840













ggaatcaagc aggaatttgg aattccctac aatccccaat cgcaaggagt cg






#tggagagc   3900













atgaacaagg agctgaagaa gatcatcgga cagtgaggga tcaggctgag ca






#cctgaaga   3960













cagcagtgca gatggcagtg ttcatccaca acttcaaaag aaaagggggg at






#tggggggt   4020













acagtgcagg ggaaaggatc gtggacatca tcgccaccga catccaaacc aa






#ggagctgc   4080













agaagcagat caccaagatc cagaacttcc gggtgtacta ccgcgacagc cg






#caacccac   4140













tgtggaaggg accagcaaag ctcctctgga agggagaggg ggcagtggtg at






#ccaggaca   4200













acagtgacat caaagtggtg ccaaggcgca aggccaagat catccgcgac ta






#tggaaaac   4260













agatggcagg tgatgattgt gtggcaagta gacaggatga ggattagaac ct






#ggaagagc   4320













ctggtgaagc accatatg             






#                  






#                  






#4338




















<210> SEQ ID NO 2






<211> LENGTH: 2507






<212> TYPE: DNA






<213> ORGANISM: Human immunodeficiency virus type 






#1













<400> SEQUENCE: 2













tgtacagaga tggaaaagga agggaaaatt tcaaaaattg ggcctgaaaa tc






#catacaat     60













actccagtat ttgccataaa gaaaaaagac agtactaaat ggagaaaatt ag






#tagatttc    120













agagaactta ataagagaac tcaagacttc tgggaagttc aattaggaat ac






#cacatccc    180













gcagggttaa aaaagaaaaa atcagtaaca gtactggatg tgggtgatgc at






#atttttca    240













gttcccttag atgaagactt caggaaatat actgcattta ccatacctag ta






#taaacaat    300













gagacaccag ggattagata ccatacctag tataaacaat gagacaccag gg






#atttgata    360













tcagtacaat gtgcttccac agggatggaa aggatcacca gcaatattcc aa






#agtagcat    420













gacaaaaatc ttagagcctt ttagaaaaca aaatccagac atagttatct at






#caatacat    480













ggatgatttg tatgtaggat ctgacttaga aatagggcag catagaacaa aa






#atagagga    540













gctgagacaa catctgttga ggtggggact taccacacca gacaaaaaac at






#cagaaaga    600













acctccattc ctttggatgg gttatgaact ccatcctgat aaatggacag ta






#cagcctat    660













agtgctgcca gaaaaagaca gctggactgt caatgacata cagaagttag tg






#gggaaatt    720













gaattgggca agtcagattt acccagggat taaagtaagg caattatgta aa






#ctccttag    780













aggaaccaaa gcactaacag aagtaatacc actaacagaa gaagcagagc ta






#gaactggc    840













agaaaacaga gagattctaa aagaaccagt acatggagtg tattatgacc ca






#tcaaaaga    900













cttaatagca gaaatacaga agcaggggca aggccaatgg acatatcaaa tt






#tatcaaga    960













gccatttaaa aatctgaaaa caggaaaata tgcaagaatg aggggtgccc ac






#actaatga   1020













tgtaaaacaa ttaacagagg cagtgcaaaa aataaccaca gaaagcatag ta






#atatgggg   1080













aaagactcct aaatttaaac tgcccataca aaaggaaaca tgggaaacat gg






#tggacaga   1140













gtattggcaa gccacctgga ttcctgagtg ggagtttgtt aatacccctc ct






#ttagtgaa   1200













attatggtac cagttagaga aagaacccat agtaggagca gaaaccttct at






#gtagatgg   1260













ggcagctaac agggagacta aattaggaaa agcaggatat gttactaata ga






#ggaagaca   1320













aaaagttgtc accctaactg acacaacaaa tcagaagact gagttacaag ca






#atttatct   1380













agctttgcag gattcgggat tagaagtaaa catagtaaca gactcacaat at






#gcattagg   1440













aatcattcaa gcacaaccag atcaaagtga atcagagtta gtcaatcaaa ta






#atagagca   1500













gttaataaaa aaggaaaagg tctatctggc atgggtacca gcacacaaag ga






#attggagg   1560













aaatgaacaa gtagataaat tagtcagtgc tggaatcagg aaagtactat tt






#ttagatgg   1620













aatagataag gcccaagatg aacatgagaa atatcacagt aattggagag ca






#atggctag   1680













tgattttaac ctgccacctg tagtagcaaa agaaatagta gccagctgtg at






#aaatgtca   1740













gctaaaagga gaagccatgc atggacaagt agactgtagt ccaggaatat gg






#caactaga   1800













ttgtacacat ttagaaggaa aagttatcct ggtagcagtt catgtagcca gt






#ggatatat   1860













agaagcagaa gttattccag cagaaacagg gcaggaaaca gcatattttc tt






#ttaaaatt   1920













agcaggaaga tggccagtaa aaacaataca tacagacaat ggcagcaatt tc






#accagtgc   1980













tacggttaag gccgcctgtt ggtgggcggg aatcaagcag gaatttggaa tt






#ccctacaa   2040













tccccaaagt caaggagtag tagaatctat gaataaagaa ttaaagaaaa tt






#ataggaca   2100













ggtaagagat caggctgaac atcttaagac agcagtacaa atggcagtat tc






#atccacaa   2160













ttttaaaaga aaagggggga ttggggggta cagtgcaggg gaaagaatag ta






#gacataat   2220













agcaacagac atacaaacta aagaattaca aaaacaaatt acaaaaattc aa






#aattttcg   2280













ggtttattac agggacagca gaaatccact ttggaaagga ccagcaaagc tc






#ctctggaa   2340













aggtgaaggg gcagtagtaa tacaagataa tagtgacata aaagtagtgc ca






#agaagaaa   2400













agcaaagatc attagggatt atggaaaaca gatggcaggt gatgattgtg tg






#gcaagtag   2460













acaggatgag gattagaaca tggaaaagtt tagtaaaaca ccatatg   






#              2507




















<210> SEQ ID NO 3






<211> LENGTH: 2467






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  Mutated






      Human Immunodeficiency Virus - 1 






#Pol gene













<400> SEQUENCE: 3













tgtacagaga tggagaagga agggaagatc agcaagatcg ggcctgagaa cc






#cctacaac     60













actccagtct tcgcaatcaa gaagaaggac agtaccaagt ggagaaagct gg






#tggacttc    120













agagagctga acaagagaac tcaggacttc tgggaagttc agctgggcat cc






#cacatccc    180













gctgggttga agaagaagaa gtcagtgaca gtgctggatg tgggtgatgc ct






#acttctcc    240













gttcccttgg acgaggactt caggaagtac actgccttca cgatacctag ca






#tcaacaac    300













gagacaccag gcatccgcta ccagtacaac gtgctgccac agggatggaa gg






#gatcacca    360













gccatctttc aaagcagcat gaccaagatc ctggagccct tccgcaagca aa






#acccagac    420













atcgtgatct atcagtacat ggacgacctc tacgtaggaa gtgacctgga ga






#tcgggcag    480













cacaggacca agatcgagga gctgagacag catctgttga ggtggggact ga






#ccacacca    540













gacaagaagc accagaagga acctcccttc ctgtggatgg gctacgaact gc






#atcctgac    600













aagtggacag tgcagcccat cgtgctgcct gagaaggaca gctggactgt ga






#acgacata    660













cagaagctcg tgggcaagtt gaactgggca agccagatct acccaggcat ca






#aagttagg    720













cagctgtgca agctgcttcg aggaaccaag gcactgacag aagtgatccc ac






#tgacagag    780













gaagcagagc tagaactggc agagaaccga gagatcctga aggagccagt ac






#atggagtg    840













tactacgacc caagcaagga cctgatcgca gagatccaga agcaggggca ag






#gccaatgg    900













acctaccaaa tctaccagga gcccttcaag aacctgaaga caggcaagta cg






#caaggatg    960













aggggtgccc acaccaacga tgtgaagcag ctgacagagg cagtgcagaa ga






#tcaccaca   1020













gagagcatcg tgatctgggg caagactccc aagttcaagc tgcccataca ga






#aggagaca   1080













tgggagacat ggtggaccga gtactggcaa gccacctgga tccctgagtg gg






#agttcgtg   1140













aacacccctc ccttggtgaa actgtggtat cagctggaga aggaacccat cg






#tgggagca   1200













gagaccttct acgtggatgg ggcagccaac agggagacca agctgggcaa gg






#caggctac   1260













gtgaccaacc gaggacgaca gaaagtggtg accctgactg acaccaccaa cc






#agaagact   1320













gagctgcaag ccatctacct agctctgcaa gacagcggac tggaagtgaa ca






#tcgtgaca   1380













gactcacagt acgcactggg catcatccaa gcacaaccag accaatccga gt






#cagagctg   1440













gtgaaccaga tcatcgagca gctgatcaag aaggagaaag tgtacctggc at






#gggtacca   1500













gcacacaaag gaattggagg aaatgaacaa gtagataaat tagtcagtgc tg






#ggatccgg   1560













aaggtgctgt tcctggacgg gatcgataag gcccaagatg aacatgagaa gt






#accactcc   1620













aactggcgcg ctatggccag cgacttcaac ctgccacctg tagtagcaaa ag






#aaatagta   1680













gccagctgtg ataaatgtca gctaaaagga gaagccatgc atggacaagt ag






#actgtagt   1740













ccaggaatat ggcagctgga ctgcacgcac ctggagggga aggtgatcct gg






#tagcagtt   1800













catgtagcca gtggatatat agaagcagaa gttatccctg ctgaaactgg gc






#aggaaaca   1860













gcatattttc ttttaaaatt agcaggaaga tggccagtaa aaacaataca ca






#cggacaac   1920













ggaagcaact tcactggtgc tacggttaag gccgcctgtt ggtgggcggg aa






#tcaagcag   1980













gaatttggaa ttccctacaa tccccaatcg caaggagtcg tggagagcat ga






#acaaggag   2040













ctgaagaaga tcatcggaca agtgagggat caggctgagc acctgaagac ag






#cagtgcag   2100













atggcagtgt tcatccacaa cttcaaaaga aaagggggga ttggggggta ca






#gtgcaggg   2160













gaaaggatcg tggacatcat cgccaccgac atccaaacca aggagctgca ga






#agcagatc   2220













accaagatcc agaacttccg ggtgtactac cgcgacagcc gcaacccact gt






#ggaaggga   2280













ccagcaaagc tcctctggaa gggagagggg gcagtggtga tccaggacaa ca






#gtgacatc   2340













aaagtggtgc caaggcgcaa ggccaagatc atccgcgact atggaaaaca ga






#tggcaggt   2400













gatgattgtg tggcaagtag acaggatgag gattagaacc tggaagagcc tg






#gtgaagca   2460













ccatatg                 






#                  






#                  






#        2467




















<210> SEQ ID NO 4






<211> LENGTH: 1533






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  Mutated






      Simian Immunodeficiency Virus Gag ge






#ne













<400> SEQUENCE: 4













atgggcgtga gaaactccgt cttgtcaggg aagaaagcag atgaattaga aa






#aaattagg     60













ctacgaccca acggaaagaa aaagtacatg ttgaagcatg tagtatgggc ag






#caaatgaa    120













ttagatagat ttggattagc agaaagcctg ttggagaaca aagaaggatg tc






#aaaaaata    180













ctttcggtct tagctccatt agtgccaaca ggctcagaaa atttaaaaag cc






#tttataat    240













actgtctgcg tcatctggtg cattcacgca gaagagaaag tgaaacacac tg






#aggaagca    300













aaacagatag tgcagagaca cctagtggtg gaaacaggaa ccaccgaaac ca






#tgccgaag    360













acctctcgac caacagcacc atctagcggc agaggaggaa actacccagt ac






#agcagatc    420













ggtggtaact acgtccacct gccactgtcc ccgagaaccc tgaacgcttg gg






#tcaagctg    480













atcgaggaga agaagttcgg agcagaagta gtgccaggat tccaggcact gt






#cagaaggt    540













tgcaccccct acgacatcaa ccagatgctg aactgcgttg gagaccatca gg






#cggctatg    600













cagatcatcc gtgacatcat caacgaggag gctgcagatt gggacttgca gc






#acccacaa    660













ccagctccac aacaaggaca acttagggag ccgtcaggat cagacatcgc ag






#gaaccacc    720













tcctcagttg acgaacagat ccagtggatg taccgtcagc agaacccgat cc






#cagtaggc    780













aacatctacc gtcgatggat ccagctgggt ctgcagaagt gcgtccgtat gt






#acaacccg    840













accaacattc tagatgtaaa acaagggcca aaagagccat ttcagagcta tg






#tagacagg    900













ttctacaaaa gtttaagagc agaacagaca gatgcagcag taaagaattg ga






#tgactcaa    960













acactgctga ttcaaaatgc taacccagat tgcaagctag tgctgaaggg gc






#tgggtgtg   1020













aatcccaccc tagaagaaat gctgacggct tgtcaaggag taggggggcc gg






#gacagaag   1080













gctagattaa tggcagaagc cctgaaagag gccctcgcac cagtgccaat cc






#cttttgca   1140













gcagcccaac agaggggacc aagaaagcca attaagtgtt ggaattgtgg ga






#aagaggga   1200













cactctgcaa ggcaatgcag agccccaaga agacagggat gctggaaatg tg






#gaaaaatg   1260













gaccatgtta tggccaaatg cccagacaga caggcgggtt ttttaggcct tg






#gtccatgg   1320













ggaaagaagc cccgcaattt ccccatggct caagtgcatc aggggctgat gc






#caactgct   1380













cccccagagg acccagctgt ggatctgcta aagaactaca tgcagttggg ca






#agcagcag   1440













agagaaaagc agagagaaag cagagagaag ccttacaagg aggtgacaga gg






#atttgctg   1500













cacctcaatt ctctctttgg aggagaccag tag       






#                  






#       1533




















<210> SEQ ID NO 5






<211> LENGTH: 1532






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  Consensus






      sequence of mutated Simian Immunodef






#iciency Virus






      Gag gene (SIVgagDX) with wild-type 






#SIV 239 Gag






      gene













<400> SEQUENCE: 5













atgggcgtga gaaactccgt cttgtcaggg aagaaagcag atgaattaga aa






#aaattagg     60













ctacgaccca acggaaagaa aaagtacatg ttgaagcatg tagtatgggc ag






#caaatgaa    120













ttagatagat ttggattagc agaaagcctg ttggagaaca aagaaggatg tc






#aaaaaata    180













ctttcggtct tagctccatt agtgccaaca ggctcagaaa atttaaaaag cc






#tttataat    240













actgtctgcg tcatctggtg cattcacgca gaagagaaag tgaaacacac tg






#aggaagca    300













aaacagatag tgcagagaca cctagtggtg gaaacaggaa cmacmgaaac ya






#tgccraar    360













acmwstmgac caacagcacc atctagcggc agaggaggaa aytacccagt ac






#arcaratm    420













ggtggtaact aygtccacct gccaytrwsc ccgagaacmy traaygcytg gg






#tmaarytg    480













atmgaggara agaarttygg agcagaagta gtgccaggat tycaggcact gt






#cagaaggt    540













tgcaccccct aygacatyaa ycagatgytr aaytgygtkg gagaccatca rg






#cggctatg    600













cagatyatcm gwgayatyat maacgaggag gctgcagatg ggacttgcag ca






#cccacaac    660













cagctccaca acaaggacaa cttagggagc cgtcaggatc agayatygca gg






#aacmacyw    720













sytcagtwga ygaacaratc cagtggatgt acmgwcarca gaacccsatm cc






#agtaggca    780













acatytacmg kmgatggatc carctgggky tgcaraartg ygtymgwatg ta






#yaacccra    840













cmaacattct agatgtaaaa caagggccaa aagagccatt tcagagctat gt






#agacaggt    900













tctacaaaag tttaagagca gaacagacag atgcagcagt aaagaattgg at






#gactcaaa    960













cactgctgat tcaaaatgct aacccagatt gcaagctagt gctgaagggg ct






#gggtgtga   1020













atcccaccct agaagaaatg ctgacggctt gtcaaggagt aggggggccg gg






#acagaagg   1080













ctagattaat ggcagaagcc ctgaaagagg ccctcgcacc agtgccaatc cc






#ttttgcag   1140













cagcccaaca gaggggacca agaaagccaa ttaagtgttg gaattgtggg aa






#agagggac   1200













actctgcaag gcaatgcaga gccccaagaa gacagggatg ctggaaatgt gg






#aaaaatgg   1260













accatgttat ggccaaatgc ccagacagac aggcgggttt tttaggcctt gg






#tccatggg   1320













gaaagaagcc ccgcaatttc cccatggctc aagtgcatca ggggctgatg cc






#aactgctc   1380













ccccagagga cccagctgtg gatctgctaa agaactacat gcagttgggc aa






#gcagcaga   1440













gagaaaagca gagagaaagc agagagaagc cttacaagga ggtgacagag ga






#tttgctgc   1500













acctcaattc tctctttgga ggagaccagt ag       






#                  






#        1532




















<210> SEQ ID NO 6






<211> LENGTH: 8366






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  DNA






      sequence of the construct pCMVgagpol






#BNKan containing a CMV






      promoter, a HIV gag/pol gene and 






#a kanamycin






      resistance gene













<400> SEQUENCE: 6













cctggccatt gcatacgttg tatccatatc ataatatgta catttatatt gg






#ctcatgtc     60













caacattacc gccatgttga cattgattat tgactagtta ttaatagtaa tc






#aattacgg    120













ggtcattagt tcatagccca tatatggagt tccgcgttac ataacttacg gt






#aaatggcc    180













cgcctggctg accgcccaac gacccccgcc cattgacgtc aataatgacg ta






#tgttccca    240













tagtaacgcc aatagggact ttccattgac gtcaatgggt ggagtattta cg






#gtaaactg    300













cccacttggc agtacatcaa gtgtatcata tgccaagtac gccccctatt ga






#cgtcaatg    360













acggtaaatg gcccgcctgg cattatgccc agtacatgac cttatgggac tt






#tcctactt    420













ggcagtacat ctacgtatta gtcatcgcta ttaccatggt gatgcggttt tg






#gcagtaca    480













tcaatgggcg tggatagcgg tttgactcac ggggatttcc aagtctccac cc






#cattgacg    540













tcaatgggag tttgttttgg caccaaaatc aacgggactt tccaaaatgt cg






#taacaact    600













ccgccccatt gacgcaaatg ggcggtaggc gtgtacggtg ggaggtctat at






#aagcagag    660













ctcgtttagt gaaccgtcag atcgcctgga gacgccatcc acgctgtttt ga






#cctccata    720













gaagacaccg ggaccgatcc agcctccgcg ggcgcgcgtc gacagagaga tg






#ggtgcgag    780













agcgtcagta ttaagcgggg gagaattaga tcgatgggaa aaaattcggt ta






#aggccagg    840













gggaaagaag aagtacaagc taaagcacat cgtatgggca agcagggagc ta






#gaacgatt    900













cgcagttaat cctggcctgt tagaaacatc agaaggctgt agacaaatac tg






#ggacagct    960













acaaccatcc cttcagacag gatcagagga gcttcgatca ctatacaaca ca






#gtagcaac   1020













cctctattgt gtgcaccagc ggatcgagat caaggacacc aaggaagctt ta






#gacaagat   1080













agaggaagag caaaacaagt ccaagaagaa ggcccagcag gcagcagctg ac






#acaggaca   1140













cagcaatcag gtcagccaaa attaccctat agtgcagaac atccaggggc aa






#atggtaca   1200













tcaggccata tcacctagaa ctttaaatgc atgggtaaaa gtagtagaag ag






#aaggcttt   1260













cagcccagaa gtgataccca tgttttcagc attatcagaa ggagccaccc ca






#caggacct   1320













gaacacgatg ttgaacaccg tggggggaca tcaagcagcc atgcaaatgt ta






#aaagagac   1380













catcaatgag gaagctgcag aatgggatag agtgcatcca gtgcatgcag gg






#cctattgc   1440













accaggccag atgagagaac caaggggaag tgacatagca ggaactacta gt






#acccttca   1500













ggaacaaata ggatggatga caaataatcc acctatccca gtaggagaga tc






#tacaagag   1560













gtggataatc ctgggattga acaagatcgt gaggatgtat agccctacca gc






#attctgga   1620













cataagacaa ggaccaaagg aaccctttag agactatgta gaccggttct at






#aaaactct   1680













aagagctgag caagcttcac aggaggtaaa aaattggatg acagaaacct tg






#ttggtcca   1740













aaatgcgaac ccagattgta agaccatcct gaaggctctc ggcccagcgg ct






#acactaga   1800













agaaatgatg acagcatgtc agggagtagg aggacccggc cataaggcaa ga






#gttttggc   1860













cgaggcgatg agccaggtga cgaactcggc gaccataatg atgcagagag gc






#aacttccg   1920













gaaccagcgg aagatcgtca agtgcttcaa ttgtggcaaa gaagggcaca cc






#gccaggaa   1980













ctgccgggcc ccccggaaga agggctgttg gaaatgtgga aaggaaggac ac






#caaatgaa   2040













agattgtact gagagacagg ctaatttttt agggaagatc tggccttcct ac






#aagggaag   2100













gccagggaat tttcttcaga gcagaccaga gccaacagcc ccaccagaag ag






#agcttcag   2160













gtctggggta gagacaacaa ctccccctca gaagcaggag ccgatagaca ag






#gaactgta   2220













tcctttaact tccctcagat cactctttgg caacgacccc tcgtcacagt aa






#ggatcggg   2280













gggcaactca aggaagcgct gctcgataca ggagcagatg atacagtatt ag






#aagaaatg   2340













agtttgccag gaagatggaa accaaaaatg atagggggga tcgggggctt ca






#tcaaggtg   2400













aggcagtacg accagatact catagaaatc tgtggacata aagctatagg ta






#cagtatta   2460













gtaggaccta cacctgtcaa cataattgga agaaatctgt tgacccagat cg






#gctgcacc   2520













ttgaacttcc ccatcagccc tattgagacg gtgcccgtga agttgaagcc gg






#ggatggac   2580













ggccccaagg tcaagcaatg gccattgacg aaagagaaga tcaaggcctt ag






#tcgaaatc   2640













tgtacagaga tggagaagga agggaagatc agcaagatcg ggcctgagaa cc






#cctacaac   2700













actccagtct tcgcaatcaa gaagaaggac agtaccaagt ggagaaagct gg






#tggacttc   2760













agagagctga acaagagaac tcaggacttc tgggaagttc agctgggcat cc






#cacatccc   2820













gctgggttga agaagaagaa gtcagtgaca gtgctggatg tgggtgatgc ct






#acttctcc   2880













gttcccttgg acgaggactt caggaagtac actgccttca cgatacctag ca






#tcaacaac   2940













gagacaccag gcatccgcta ccagtacaac gtgctgccac agggatggaa gg






#gatcacca   3000













gccatctttc aaagcagcat gaccaagatc ctggagccct tccgcaagca aa






#acccagac   3060













atcgtgatct atcagtacat ggacgacctc tacgtaggaa gtgacctgga ga






#tcgggcag   3120













cacaggacca agatcgagga gctgagacag catctgttga ggtggggact ga






#ccacacca   3180













gacaagaagc accagaagga acctcccttc ctgtggatgg gctacgaact gc






#atcctgac   3240













aagtggacag tgcagcccat cgtgctgcct gagaaggaca gctggactgt ga






#acgacata   3300













cagaagctcg tgggcaagtt gaactgggca agccagatct acccaggcat ca






#aagttagg   3360













cagctgtgca agctgcttcg aggaaccaag gcactgacag aagtgatccc ac






#tgacagag   3420













gaagcagagc tagaactggc agagaaccga gagatcctga aggagccagt ac






#atggagtg   3480













tactacgacc caagcaagga cctgatcgca gagatccaga agcaggggca ag






#gccaatgg   3540













acctaccaaa tctaccagga gcccttcaag aacctgaaga caggcaagta cg






#caaggatg   3600













aggggtgccc acaccaacga tgtgaagcag ctgacagagg cagtgcagaa ga






#tcaccaca   3660













gagagcatcg tgatctgggg caagactccc aagttcaagc tgcccataca ga






#aggagaca   3720













tgggagacat ggtggaccga gtactggcaa gccacctgga tccctgagtg gg






#agttcgtg   3780













aacacccctc ccttggtgaa actgtggtat cagctggaga aggaacccat cg






#tgggagca   3840













gagaccttct acgtggatgg ggcagccaac agggagacca agctgggcaa gg






#caggctac   3900













gtgaccaacc gaggacgaca gaaagtggtg accctgactg acaccaccaa cc






#agaagact   3960













gagctgcaag ccatctacct agctctgcaa gacagcggac tggaagtgaa ca






#tcgtgaca   4020













gactcacagt acgcactggg catcatccaa gcacaaccag accaatccga gt






#cagagctg   4080













gtgaaccaga tcatcgagca gctgatcaag aaggagaaag tgtacctggc at






#gggtacca   4140













gcacacaaag gaattggagg aaatgaacaa gtagataaat tagtcagtgc tg






#ggatccgg   4200













aaggtgctgt tcctggacgg gatcgataag gcccaagatg aacatgagaa gt






#accactcc   4260













aactggcgcg ctatggccag cgacttcaac ctgccacctg tagtagcaaa ag






#aaatagta   4320













gccagctgtg ataaatgtca gctaaaagga gaagccatgc atggacaagt ag






#actgtagt   4380













ccaggaatat ggcagctgga ctgcacgcac ctggagggga aggtgatcct gg






#tagcagtt   4440













catgtagcca gtggatatat agaagcagaa gttatccctg ctgaaactgg gc






#aggaaaca   4500













gcatattttc ttttaaaatt agcaggaaga tggccagtaa aaacaataca ca






#cggacaac   4560













ggaagcaact tcactggtgc tacggttaag gccgcctgtt ggtgggcggg aa






#tcaagcag   4620













gaatttggaa ttccctacaa tccccaatcg caaggagtcg tggagagcat ga






#acaaggag   4680













ctgaagaaga tcatcggaca agtgagggat caggctgagc acctgaagac ag






#cagtgcag   4740













atggcagtgt tcatccacaa cttcaaaaga aaagggggga ttggggggta ca






#gtgcaggg   4800













gaaaggatcg tggacatcat cgccaccgac atccaaacca aggagctgca ga






#agcagatc   4860













accaagatcc agaacttccg ggtgtactac cgcgacagcc gcaacccact gt






#ggaaggga   4920













ccagcaaagc tcctctggaa gggagagggg gcagtggtga tccaggacaa ca






#gtgacatc   4980













aaagtggtgc caaggcgcaa ggccaagatc atccgcgact atggaaaaca ga






#tggcaggt   5040













gatgattgtg tggcaagtag acaggatgag gattagaacc tggaagagcc tg






#gtgaagca   5100













ccatatggcg ttcgaagcta gcctcgagat ccagatctgc tgtgccttct ag






#ttgccagc   5160













catctgttgt ttgcccctcc cccgtgcctt ccttgaccct ggaaggtgcc ac






#tcccactg   5220













tcctttccta ataaaatgag gaaattgcat cgcattgtct gagtaggtgt ca






#ttctattc   5280













tggggggtgg ggtggggcag cacagcaagg gggaggattg ggaagacaat ag






#caggcatg   5340













ctggggatgc ggtgggctct atgggtaccc aggtgctgaa gaattgaccc gg






#ttcctcct   5400













gggccagaaa gaagcaggca catccccttc tctgtgacac accctgtcca cg






#cccctggt   5460













tcttagttcc agccccactc ataggacact catagctcag gagggctccg cc






#ttcaatcc   5520













cacccgctaa agtacttgga gcggtctctc cctccctcat cagcccacca aa






#ccaaacct   5580













agcctccaag agtgggaaga aattaaagca agataggcta ttaagtgcag ag






#ggagagaa   5640













aatgcctcca acatgtgagg aagtaatgag agaaatcata gaatttcttc cg






#cttcctcg   5700













ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tc






#actcaaag   5760













gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gt






#gagcaaaa   5820













ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt cc






#ataggctc   5880













cgcccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aa






#acccgaca   5940













ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tc






#ctgttccg   6000













accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt gg






#cgctttct   6060













caatgctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gc






#tgggctgt   6120













gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tc






#gtcttgag   6180













tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa ca






#ggattagc   6240













agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ct






#acggctac   6300













actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt cg






#gaaaaaga   6360













gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt tt






#ttgtttgc   6420













aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat ct






#tttctacg   6480













gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat ga






#gattatca   6540













aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc aa






#tctaaagt   6600













atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc ac






#ctatctca   6660













gcgatctgtc tatttcgttc atccatagtt gcctgactcc gggggggggg gg






#cgctgagg   6720













tctgcctcgt gaagaaggtg ttgctgactc ataccaggcc tgaatcgccc ca






#tcatccag   6780













ccagaaagtg agggagccac ggttgatgag agctttgttg taggtggacc ag






#ttggtgat   6840













tttgaacttt tgctttgcca cggaacggtc tgcgttgtcg ggaagatgcg tg






#atctgatc   6900













cttcaactca gcaaaagttc gatttattca acaaagccgc cgtcccgtca ag






#tcagcgta   6960













atgctctgcc agtgttacaa ccaattaacc aattctgatt agaaaaactc at






#cgagcatc   7020













aaatgaaact gcaatttatt catatcagga ttatcaatac catatttttg aa






#aaagccgt   7080













ttctgtaatg aaggagaaaa ctcaccgagg cagttccata ggatggcaag at






#cctggtat   7140













cggtctgcga ttccgactcg tccaacatca atacaaccta ttaatttccc ct






#cgtcaaaa   7200













ataaggttat caagtgagaa atcaccatga gtgacgactg aatccggtga ga






#atggcaaa   7260













agcttatgca tttctttcca gacttgttca acaggccagc cattacgctc gt






#catcaaaa   7320













tcactcgcat caaccaaacc gttattcatt cgtgattgcg cctgagcgag ac






#gaaatacg   7380













cgatcgctgt taaaaggaca attacaaaca ggaatcgaat gcaaccggcg ca






#ggaacact   7440













gccagcgcat caacaatatt ttcacctgaa tcaggatatt cttctaatac ct






#ggaatgct   7500













gttttcccgg ggatcgcagt ggtgagtaac catgcatcat caggagtacg ga






#taaaatgc   7560













ttgatggtcg gaagaggcat aaattccgtc agccagttta gtctgaccat ct






#catctgta   7620













acatcattgg caacgctacc tttgccatgt ttcagaaaca actctggcgc at






#cgggcttc   7680













ccatacaatc gatagattgt cgcacctgat tgcccgacat tatcgcgagc cc






#atttatac   7740













ccatataaat cagcatccat gttggaattt aatcgcggcc tcgagcaaga cg






#tttcccgt   7800













tgaatatggc tcataacacc ccttgtatta ctgtttatgt aagcagacag tt






#ttattgtt   7860













catgatgata tatttttatc ttgtgcaatg taacatcaga gattttgaga ca






#caacgtgg   7920













ctttcccccc ccccccatta ttgaagcatt tatcagggtt attgtctcat ga






#gcggatac   7980













atatttgaat gtatttagaa aaataaacaa ataggggttc cgcgcacatt tc






#cccgaaaa   8040













gtgccacctg acgtctaaga aaccattatt atcatgacat taacctataa aa






#ataggcgt   8100













atcacgaggc cctttcgtct cgcgcgtttc ggtgatgacg gtgaaaacct ct






#gacacatg   8160













cagctcccgg agacggtcac agcttgtctg taagcggatg ccgggagcag ac






#aagcccgt   8220













cagggcgcgt cagcgggtgt tggcgggtgt cggggctggc ttaactatgc gg






#catcagag   8280













cagattgtac tgagagtgca ccatatgcgg tgtgaaatac cgcacagatg cg






#taaggaga   8340













aaataccgca tcagattggc tattgg          






#                  






#            8366




















<210> SEQ ID NO 7






<211> LENGTH: 271






<212> TYPE: PRT






<213> ORGANISM: Escherichia coli













<400> SEQUENCE: 7













Met Ser His Ile Gln Arg Glu Thr Ser Cys Se






#r Arg Pro Arg Leu Asn






  1               5 






#                 10 






#                 15













Ser Asn Met Asp Ala Asp Leu Tyr Gly Tyr Ly






#s Trp Ala Arg Asp Asn






             20     






#             25     






#             30













Val Gly Gln Ser Gly Ala Thr Ile Tyr Arg Le






#u Tyr Gly Lys Pro Asp






         35         






#         40         






#         45













Ala Pro Glu Leu Phe Leu Lys His Gly Lys Gl






#y Ser Val Ala Asn Asp






     50             






#     55             






#     60













Val Thr Asp Glu Met Val Arg Leu Asn Trp Le






#u Thr Glu Phe Met Pro






 65                 






# 70                 






# 75                 






# 80













Leu Pro Thr Ile Lys His Phe Ile Arg Thr Pr






#o Asp Asp Ala Trp Leu






                 85 






#                 90 






#                 95













Leu Thr Thr Ala Ile Pro Gly Lys Thr Ala Ph






#e Gln Val Leu Glu Glu






            100      






#           105      






#           110













Tyr Pro Asp Ser Gly Glu Asn Ile Val Asp Al






#a Leu Ala Val Phe Leu






        115          






#       120          






#       125













Arg Arg Leu His Ser Ile Pro Val Cys Asn Cy






#s Pro Phe Asn Ser Asp






    130              






#   135              






#   140













Arg Val Phe Arg Leu Ala Gln Ala Gln Ser Ar






#g Met Asn Asn Gly Leu






145                 1






#50                 1






#55                 1






#60













Val Asp Ala Ser Asp Phe Asp Asp Glu Arg As






#n Gly Trp Pro Val Glu






                165  






#               170  






#               175













Gln Val Trp Lys Glu Met His Lys Leu Leu Pr






#o Phe Ser Pro Asp Ser






            180      






#           185      






#           190













Val Val Thr His Gly Asp Phe Ser Leu Asp As






#n Leu Ile Phe Asp Glu






        195          






#       200          






#       205













Gly Lys Leu Ile Gly Cys Ile Asp Val Gly Ar






#g Val Gly Ile Ala Asp






    210              






#   215              






#   220













Arg Tyr Gln Asp Leu Ala Ile Leu Trp Asn Cy






#s Leu Gly Glu Phe Ser






225                 2






#30                 2






#35                 2






#40













Pro Ser Leu Gln Lys Arg Leu Phe Gln Lys Ty






#r Gly Ile Asp Asn Pro






                245  






#               250  






#               255













Asp Met Asn Lys Leu Gln Phe His Leu Met Le






#u Asp Glu Phe Phe






            260      






#           265      






#           270




















<210> SEQ ID NO 8






<211> LENGTH: 8937






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  DNA






      sequence of transfer construc pmBCwC






#Nluci













<400> SEQUENCE: 8













tggaagggct aatttggtcc caaaaaagac aagagatcct tgatctgtgg at






#ctaccaca     60













cacaaggcta cttccctgat tggcagaact acacaccagg gccagggatc ag






#atatccac    120













tgacctttgg atggtgcttc aagttagtac cagttgaacc agagcaagta ga






#agaggcca    180













aataaggaga gaagaacagc ttgttacacc ctatgagcca gcatgggatg ga






#ggacccgg    240













agggagaagt attagtgtgg aagtttgaca gcctcctagc atttcgtcac at






#ggcccgag    300













agctgcatcc ggagtactac aaagactgct gacatcgagc tttctacaag gg






#actttccg    360













ctggggactt tccagggagg tgtggcctgg gcgggactgg ggagtggcga gc






#cctcagat    420













gctacatata agcagctgct ttttgcctgt actgggtctc tctggttaga cc






#agatctga    480













gcctgggagc tctctggcta actagggaac ccactgctta agcctcaata aa






#gcttgcct    540













tgagtgctca aagtagtgtg tgcccgtctg ttgtgtgact ctggtaacta ga






#gatccctc    600













agaccctttt agtcagtgtg gaaaatctct agcagtggcg cccgaacagg ga






#cttgaaag    660













cgaaagtaaa gccagaggag atctctcgac gcaggactcg gcttgctgaa gc






#gcgcacgg    720













caagaggcga ggggcggcgc ctgacgagga cgccaaaaat tttgactagc gg






#aggctaga    780













aggagagagc tcggtgcgag agcgtcagta ttaagcgggg gagaattaga tc






#gatgggaa    840













aaaattcggt taaggccagg gggaaagaaa aaatataaat taaaacatat ag






#tatgggca    900













agcagggagc tagaacgatt cgcagttaat cctggcctgt tagaaacatc ag






#aaggctgt    960













agacaaatac tgggacagct acaaccatcc cttcagacag gatcagaaga ac






#ttagatca   1020













ttatataata cagtagcaac cctctattgt gtgcatcaaa ggatagagat aa






#aagacacc   1080













aaggaagctt tagacaagat agaggaagag caaaacaaaa gtaagaaaaa ag






#cacagcaa   1140













gcagcagctg acacaggaca cagcaatcag gtcagccaaa attaccctat ag






#tgcagaac   1200













atccaggggc aaatggtaca tcaggccata tcacctagaa ctttaaacga ta






#agcttggg   1260













agttccgcgt tacataactt acggtaaatg gcccgcctgg ctgaccgccc aa






#cgaccccc   1320













gcccattgac gtcaataatg acgtatgttc ccatagtaac gccaataggg ac






#tttccatt   1380













gacgtcaatg ggtggagtat ttacggtaaa ctgcccactt ggcagtacat ca






#agtgtatc   1440













atatgccaag tacgccccct attgacgtca atgacggtaa atggcccgcc tg






#gcattatg   1500













cccagtacat gaccttatgg gactttccta cttggcagta catctacgta tt






#agtcatcg   1560













ctattaccat ggtgatgcgg ttttggcagt acatcaatgg gcgtggatag cg






#gtttgact   1620













cacggggatt tccaagtctc caccccattg acgtcaatgg gagtttgttt tg






#gcaccaaa   1680













atcaacggga ctttccaaaa tgtcgtaaca actccgcccc attgacgcaa at






#gggcggta   1740













ggcgtgtacg gtgggaggtc tatataagca gagctcgttt agtgaaccgt ca






#gatcgcct   1800













ggagacgcca tccacgctgt tttgacctcc atagaagaca ccgactctag ag






#gatccatc   1860













taagtaagct tggcattccg gtactgttgg taaaatggaa gacgccaaaa ac






#ataaagaa   1920













aggcccggcg ccattctatc ctctagagga tggaaccgct ggagagcaac tg






#cataaggc   1980













tatgaagaga tacgccctgg ttcctggaac aattgctttt acagatgcac at






#atcgaggt   2040













gaacatcacg tacgcggaat acttcgaaat gtccgttcgg ttggcagaag ct






#atgaaacg   2100













atatgggctg aatacaaatc acagaatcgt cgtatgcagt gaaaactctc tt






#caattctt   2160













tatgccggtg ttgggcgcgt tatttatcgg agttgcagtt gcgcccgcga ac






#gacattta   2220













taatgaacgt gaattgctca acagtatgaa catttcgcag cctaccgtag tg






#tttgtttc   2280













caaaaagggg ttgcaaaaaa ttttgaacgt gcaaaaaaaa ttaccaataa tc






#cagaaaat   2340













tattatcatg gattctaaaa cggattacca gggatttcag tcgatgtaca cg






#ttcgtcac   2400













atctcatcta cctcccggtt ttaatgaata cgattttgta ccagagtcct tt






#gatcgtga   2460













caaaacaatt gcactgataa tgaattcctc tggatctact gggttaccta ag






#ggtgtggc   2520













ccttccgcat agaactgcct gcgtcagatt ctcgcatgcc agagatccta tt






#tttggcaa   2580













tcaaatcatt ccggatactg cgattttaag tgttgttcca ttccatcacg gt






#tttggaat   2640













gtttactaca ctcggatatt tgatatgtgg atttcgagtc gtcttaatgt at






#agatttga   2700













agaagagctg tttttacgat cccttcagga ttacaaaatt caaagtgcgt tg






#ctagtacc   2760













aaccctattt tcattcttcg ccaaaagcac tctgattgac aaatacgatt ta






#tctaattt   2820













acacgaaatt gcttctgggg gcgcacctct ttcgaaagaa gtcggggaag cg






#gttgcaaa   2880













acgcttccat cttccaggga tacgacaagg atatgggctc actgagacta ca






#tcagctat   2940













tctgattaca cccgaggggg atgataaacc gggcgcggtc ggtaaagttg tt






#ccattttt   3000













tgaagcgaag gttgtggatc tggataccgg gaaaacgctg ggcgttaatc ag






#agaggcga   3060













attatgtgtc agaggaccta tgattatgtc cggttatgta aacaatccgg aa






#gcgaccaa   3120













cgccttgatt gacaaggatg gatggctaca ttctggagac atagcttact gg






#gacgaaga   3180













cgaacacttc ttcatagttg accgcttgaa gtctttaatt aaatacaaag ga






#tatcaggt   3240













ggcccccgct gaattggaat cgatattgtt acaacacccc aacatcttcg ac






#gcgggcgt   3300













ggcaggtctt cccgacgatg acgccggtga acttcccgcc gccgttgttg tt






#ttggagca   3360













cggaaagacg atgacggaaa aagagatcgt ggattacgtc gccagtcaag ta






#acaaccgc   3420













gaaaaagttg cgcggaggag ttgtgtttgt ggacgaagta ccgaaaggtc tt






#accggaaa   3480













actcgacgca agaaaaatca gagagatcct cataaaggcc aagaagggcg ga






#aagtccaa   3540













attgtaactc gagggggggc ccggtacctt taagaccaat gacttacaag gc






#agctgtag   3600













atcttagcca ctttttaaaa gaaaaggggg gactggaagg gctaattcac tc






#ccaaagaa   3660













gacaagatat ccttgatctg tggatctacc acacacaagg ctacttccct ga






#ttggcaga   3720













actacacacc agggccaggg gtcagatatc cactgacctt tggatggtgc ta






#caagctag   3780













taccagttga gccagataag gtagaagagg ccaataaagg agagaacacc ag






#cttgttac   3840













accctgtgag cctgcatgga atggatgacc ctgagagaga agtgttagag tg






#gaggtttg   3900













acagccgcct agcatttcat cacgtggccc gagagctgca tccggagtac tt






#caagaact   3960













gctgacatcg agcttgctac aagggacttt ccgctgggga ctttccaggg ag






#gcgtggcc   4020













tgggcgggac tggggagtgg cgagccctca gatgctgcat ataagcagct gc






#tttttgcc   4080













tgtactgggt ctctctggtt agaccagatc tgagcctggg agctctctgg ct






#aactaggg   4140













aacccactgc ttaagcctca ataaagcttg ccttgagtgc ttcaagtagt gt






#gtgcccgt   4200













ctgttgtgtg actctggtaa ctagagatcc ctcagaccct tttagtcagt gt






#ggaaaatc   4260













tctagcaccc cccaggaggt agaggttgca gtgagccaag atcgcgccac tg






#cattccag   4320













cctgggcaag aaaacaagac tgtctaaaat aataataata agttaagggt at






#taaatata   4380













tttatacatg gaggtcataa aaatatatat atttgggctg ggcgcagtgg ct






#cacacctg   4440













cgcccggccc tttgggaggc cgaggcaggt ggatcacctg agtttgggag tt






#ccagacca   4500













gcctgaccaa catggagaaa ccccttctct gtgtattttt agtagatttt at






#tttatgtg   4560













tattttattc acaggtattt ctggaaaact gaaactgttt ttcctctact ct






#gataccac   4620













aagaatcatc agcacagagg aagacttctg tgatcaaatg tggtgggaga gg






#gaggtttt   4680













caccagcaca tgagcagtca gttctgccgc agactcggcg ggtgtccttc gg






#ttcagttc   4740













caacaccgcc tgcctggaga gaggtcagac cacagggtga gggctcagtc cc






#caagacat   4800













aaacacccaa gacataaaca cccaacaggt ccaccccgcc tgctgcccag gc






#agagccga   4860













ttcaccaaga cgggaattag gatagagaaa gagtaagtca cacagagccg gc






#tgtgcggg   4920













agaacggagt tctattatga ctcaaatcag tctccccaag cattcgggga tc






#agagtttt   4980













taaggataac ttagtgtgta gggggccagt gagttggaga tgaaagcgta gg






#gagtcgaa   5040













ggtgtccttt tgcgccgagt cagttcctgg gtgggggcca caagatcgga tg






#agccagtt   5100













tatcaatccg ggggtgccag ctgatccatg gagtgcaggg tctgcaaaat at






#ctcaagca   5160













ctgattgatc ttaggtttta caatagtgat gttaccccag gaacaatttg gg






#gaaggtca   5220













gaatcttgta gcctgtagct gcatgactcc taaaccataa tttctttttt gt






#tttttttt   5280













ttttattttt gagacagggt ctcactctgt cacctaggct ggagtgcagt gg






#tgcaatca   5340













cagctcactg cagcccctag agcggccgcc accgcggtgg agctccaatt cg






#ccctatag   5400













tgagtcgtat tacaattcac tggccgtcgt tttacaacgt cgtgactggg aa






#aaccctgg   5460













cgttacccaa cttaatcgcc ttgcagcaca tccccctttc gccagctggc gt






#aatagcga   5520













agaggcccgc accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aa






#tggcgcga   5580













aattgtaaac gttaatattt tgttaaaatt cgcgttaaat ttttgttaaa tc






#agctcatt   5640













ttttaaccaa taggccgaaa tcggcaaaat cccttataaa tcaaaagaat ag






#accgagat   5700













agggttgagt gttgttccag tttggaacaa gagtccacta ttaaagaacg tg






#gactccaa   5760













cgtcaaaggg cgaaaaaccg tctatcaggg cgatggccca ctacgtgaac ca






#tcacccta   5820













atcaagtttt ttggggtcga ggtgccgtaa agcactaaat cggaacccta aa






#gggagccc   5880













ccgatttaga gcttgacggg gaaagccggc gaacgtggcg agaaaggaag gg






#aagaaagc   5940













gaaaggagcg ggcgctaggg cgctggcaag tgtagcggtc acgctgcgcg ta






#accaccac   6000













acccgccgcg cttaatgcgc cgctacaggg cgcgtcccag gtggcacttt tc






#ggggaaat   6060













gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta tc






#cgctcatg   6120













agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat ga






#gtattcaa   6180













catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt tt






#ttgctcac   6240













ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg ag






#tgggttac   6300













atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga ag






#aacgtttt   6360













ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg ta






#ttgacgcc   6420













gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt tg






#agtactca   6480













ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg ca






#gtgctgcc   6540













ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg ag






#gaccgaag   6600













gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga tc






#gttgggaa   6660













ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc tg






#tagcaatg   6720













gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc cc






#ggcaacaa   6780













ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc gg






#cccttccg   6840













gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg cg






#gtatcatt   6900













gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac ga






#cggggagt   6960













caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc ac






#tgattaag   7020













cattggtaac tgtcagacca agtttactca tatatacttt agattgattt aa






#aacttcat   7080













ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac ca






#aaatccct   7140













taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa ag






#gatcttct   7200













tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc ac






#cgctacca   7260













gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt aa






#ctggcttc   7320













agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg cc






#accacttc   7380













aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc ag






#tggctgct   7440













gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt ac






#cggataag   7500













gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga gc






#gaacgacc   7560













tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct tc






#ccgaaggg   7620













agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg ca






#cgagggag   7680













cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca cc






#tctgactt   7740













gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa cg






#ccagcaac   7800













gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt ct






#ttcctgcg   7860













ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga ta






#ccgctcgc   7920













cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga gc






#gcccaata   7980













cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca cg






#acaggttt   8040













cccgactgga aagcgggcag tgagcgcaac gcaattaatg tgagttagct ca






#ctcattag   8100













gcaccccagg ctttacactt tatgcttccg gctcgtatgt tgtgtggaat tg






#tgagcgga   8160













taacaatttc acacaggaaa cagctatgac catgattacg ccaagctcgg aa






#ttaaccct   8220













cactaaaggg aacaaaagct gctgcagggt ccctaactgc caagccccac ag






#tgtgccct   8280













gaggctgccc cttccttcta gcggctgccc ccactcggct ttgctttccc ta






#gtttcagt   8340













tacttgcgtt cagccaaggt ctgaaactag gtgcgcacag agcggtaaga ct






#gcgagaga   8400













aagagaccag ctttacaggg ggtttatcac agtgcaccct gacagtcgtc ag






#cctcacag   8460













ggggtttatc acattgcacc ctgacagtcg tcagcctcac agggggttta tc






#acagtgca   8520













cccttacaat cattccattt gattcacaat ttttttagtc tctactgtgc ct






#aacttgta   8580













agttaaattt gatcagaggt gtgttcccag aggggaaaac agtatataca gg






#gttcagta   8640













ctatcgcatt tcaggcctcc acctgggtct tggaatgtgt cccccgaggg gt






#gatgacta   8700













cctcagttgg atctccacag gtcacagtga cacaagataa ccaagacacc tc






#ccaaggct   8760













accacaatgg gccgccctcc acgtgcacat ggccggagga actgccatgt cg






#gaggtgca   8820













agcacacctg cgcatcagag tccttggtgt ggagggaggg accagcgcag ct






#tccagcca   8880













tccacctgat gaacagaacc tagggaaagc cccagttcta cttacaccag ga






#aaggc      8937




















<210> SEQ ID NO 9






<211> LENGTH: 8937






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  DNA






      sequence from transfer construct pmB






#CmCNluci













<400> SEQUENCE: 9













tggaagggct aatttggtcc caaaaaagac aagagatcct tgatctgtgg at






#ctaccaca     60













cacaaggcta cttccctgat tggcagaact acacaccagg gccagggatc ag






#atatccac    120













tgacctttgg atggtgcttc aagttagtac cagttgaacc agagcaagta ga






#agaggcca    180













aataaggaga gaagaacagc ttgttacacc ctatgagcca gcatgggatg ga






#ggacccgg    240













agggagaagt attagtgtgg aagtttgaca gcctcctagc atttcgtcac at






#ggcccgag    300













agctgcatcc ggagtactac aaagactgct gacatcgagc tttctacaag gg






#actttccg    360













ctggggactt tccagggagg tgtggcctgg gcgggactgg ggagtggcga gc






#cctcagat    420













gctacatata agcagctgct ttttgcctgt actgggtctc tctggttaga cc






#agatctga    480













gcctgggagc tctctggcta actagggaac ccactgctta agcctcaata aa






#gcttgcct    540













tgagtgctca aagtagtgtg tgcccgtctg ttgtgtgact ctggtaacta ga






#gatccctc    600













agaccctttt agtcagtgtg gaaaatctct agcagtggcg cccgaacagg ga






#cttgaaag    660













cgaaagtaaa gccagaggag atctctcgac gcaggactcg gcttgctgaa gc






#gcgcacgg    720













caagaggcga ggggcggcgc ctgacgagga cgccaaaaat tttgactagc gg






#aggctaga    780













aggagagagc tcggtgcgag agcgtcagta ttaagcgggg gagaattaga tc






#gatgggaa    840













aaaattcggt taaggccagg gggaaagaag aagtacaagc taaagcacat cg






#tatgggca    900













agcagggagc tagaacgatt cgcagttaat cctggcctgt tagaaacatc ag






#aaggctgt    960













agacaaatac tgggacagct acaaccatcc cttcagacag gatcagagga gc






#ttcgatca   1020













ctatacaaca cagtagcaac cctctattgt gtgcaccagc ggatcgagat ca






#aggacacc   1080













aaggaagctt tagacaagat agaggaagag caaaacaagt ccaagaagaa gg






#cccagcag   1140













gcagcagctg acacaggaca cagcaatcag gtcagccaaa attaccctat ag






#tgcagaac   1200













atccaggggc aaatggtaca tcaggccata tcacctagaa ctttaaacga ta






#agcttggg   1260













agttccgcgt tacataactt acggtaaatg gcccgcctgg ctgaccgccc aa






#cgaccccc   1320













gcccattgac gtcaataatg acgtatgttc ccatagtaac gccaataggg ac






#tttccatt   1380













gacgtcaatg ggtggagtat ttacggtaaa ctgcccactt ggcagtacat ca






#agtgtatc   1440













atatgccaag tacgccccct attgacgtca atgacggtaa atggcccgcc tg






#gcattatg   1500













cccagtacat gaccttatgg gactttccta cttggcagta catctacgta tt






#agtcatcg   1560













ctattaccat ggtgatgcgg ttttggcagt acatcaatgg gcgtggatag cg






#gtttgact   1620













cacggggatt tccaagtctc caccccattg acgtcaatgg gagtttgttt tg






#gcaccaaa   1680













atcaacggga ctttccaaaa tgtcgtaaca actccgcccc attgacgcaa at






#gggcggta   1740













ggcgtgtacg gtgggaggtc tatataagca gagctcgttt agtgaaccgt ca






#gatcgcct   1800













ggagacgcca tccacgctgt tttgacctcc atagaagaca ccgactctag ag






#gatccatc   1860













taagtaagct tggcattccg gtactgttgg taaaatggaa gacgccaaaa ac






#ataaagaa   1920













aggcccggcg ccattctatc ctctagagga tggaaccgct ggagagcaac tg






#cataaggc   1980













tatgaagaga tacgccctgg ttcctggaac aattgctttt acagatgcac at






#atcgaggt   2040













gaacatcacg tacgcggaat acttcgaaat gtccgttcgg ttggcagaag ct






#atgaaacg   2100













atatgggctg aatacaaatc acagaatcgt cgtatgcagt gaaaactctc tt






#caattctt   2160













tatgccggtg ttgggcgcgt tatttatcgg agttgcagtt gcgcccgcga ac






#gacattta   2220













taatgaacgt gaattgctca acagtatgaa catttcgcag cctaccgtag tg






#tttgtttc   2280













caaaaagggg ttgcaaaaaa ttttgaacgt gcaaaaaaaa ttaccaataa tc






#cagaaaat   2340













tattatcatg gattctaaaa cggattacca gggatttcag tcgatgtaca cg






#ttcgtcac   2400













atctcatcta cctcccggtt ttaatgaata cgattttgta ccagagtcct tt






#gatcgtga   2460













caaaacaatt gcactgataa tgaattcctc tggatctact gggttaccta ag






#ggtgtggc   2520













ccttccgcat agaactgcct gcgtcagatt ctcgcatgcc agagatccta tt






#tttggcaa   2580













tcaaatcatt ccggatactg cgattttaag tgttgttcca ttccatcacg gt






#tttggaat   2640













gtttactaca ctcggatatt tgatatgtgg atttcgagtc gtcttaatgt at






#agatttga   2700













agaagagctg tttttacgat cccttcagga ttacaaaatt caaagtgcgt tg






#ctagtacc   2760













aaccctattt tcattcttcg ccaaaagcac tctgattgac aaatacgatt ta






#tctaattt   2820













acacgaaatt gcttctgggg gcgcacctct ttcgaaagaa gtcggggaag cg






#gttgcaaa   2880













acgcttccat cttccaggga tacgacaagg atatgggctc actgagacta ca






#tcagctat   2940













tctgattaca cccgaggggg atgataaacc gggcgcggtc ggtaaagttg tt






#ccattttt   3000













tgaagcgaag gttgtggatc tggataccgg gaaaacgctg ggcgttaatc ag






#agaggcga   3060













attatgtgtc agaggaccta tgattatgtc cggttatgta aacaatccgg aa






#gcgaccaa   3120













cgccttgatt gacaaggatg gatggctaca ttctggagac atagcttact gg






#gacgaaga   3180













cgaacacttc ttcatagttg accgcttgaa gtctttaatt aaatacaaag ga






#tatcaggt   3240













ggcccccgct gaattggaat cgatattgtt acaacacccc aacatcttcg ac






#gcgggcgt   3300













ggcaggtctt cccgacgatg acgccggtga acttcccgcc gccgttgttg tt






#ttggagca   3360













cggaaagacg atgacggaaa aagagatcgt ggattacgtc gccagtcaag ta






#acaaccgc   3420













gaaaaagttg cgcggaggag ttgtgtttgt ggacgaagta ccgaaaggtc tt






#accggaaa   3480













actcgacgca agaaaaatca gagagatcct cataaaggcc aagaagggcg ga






#aagtccaa   3540













attgtaactc gagggggggc ccggtacctt taagaccaat gacttacaag gc






#agctgtag   3600













atcttagcca ctttttaaaa gaaaaggggg gactggaagg gctaattcac tc






#ccaaagaa   3660













gacaagatat ccttgatctg tggatctacc acacacaagg ctacttccct ga






#ttggcaga   3720













actacacacc agggccaggg gtcagatatc cactgacctt tggatggtgc ta






#caagctag   3780













taccagttga gccagataag gtagaagagg ccaataaagg agagaacacc ag






#cttgttac   3840













accctgtgag cctgcatgga atggatgacc ctgagagaga agtgttagag tg






#gaggtttg   3900













acagccgcct agcatttcat cacgtggccc gagagctgca tccggagtac tt






#caagaact   3960













gctgacatcg agcttgctac aagggacttt ccgctgggga ctttccaggg ag






#gcgtggcc   4020













tgggcgggac tggggagtgg cgagccctca gatgctgcat ataagcagct gc






#tttttgcc   4080













tgtactgggt ctctctggtt agaccagatc tgagcctggg agctctctgg ct






#aactaggg   4140













aacccactgc ttaagcctca ataaagcttg ccttgagtgc ttcaagtagt gt






#gtgcccgt   4200













ctgttgtgtg actctggtaa ctagagatcc ctcagaccct tttagtcagt gt






#ggaaaatc   4260













tctagcaccc cccaggaggt agaggttgca gtgagccaag atcgcgccac tg






#cattccag   4320













cctgggcaag aaaacaagac tgtctaaaat aataataata agttaagggt at






#taaatata   4380













tttatacatg gaggtcataa aaatatatat atttgggctg ggcgcagtgg ct






#cacacctg   4440













cgcccggccc tttgggaggc cgaggcaggt ggatcacctg agtttgggag tt






#ccagacca   4500













gcctgaccaa catggagaaa ccccttctct gtgtattttt agtagatttt at






#tttatgtg   4560













tattttattc acaggtattt ctggaaaact gaaactgttt ttcctctact ct






#gataccac   4620













aagaatcatc agcacagagg aagacttctg tgatcaaatg tggtgggaga gg






#gaggtttt   4680













caccagcaca tgagcagtca gttctgccgc agactcggcg ggtgtccttc gg






#ttcagttc   4740













caacaccgcc tgcctggaga gaggtcagac cacagggtga gggctcagtc cc






#caagacat   4800













aaacacccaa gacataaaca cccaacaggt ccaccccgcc tgctgcccag gc






#agagccga   4860













ttcaccaaga cgggaattag gatagagaaa gagtaagtca cacagagccg gc






#tgtgcggg   4920













agaacggagt tctattatga ctcaaatcag tctccccaag cattcgggga tc






#agagtttt   4980













taaggataac ttagtgtgta gggggccagt gagttggaga tgaaagcgta gg






#gagtcgaa   5040













ggtgtccttt tgcgccgagt cagttcctgg gtgggggcca caagatcgga tg






#agccagtt   5100













tatcaatccg ggggtgccag ctgatccatg gagtgcaggg tctgcaaaat at






#ctcaagca   5160













ctgattgatc ttaggtttta caatagtgat gttaccccag gaacaatttg gg






#gaaggtca   5220













gaatcttgta gcctgtagct gcatgactcc taaaccataa tttctttttt gt






#tttttttt   5280













ttttattttt gagacagggt ctcactctgt cacctaggct ggagtgcagt gg






#tgcaatca   5340













cagctcactg cagcccctag agcggccgcc accgcggtgg agctccaatt cg






#ccctatag   5400













tgagtcgtat tacaattcac tggccgtcgt tttacaacgt cgtgactggg aa






#aaccctgg   5460













cgttacccaa cttaatcgcc ttgcagcaca tccccctttc gccagctggc gt






#aatagcga   5520













agaggcccgc accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aa






#tggcgcga   5580













aattgtaaac gttaatattt tgttaaaatt cgcgttaaat ttttgttaaa tc






#agctcatt   5640













ttttaaccaa taggccgaaa tcggcaaaat cccttataaa tcaaaagaat ag






#accgagat   5700













agggttgagt gttgttccag tttggaacaa gagtccacta ttaaagaacg tg






#gactccaa   5760













cgtcaaaggg cgaaaaaccg tctatcaggg cgatggccca ctacgtgaac ca






#tcacccta   5820













atcaagtttt ttggggtcga ggtgccgtaa agcactaaat cggaacccta aa






#gggagccc   5880













ccgatttaga gcttgacggg gaaagccggc gaacgtggcg agaaaggaag gg






#aagaaagc   5940













gaaaggagcg ggcgctaggg cgctggcaag tgtagcggtc acgctgcgcg ta






#accaccac   6000













acccgccgcg cttaatgcgc cgctacaggg cgcgtcccag gtggcacttt tc






#ggggaaat   6060













gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta tc






#cgctcatg   6120













agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat ga






#gtattcaa   6180













catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt tt






#ttgctcac   6240













ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg ag






#tgggttac   6300













atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga ag






#aacgtttt   6360













ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg ta






#ttgacgcc   6420













gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt tg






#agtactca   6480













ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg ca






#gtgctgcc   6540













ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg ag






#gaccgaag   6600













gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga tc






#gttgggaa   6660













ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc tg






#tagcaatg   6720













gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc cc






#ggcaacaa   6780













ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc gg






#cccttccg   6840













gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg cg






#gtatcatt   6900













gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac ga






#cggggagt   6960













caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc ac






#tgattaag   7020













cattggtaac tgtcagacca agtttactca tatatacttt agattgattt aa






#aacttcat   7080













ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac ca






#aaatccct   7140













taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa ag






#gatcttct   7200













tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc ac






#cgctacca   7260













gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt aa






#ctggcttc   7320













agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg cc






#accacttc   7380













aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc ag






#tggctgct   7440













gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt ac






#cggataag   7500













gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga gc






#gaacgacc   7560













tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct tc






#ccgaaggg   7620













agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg ca






#cgagggag   7680













cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca cc






#tctgactt   7740













gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa cg






#ccagcaac   7800













gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt ct






#ttcctgcg   7860













ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga ta






#ccgctcgc   7920













cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga gc






#gcccaata   7980













cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca cg






#acaggttt   8040













cccgactgga aagcgggcag tgagcgcaac gcaattaatg tgagttagct ca






#ctcattag   8100













gcaccccagg ctttacactt tatgcttccg gctcgtatgt tgtgtggaat tg






#tgagcgga   8160













taacaatttc acacaggaaa cagctatgac catgattacg ccaagctcgg aa






#ttaaccct   8220













cactaaaggg aacaaaagct gctgcagggt ccctaactgc caagccccac ag






#tgtgccct   8280













gaggctgccc cttccttcta gcggctgccc ccactcggct ttgctttccc ta






#gtttcagt   8340













tacttgcgtt cagccaaggt ctgaaactag gtgcgcacag agcggtaaga ct






#gcgagaga   8400













aagagaccag ctttacaggg ggtttatcac agtgcaccct gacagtcgtc ag






#cctcacag   8460













ggggtttatc acattgcacc ctgacagtcg tcagcctcac agggggttta tc






#acagtgca   8520













cccttacaat cattccattt gattcacaat ttttttagtc tctactgtgc ct






#aacttgta   8580













agttaaattt gatcagaggt gtgttcccag aggggaaaac agtatataca gg






#gttcagta   8640













ctatcgcatt tcaggcctcc acctgggtct tggaatgtgt cccccgaggg gt






#gatgacta   8700













cctcagttgg atctccacag gtcacagtga cacaagataa ccaagacacc tc






#ccaaggct   8760













accacaatgg gccgccctcc acgtgcacat ggccggagga actgccatgt cg






#gaggtgca   8820













agcacacctg cgcatcagag tccttggtgt ggagggaggg accagcgcag ct






#tccagcca   8880













tccacctgat gaacagaacc tagggaaagc cccagttcta cttacaccag ga






#aaggc      8937




















<210> SEQ ID NO 10






<211> LENGTH: 122






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  DNA






      sequence of the BSSHII to ClaI 






#fragment in transfer






      construct pmBCwCNluci and pmBCmCNluci













<400> SEQUENCE: 10













cgcgcacggc aagaggcgag gggcggcgcc tgacgaggac gccaaaaatt tt






#gactagcg     60













gaggctagaa ggagagagct cggtgcgaga gcgtcagtat taagcggggg ag






#aattagat    120













cg                  






#                  






#                  






#             122




















<210> SEQ ID NO 11






<211> LENGTH: 122






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  DNA






      sequence of the BSSHII to ClaI 






#fragment in transfer






      construct 3













<400> SEQUENCE: 11













cgcgcacggc aagaggcgag gggcggcgcc tggggaggac gccaaaaatt tt






#gactagcg     60













gaggctagaa ggagagagat gggtgcgaga gcgtcagtat taagcggggg ag






#aattagat    120













cg                  






#                  






#                  






#             122




















<210> SEQ ID NO 12






<211> LENGTH: 122






<212> TYPE: DNA






<213> ORGANISM: Human immunodeficiency virus type 






#1













<400> SEQUENCE: 12













cgcgcacggc aagaggcgag gggcggcgac tggtgagtac gccaaaaatt tt






#gactatcg     60













gaggctagaa ggagagagat gggtgcgaga gcgtcagtat taagcggggg ag






#aattagat    120













cg                  






#                  






#                  






#             122




















<210> SEQ ID NO 13






<211> LENGTH: 122






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  Plurality






      Consensus sequence of DNA sequence 






#of the BSSHII






      to CLaI fragment in HIV-1 and 






#transfer constructs













<400> SEQUENCE: 13













cgcgcacggc aagaggcgag gggcggcgac tggtgagtac gccaaaaatt tt






#gactagcg     60













gaggctagaa ggagagagat gggtgcgaga gcgtcggtat taagcggggg ag






#aattagat    120













aa                  






#                  






#                  






#             122




















<210> SEQ ID NO 14






<211> LENGTH: 122






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  DNA






      sequence of construct CMVkan/R-R-SIVgp1






#60 CTE













<400> SEQUENCE: 14













cgcgcacggc aagaggcgag gggcggcgac tggtgagtac gccaaaaatt tt






#gactagcg     60













gaggctagaa ggagagagat gggtgcgaga gcgtcagtat taagcggggg ag






#aattagat    120













cg                  






#                  






#                  






#             122




















<210> SEQ ID NO 15






<211> LENGTH: 6978






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  DNA






      sequence of construct CMVkan/R-R-SIVgp1






#60 CTE













<400> SEQUENCE: 15













cctggccatt gcatacgttg tatccatatc ataatatgta catttatatt gg






#ctcatgtc     60













caacattacc gccatgttga cattgattat tgactagtta ttaatagtaa tc






#aattacgg    120













ggtcattagt tcatagccca tatatggagt tccgcgttac ataacttacg gt






#aaatggcc    180













cgcctggctg accgcccaac gacccccgcc cattgacgtc aataatgacg ta






#tgttccca    240













tagtaacgcc aatagggact ttccattgac gtcaatgggt ggagtattta cg






#gtaaactg    300













cccacttggc agtacatcaa gtgtatcata tgccaagtac gccccctatt ga






#cgtcaatg    360













acggtaaatg gcccgcctgg cattatgccc agtacatgac cttatgggac tt






#tcctactt    420













ggcagtacat ctacgtatta gtcatcgcta ttaccatggt gatgcggttt tg






#gcagtaca    480













tcaatgggcg tggatagcgg tttgactcac ggggatttcc aagtctccac cc






#cattgacg    540













tcaatgggag tttgttttgg caccaaaatc aacgggactt tccaaaatgt cg






#taacaact    600













ccgccccatt gacgcaaatg ggcggtaggc gtgtacggtg ggaggtctat at






#aagcagag    660













ctcgtttagt gaaccgtcag atcgcctgga gacgccatcc acgctgtttt ga






#cctccata    720













gaagacaccg ggaccgatcc agcctccgcg ggccgcgcta agtatgggat gt






#cttgggaa    780













tcagctgctt atcgccatct tgcttttaag tgtctatggg atctattgta ct






#ctatatgt    840













cacagtcttt tatggtgtac cagcttggag gaatgcgaca attcccctct tt






#tgtgcaac    900













caagaatagg gatacttggg gaacaactca gtgcctacca gataatggtg at






#tattcaga    960













agtggccctt aatgttacag aaagctttga tgcctggaat aatacagtca ca






#gaacaggc   1020













aatagaggat gtatggcaac tctttgagac ctcaataaag ccttgtgtaa aa






#ttatcccc   1080













attatgcatt actatgagat gcaataaaag tgagacagat agatggggat tg






#acaaaatc   1140













aataacaaca acagcatcaa caacatcaac gacagcatca gcaaaagtag ac






#atggtcaa   1200













tgagactagt tcttgtatag cccaggataa ttgcacaggc ttggaacaag ag






#caaatgat   1260













aagctgtaaa ttcaacatga cagggttaaa aagagacaag aaaaaagagt ac






#aatgaaac   1320













ttggtactct gcagatttgg tatgtgaaca agggaataac actggtaatg aa






#agtagatg   1380













ttacatgaac cactgtaaca cttctgttat ccaagagtct tgtgacaaac at






#tattggga   1440













tgctattaga tttaggtatt gtgcacctcc aggttatgct ttgcttagat gt






#aatgacac   1500













aaattattca ggctttatgc ctaaatgttc taaggtggtg gtctcttcat gc






#acaaggat   1560













gatggagaca cagacttcta cttggtttgg ctttaatgga actagagcag aa






#aatagaac   1620













ttatatttac tggcatggta gggataatag gactataatt agtttaaata ag






#tattataa   1680













tctaacaatg aaatgtagaa gaccaggaaa taagacagtt ttaccagtca cc






#attatgtc   1740













tggattggtt ttccactcac aaccaatcaa tgataggcca aagcaggcat gg






#tgttggtt   1800













tggaggaaaa tggaaggatg caataaaaga ggtgaagcag accattgtca aa






#catcccag   1860













gtatactgga actaacaata ctgataaaat caatttgacg gctcctggag ga






#ggagatcc   1920













ggaagttacc ttcatgtgga caaattgcag aggagagttc ctctactgta aa






#atgaattg   1980













gtttctaaat tgggtagaag ataggaatac agctaaccag aagccaaagg aa






#cagcataa   2040













aaggaattac gtgccatgtc atattagaca aataatcaac acttggcata aa






#gtaggcaa   2100













aaatgtttat ttgcctccaa gagagggaga cctcacgtgt aactccacag tg






#accagtct   2160













catagcaaac atagattgga ttgatggaaa ccaaactaat atcaccatga gt






#gcagaggt   2220













ggcagaactg tatcgattgg aattgggaga ttataaatta gtagagatca ct






#ccaattgg   2280













cttggccccc acagatgtga agaggtacac tactggtggc acctcaagaa at






#aaaagagg   2340













ggtctttgtg ctagggttct tgggttttct cgcaacggca ggttctgcaa tg






#ggagccgc   2400













cagcctgacc ctcacggcac agtcccgaac tttattggct gggatagtcc aa






#cagcagca   2460













acagctgttg gacgtggtca agagacaaca agaattgttg cgactgaccg tc






#tggggaac   2520













aaagaacctc cagactaggg tcactgccat cgagaagtac ttaaaggacc ag






#gcgcagct   2580













gaatgcttgg ggatgtgcgt ttagacaagt ctgccacact actgtaccat gg






#ccaaatgc   2640













aagtctaaca ccaaagtgga acaatgagac ttggcaagag tgggagcgaa ag






#gttgactt   2700













cttggaagaa aatataacag ccctcctaga ggaggcacaa attcaacaag ag






#aagaacat   2760













gtatgaatta caaaagttga atagctggga tgtgtttggc aattggtttg ac






#cttgcttc   2820













ttggataaag tatatacaat atggagttta tatagttgta ggagtaatac tg






#ttaagaat   2880













agtgatctat atagtacaaa tgctagctaa gttaaggcag gggtataggc ca






#gtgttctc   2940













ttccccaccc tcttatttcc agcagaccca tatccaacag gacccggcac tg






#ccaaccag   3000













agaaggcaaa gaaagagacg gtggagaagg cggtggcaac agctcctggc ct






#tggcagat   3060













agaatatatc cactttctta ttcgtcagct tattagactc ttgacttggc ta






#ttcagtaa   3120













ctgtaggact ttgctatcga gagtatacca gatcctccaa ccaatactcc ag






#aggctctc   3180













tgcgacccta cagaggattc gagaagtcct caggactgaa ctgacctacc ta






#caatatgg   3240













gtggagctat ttccatgagg cggtccaggc cgtctggaga tctgcgacag ag






#actcttgc   3300













gggcgcgtgg ggagacttat gggagactct taggagaggt ggaagatgga ta






#ctcgcaat   3360













ccccaggagg attagacaag ggcttgagct cactctcttg tgagggacag ag






#aattcgga   3420













tccactagtt ctagactcga gggggggccc ggtacgagcg cttagctagc ta






#gagaccac   3480













ctcccctgcg agctaagctg gacagccaat gacgggtaag agagtgacat tt






#ttcactaa   3540













cctaagacag gagggccgtc agagctactg cctaatccaa agacgggtaa aa






#gtgataaa   3600













aatgtatcac tccaacctaa gacaggcgca gcttccgagg gatttgtcgt ct






#gttttata   3660













tatatttaaa agggtgacct gtccggagcc gtgctgcccg gatgatgtct tg






#gtctagac   3720













tcgagggggg gcccggtacg atccagatct gctgtgcctt ctagttgcca gc






#catctgtt   3780













gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg ccactcccac tg






#tcctttcc   3840













taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat tc






#tggggggt   3900













ggggtggggc agcacagcaa gggggaggat tgggaagaca atagcaggca tg






#ctggggat   3960













gcggtgggct ctatgggtac ccaggtgctg aagaattgac ccggttcctc ct






#gggccaga   4020













aagaagcagg cacatcccct tctctgtgac acaccctgtc cacgcccctg gt






#tcttagtt   4080













ccagccccac tcataggaca ctcatagctc aggagggctc cgccttcaat cc






#cacccgct   4140













aaagtacttg gagcggtctc tccctccctc atcagcccac caaaccaaac ct






#agcctcca   4200













agagtgggaa gaaattaaag caagataggc tattaagtgc agagggagag aa






#aatgcctc   4260













caacatgtga ggaagtaatg agagaaatca tagaatttct tccgcttcct cg






#ctcactga   4320













ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca gctcactcaa ag






#gcggtaat   4380













acggttatcc acagaatcag gggataacgc aggaaagaac atgtgagcaa aa






#ggccagca   4440













aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tc






#cgcccccc   4500













tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga ca






#ggactata   4560













aagataccag gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cg






#accctgcc   4620













gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ct






#caatgctc   4680













acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gt






#gtgcacga   4740













accccccgtt cagcccgacc gctgcgcctt atccggtaac tatcgtcttg ag






#tccaaccc   4800













ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gc






#agagcgag   4860













gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct ac






#actagaag   4920













gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa ga






#gttggtag   4980













ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gc






#aagcagca   5040













gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cg






#gggtctga   5100













cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat ca






#aaaaggat   5160













cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gt






#atatatga   5220













gtaaacttgg tctgacagtt accaatgctt aatcagtgag gcacctatct ca






#gcgatctg   5280













tctatttcgt tcatccatag ttgcctgact ccgggggggg ggggcgctga gg






#tctgcctc   5340













gtgaagaagg tgttgctgac tcataccagg cctgaatcgc cccatcatcc ag






#ccagaaag   5400













tgagggagcc acggttgatg agagctttgt tgtaggtgga ccagttggtg at






#tttgaact   5460













tttgctttgc cacggaacgg tctgcgttgt cgggaagatg cgtgatctga tc






#cttcaact   5520













cagcaaaagt tcgatttatt caacaaagcc gccgtcccgt caagtcagcg ta






#atgctctg   5580













ccagtgttac aaccaattaa ccaattctga ttagaaaaac tcatcgagca tc






#aaatgaaa   5640













ctgcaattta ttcatatcag gattatcaat accatatttt tgaaaaagcc gt






#ttctgtaa   5700













tgaaggagaa aactcaccga ggcagttcca taggatggca agatcctggt at






#cggtctgc   5760













gattccgact cgtccaacat caatacaacc tattaatttc ccctcgtcaa aa






#ataaggtt   5820













atcaagtgag aaatcaccat gagtgacgac tgaatccggt gagaatggca aa






#agcttatg   5880













catttctttc cagacttgtt caacaggcca gccattacgc tcgtcatcaa aa






#tcactcgc   5940













atcaaccaaa ccgttattca ttcgtgattg cgcctgagcg agacgaaata cg






#cgatcgct   6000













gttaaaagga caattacaaa caggaatcga atgcaaccgg cgcaggaaca ct






#gccagcgc   6060













atcaacaata ttttcacctg aatcaggata ttcttctaat acctggaatg ct






#gttttccc   6120













ggggatcgca gtggtgagta accatgcatc atcaggagta cggataaaat gc






#ttgatggt   6180













cggaagaggc ataaattccg tcagccagtt tagtctgacc atctcatctg ta






#acatcatt   6240













ggcaacgcta cctttgccat gtttcagaaa caactctggc gcatcgggct tc






#ccatacaa   6300













tcgatagatt gtcgcacctg attgcccgac attatcgcga gcccatttat ac






#ccatataa   6360













atcagcatcc atgttggaat ttaatcgcgg cctcgagcaa gacgtttccc gt






#tgaatatg   6420













gctcataaca ccccttgtat tactgtttat gtaagcagac agttttattg tt






#catgatga   6480













tatattttta tcttgtgcaa tgtaacatca gagattttga gacacaacgt gg






#ctttcccc   6540













ccccccccat tattgaagca tttatcaggg ttattgtctc atgagcggat ac






#atatttga   6600













atgtatttag aaaaataaac aaataggggt tccgcgcaca tttccccgaa aa






#gtgccacc   6660













tgacgtctaa gaaaccatta ttatcatgac attaacctat aaaaataggc gt






#atcacgag   6720













gccctttcgt ctcgcgcgtt tcggtgatga cggtgaaaac ctctgacaca tg






#cagctccc   6780













ggagacggtc acagcttgtc tgtaagcgga tgccgggagc agacaagccc gt






#cagggcgc   6840













gtcagcgggt gttggcgggt gtcggggctg gcttaactat gcggcatcag ag






#cagattgt   6900













actgagagtg caccatatgc ggtgtgaaat accgcacaga tgcgtaagga ga






#aaataccg   6960













catcagattg gctattgg             






#                  






#                  






#6978




















<210> SEQ ID NO 16






<211> LENGTH: 879






<212> TYPE: PRT






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  SIV






      gp160env IN PLASMID CMVkan/R-R-SIVgp160






# CTE













<400> SEQUENCE: 16













Met Gly Cys Leu Gly Asn Gln Leu Leu Ile Al






#a Ile Leu Leu Leu Ser






  1               5 






#                 10 






#                 15













Val Tyr Gly Ile Tyr Cys Thr Leu Tyr Val Th






#r Val Phe Tyr Gly Val






             20     






#             25     






#             30













Pro Ala Trp Arg Asn Ala Thr Ile Pro Leu Ph






#e Cys Ala Thr Lys Asn






         35         






#         40         






#         45













Arg Asp Thr Trp Gly Thr Thr Gln Cys Leu Pr






#o Asp Asn Gly Asp Tyr






     50             






#     55             






#     60













Ser Glu Val Ala Leu Asn Val Thr Glu Ser Ph






#e Asp Ala Trp Asn Asn






 65                 






# 70                 






# 75                 






# 80













Thr Val Thr Glu Gln Ala Ile Glu Asp Val Tr






#p Gln Leu Phe Glu Thr






                 85 






#                 90 






#                 95













Ser Ile Lys Pro Cys Val Lys Leu Ser Pro Le






#u Cys Ile Thr Met Arg






            100      






#           105      






#           110













Cys Asn Lys Ser Glu Thr Asp Arg Trp Gly Le






#u Thr Lys Ser Ile Thr






        115          






#       120          






#       125













Thr Thr Ala Ser Thr Thr Ser Thr Thr Ala Se






#r Ala Lys Val Asp Met






    130              






#   135              






#   140













Val Asn Glu Thr Ser Ser Cys Ile Ala Gln As






#p Asn Cys Thr Gly Leu






145                 1






#50                 1






#55                 1






#60













Glu Gln Glu Gln Met Ile Ser Cys Lys Phe As






#n Met Thr Gly Leu Lys






                165  






#               170  






#               175













Arg Asp Lys Lys Lys Glu Tyr Asn Glu Thr Tr






#p Tyr Ser Ala Asp Leu






            180      






#           185      






#           190













Val Cys Glu Gln Gly Asn Asn Thr Gly Asn Gl






#u Ser Arg Cys Tyr Met






        195          






#       200          






#       205













Asn His Cys Asn Thr Ser Val Ile Gln Glu Se






#r Cys Asp Lys His Tyr






    210              






#   215              






#   220













Trp Asp Ala Ile Arg Phe Arg Tyr Cys Ala Pr






#o Pro Gly Tyr Ala Leu






225                 2






#30                 2






#35                 2






#40













Leu Arg Cys Asn Asp Thr Asn Tyr Ser Gly Ph






#e Met Pro Lys Cys Ser






                245  






#               250  






#               255













Lys Val Val Val Ser Ser Cys Thr Arg Met Me






#t Glu Thr Gln Thr Ser






            260      






#           265      






#           270













Thr Trp Phe Gly Phe Asn Gly Thr Arg Ala Gl






#u Asn Arg Thr Tyr Ile






        275          






#       280          






#       285













Tyr Trp His Gly Arg Asp Asn Arg Thr Ile Il






#e Ser Leu Asn Lys Tyr






    290              






#   295              






#   300













Tyr Asn Leu Thr Met Lys Cys Arg Arg Pro Gl






#y Asn Lys Thr Val Leu






305                 3






#10                 3






#15                 3






#20













Pro Val Thr Ile Met Ser Gly Leu Val Phe Hi






#s Ser Gln Pro Ile Asn






                325  






#               330  






#               335













Asp Arg Pro Lys Gln Ala Trp Cys Trp Phe Gl






#y Gly Lys Trp Lys Asp






            340      






#           345      






#           350













Ala Ile Lys Glu Val Lys Gln Thr Ile Val Ly






#s His Pro Arg Tyr Thr






        355          






#       360          






#       365













Gly Thr Asn Asn Thr Asp Lys Ile Asn Leu Th






#r Ala Pro Gly Gly Gly






    370              






#   375              






#   380













Asp Pro Glu Val Thr Phe Met Trp Thr Asn Cy






#s Arg Gly Glu Phe Leu






385                 3






#90                 3






#95                 4






#00













Tyr Cys Lys Met Asn Trp Phe Leu Asn Trp Va






#l Glu Asp Arg Asn Thr






                405  






#               410  






#               415













Ala Asn Gln Lys Pro Lys Glu Gln His Lys Ar






#g Asn Tyr Val Pro Cys






            420      






#           425      






#           430













His Ile Arg Gln Ile Ile Asn Thr Trp His Ly






#s Val Gly Lys Asn Val






        435          






#       440          






#       445













Tyr Leu Pro Pro Arg Glu Gly Asp Leu Thr Cy






#s Asn Ser Thr Val Thr






    450              






#   455              






#   460













Ser Leu Ile Ala Asn Ile Asp Trp Ile Asp Gl






#y Asn Gln Thr Asn Ile






465                 4






#70                 4






#75                 4






#80













Thr Met Ser Ala Glu Val Ala Glu Leu Tyr Ar






#g Leu Glu Leu Gly Asp






                485  






#               490  






#               495













Tyr Lys Leu Val Glu Ile Thr Pro Ile Gly Le






#u Ala Pro Thr Asp Val






            500      






#           505      






#           510













Lys Arg Tyr Thr Thr Gly Gly Thr Ser Arg As






#n Lys Arg Gly Val Phe






        515          






#       520          






#       525













Val Leu Gly Phe Leu Gly Phe Leu Ala Thr Al






#a Gly Ser Ala Met Gly






    530              






#   535              






#   540













Ala Ala Ser Leu Thr Leu Thr Ala Gln Ser Ar






#g Thr Leu Leu Ala Gly






545                 5






#50                 5






#55                 5






#60













Ile Val Gln Gln Gln Gln Gln Leu Leu Asp Va






#l Val Lys Arg Gln Gln






                565  






#               570  






#               575













Glu Leu Leu Arg Leu Thr Val Trp Gly Thr Ly






#s Asn Leu Gln Thr Arg






            580      






#           585      






#           590













Val Thr Ala Ile Glu Lys Tyr Leu Lys Asp Gl






#n Ala Gln Leu Asn Ala






        595          






#       600          






#       605













Trp Gly Cys Ala Phe Arg Gln Val Cys His Th






#r Thr Val Pro Trp Pro






    610              






#   615              






#   620













Asn Ala Ser Leu Thr Pro Lys Trp Asn Asn Gl






#u Thr Trp Gln Glu Trp






625                 6






#30                 6






#35                 6






#40













Glu Arg Lys Val Asp Phe Leu Glu Glu Asn Il






#e Thr Ala Leu Leu Glu






                645  






#               650  






#               655













Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Ty






#r Glu Leu Gln Lys Leu






            660      






#           665      






#           670













Asn Ser Trp Asp Val Phe Gly Asn Trp Phe As






#p Leu Ala Ser Trp Ile






        675          






#       680          






#       685













Lys Tyr Ile Gln Tyr Gly Val Tyr Ile Val Va






#l Gly Val Ile Leu Leu






    690              






#   695              






#   700













Arg Ile Val Ile Tyr Ile Val Gln Met Leu Al






#a Lys Leu Arg Gln Gly






705                 7






#10                 7






#15                 7






#20













Tyr Arg Pro Val Phe Ser Ser Pro Pro Ser Ty






#r Phe Gln Gln Thr His






                725  






#               730  






#               735













Ile Gln Gln Asp Pro Ala Leu Pro Thr Arg Gl






#u Gly Lys Glu Arg Asp






            740      






#           745      






#           750













Gly Gly Glu Gly Gly Gly Asn Ser Ser Trp Pr






#o Trp Gln Ile Glu Tyr






        755          






#       760          






#       765













Ile His Phe Leu Ile Arg Gln Leu Ile Arg Le






#u Leu Thr Trp Leu Phe






    770              






#   775              






#   780













Ser Asn Cys Arg Thr Leu Leu Ser Arg Val Ty






#r Gln Ile Leu Gln Pro






785                 7






#90                 7






#95                 8






#00













Ile Leu Gln Arg Leu Ser Ala Thr Leu Gln Ar






#g Ile Arg Glu Val Leu






                805  






#               810  






#               815













Arg Thr Glu Leu Thr Tyr Leu Gln Tyr Gly Tr






#p Ser Tyr Phe His Glu






            820      






#           825      






#           830













Ala Val Gln Ala Val Trp Arg Ser Ala Thr Gl






#u Thr Leu Ala Gly Ala






        835          






#       840          






#       845













Trp Gly Asp Leu Trp Glu Thr Leu Arg Arg Gl






#y Gly Arg Trp Ile Leu






    850              






#   855              






#   860













Ala Ile Pro Arg Arg Ile Arg Gln Gly Leu Gl






#u Leu Thr Leu Leu






865                 8






#70                 8






#75




















<210> SEQ ID NO 17






<211> LENGTH: 271






<212> TYPE: PRT






<213> ORGANISM: Escherichia coli













<400> SEQUENCE: 17













Met Ser His Ile Gln Arg Glu Thr Ser Cys Se






#r Arg Pro Arg Leu Asn






  1               5 






#                 10 






#                 15













Ser Asn Met Asp Ala Asp Leu Tyr Gly Tyr Ly






#s Trp Ala Arg Asp Asn






             20     






#             25     






#             30













Val Gly Gln Ser Gly Ala Thr Ile Tyr Arg Le






#u Tyr Gly Lys Pro Asp






         35         






#         40         






#         45













Ala Pro Glu Leu Phe Leu Lys His Gly Lys Gl






#y Ser Val Ala Asn Asp






     50             






#     55             






#     60













Val Thr Asp Glu Met Val Arg Leu Asn Trp Le






#u Thr Glu Phe Met Pro






 65                 






# 70                 






# 75                 






# 80













Leu Pro Thr Ile Lys His Phe Ile Arg Thr Pr






#o Asp Asp Ala Trp Leu






                 85 






#                 90 






#                 95













Leu Thr Thr Ala Ile Pro Gly Lys Thr Ala Ph






#e Gln Val Leu Glu Glu






            100      






#           105      






#           110













Tyr Pro Asp Ser Gly Glu Asn Ile Val Asp Al






#a Leu Ala Val Phe Leu






        115          






#       120          






#       125













Arg Arg Leu His Ser Ile Pro Val Cys Asn Cy






#s Pro Phe Asn Ser Asp






    130              






#   135              






#   140













Arg Val Phe Arg Leu Ala Gln Ala Gln Ser Ar






#g Met Asn Asn Gly Leu






145                 1






#50                 1






#55                 1






#60













Val Asp Ala Ser Asp Phe Asp Asp Glu Arg As






#n Gly Trp Pro Val Glu






                165  






#               170  






#               175













Gln Val Trp Lys Glu Met His Lys Leu Leu Pr






#o Phe Ser Pro Asp Ser






            180      






#           185      






#           190













Val Val Thr His Gly Asp Phe Ser Leu Asp As






#n Leu Ile Phe Asp Glu






        195          






#       200          






#       205













Gly Lys Leu Ile Gly Cys Ile Asp Val Gly Ar






#g Val Gly Ile Ala Asp






    210              






#   215              






#   220













Arg Tyr Gln Asp Leu Ala Ile Leu Trp Asn Cy






#s Leu Gly Glu Phe Ser






225                 2






#30                 2






#35                 2






#40













Pro Ser Leu Gln Lys Arg Leu Phe Gln Lys Ty






#r Gly Ile Asp Asn Pro






                245  






#               250  






#               255













Asp Met Asn Lys Leu Gln Phe His Leu Met Le






#u Asp Glu Phe Phe






            260      






#           265      






#           270




















<210> SEQ ID NO 18






<211> LENGTH: 2640






<212> TYPE: DNA






<213> ORGANISM: Artificial Sequence






<220> FEATURE:






<223> OTHER INFORMATION: Description of Artificial 






#Sequence:  DNA






      sequence of mutated SIV gene in 






#construct






      CMVkan/R-R-SIVgp160 CTE













<400> SEQUENCE: 18













atgggatgtc ttgggaatca gctgcttatc gccatcttgc ttttaagtgt ct






#atgggatc     60













tattgtactc tatatgtcac agtcttttat ggtgtaccag cttggaggaa tg






#cgacaatt    120













cccctctttt gtgcaaccaa gaatagggat acttggggaa caactcagtg cc






#taccagat    180













aatggtgatt attcagaagt ggcccttaat gttacagaaa gctttgatgc ct






#ggaataat    240













acagtcacag aacaggcaat agaggatgta tggcaactct ttgagacctc aa






#taaagcct    300













tgtgtaaaat tatccccatt atgcattact atgagatgca ataaaagtga ga






#cagataga    360













tggggattga caaaatcaat aacaacaaca gcatcaacaa catcaacgac ag






#catcagca    420













aaagtagaca tggtcaatga gactagttct tgtatagccc aggataattg ca






#caggcttg    480













gaacaagagc aaatgataag ctgtaaattc aacatgacag ggttaaaaag ag






#acaagaaa    540













aaagagtaca atgaaacttg gtactctgca gatttggtat gtgaacaagg ga






#ataacact    600













ggtaatgaaa gtagatgtta catgaaccac tgtaacactt ctgttatcca ag






#agtcttgt    660













gacaaacatt attgggatgc tattagattt aggtattgtg cacctccagg tt






#atgctttg    720













cttagatgta atgacacaaa ttattcaggc tttatgccta aatgttctaa gg






#tggtggtc    780













tcttcatgca caaggatgat ggagacacag acttctactt ggtttggctt ta






#atggaact    840













agagcagaaa atagaactta tatttactgg catggtaggg ataataggac ta






#taattagt    900













ttaaataagt attataatct aacaatgaaa tgtagaagac caggaaataa ga






#cagtttta    960













ccagtcacca ttatgtctgg attggttttc cactcacaac caatcaatga ta






#ggccaaag   1020













caggcatggt gttggtttgg aggaaaatgg aaggatgcaa taaaagaggt ga






#agcagacc   1080













attgtcaaac atcccaggta tactggaact aacaatactg ataaaatcaa tt






#tgacggct   1140













cctggaggag gagatccgga agttaccttc atgtggacaa attgcagagg ag






#agttcctc   1200













tactgtaaaa tgaattggtt tctaaattgg gtagaagata ggaatacagc ta






#accagaag   1260













ccaaaggaac agcataaaag gaattacgtg ccatgtcata ttagacaaat aa






#tcaacact   1320













tggcataaag taggcaaaaa tgtttatttg cctccaagag agggagacct ca






#cgtgtaac   1380













tccacagtga ccagtctcat agcaaacata gattggattg atggaaacca aa






#ctaatatc   1440













accatgagtg cagaggtggc agaactgtat cgattggaat tgggagatta ta






#aattagta   1500













gagatcactc caattggctt ggcccccaca gatgtgaaga ggtacactac tg






#gtggcacc   1560













tcaagaaata aaagaggggt ctttgtgcta gggttcttgg gttttctcgc aa






#cggcaggt   1620













tctgcaatgg gagccgccag cctgaccctc acggcacagt cccgaacttt at






#tggctggg   1680













atagtccaac agcagcaaca gctgttggac gtggtcaaga gacaacaaga at






#tgttgcga   1740













ctgaccgtct ggggaacaaa gaacctccag actagggtca ctgccatcga ga






#agtactta   1800













aaggaccagg cgcagctgaa tgcttgggga tgtgcgttta gacaagtctg cc






#acactact   1860













gtaccatggc caaatgcaag tctaacacca aagtggaaca atgagacttg gc






#aagagtgg   1920













gagcgaaagg ttgacttctt ggaagaaaat ataacagccc tcctagagga gg






#cacaaatt   1980













caacaagaga agaacatgta tgaattacaa aagttgaata gctgggatgt gt






#ttggcaat   2040













tggtttgacc ttgcttcttg gataaagtat atacaatatg gagtttatat ag






#ttgtagga   2100













gtaatactgt taagaatagt gatctatata gtacaaatgc tagctaagtt aa






#ggcagggg   2160













tataggccag tgttctcttc cccaccctct tatttccagc agacccatat cc






#aacaggac   2220













ccggcactgc caaccagaga aggcaaagaa agagacggtg gagaaggcgg tg






#gcaacagc   2280













tcctggcctt ggcagataga atatatccac tttcttattc gtcagcttat ta






#gactcttg   2340













acttggctat tcagtaactg taggactttg ctatcgagag tataccagat cc






#tccaacca   2400













atactccaga ggctctctgc gaccctacag aggattcgag aagtcctcag ga






#ctgaactg   2460













acctacctac aatatgggtg gagctatttc catgaggcgg tccaggccgt ct






#ggagatct   2520













gcgacagaga ctcttgcggg cgcgtgggga gacttatggg agactcttag ga






#gaggtgga   2580













agatggatac tcgcaatccc caggaggatt agacaagggc ttgagctcac tc






#tcttgtga   2640




















<210> SEQ ID NO 19






<211> LENGTH: 813






<212> TYPE: DNA






<213> ORGANISM: Escherichia coli













<400> SEQUENCE: 19













atgagccata ttcaacggga aacgtcttgc tcgaggccgc gattaaattc ca






#acatggat     60













gctgatttat atgggtataa atgggctcgc gataatgtcg ggcaatcagg tg






#cgacaatc    120













tatcgattgt atgggaagcc cgatgcgcca gagttgtttc tgaaacatgg ca






#aaggtagc    180













gttgccaatg atgttacaga tgagatggtc agactaaact ggctgacgga at






#ttatgcct    240













cttccgacca tcaagcattt tatccgtact cctgatgatg catggttact ca






#ccactgcg    300













atccccggga aaacagcatt ccaggtatta gaagaatatc ctgattcagg tg






#aaaatatt    360













gttgatgcgc tggcagtgtt cctgcgccgg ttgcattcga ttcctgtttg ta






#attgtcct    420













tttaacagcg atcgcgtatt tcgtctcgct caggcgcaat cacgaatgaa ta






#acggtttg    480













gttgatgcga gtgattttga tgacgagcgt aatggctggc ctgttgaaca ag






#tctggaaa    540













gaaatgcata agcttttgcc attctcaccg gattcagtcg tcactcatgg tg






#atttctca    600













cttgataacc ttatttttga cgaggggaaa ttaataggtt gtattgatgt tg






#gacgagtc    660













ggaatcgcag accgatacca ggatcttgcc atcctatgga actgcctcgg tg






#agttttct    720













ccttcattac agaaacggct ttttcaaaaa tatggtattg ataatcctga ta






#tgaataaa    780













ttgcagtttc atttgatgct cgatgagttt ttc       






#                  






#        813













Claims
  • 1. A nucleic acid construct comprising a HIV-1 gag/pol gene having the coding sequence of the gag/pol gene set forth in FIG. 1 (SEQUENCE ID NO: 1).
  • 2. A nucleic acid construct comprising a HIV-1 pol gene having the coding sequence of the pol gene set forth in FIG. 2 (SEQUENCE ID NO: 3).
  • 3. A nucleic acid construct comprising an HIV or SIV 5′ LTR, a packaging signal, a gag/pol gene comprising the sequence set forth in FIG. 1 (SEQUENCE ID NO: 1), a 5′ splice site, a 3′ splice site, an env gene, a tat gene, a functional RNA transport element and a 3′ HIV or SIV LTR, said nucleic acid construct being able to produce functional Gag. Pol and Env virion components.
  • 4. A vector comprising the nucleic acid construct of claim 1, 2 or 3.
  • 5. An isolated host cell comprising the nucleic acid construct of claim 1, 2 or 3.
  • 6. The host cell of claim 5 wherein said cell is a eukaryote.
  • 7. The host cell of claim 6 wherein said cell is a human cell.
  • 8. The host cell of claim 5 wherein said cell is a prokaryote.
  • 9. The host cell of claim 8 wherein said cell is E. coli.
  • 10. A composition comprising the nucleic acid A construct of claim 1, 2, or 3 and a pharmaceutically acceptable carrier.
  • 11. A lentiviral expression system comprising the following:(a) a packaging vector comprising a HIV-1 gag/pol gene having the nucleotide sequence set forth in FIG. 1 (SEQUENCE ID NO: 1); (b) a transfer vector; and (c) an envelope encoding vector.
  • 12. An isolated host cell comprising the lentiviral expression system of claim 11.
  • 13. The host cell of claim 12, wherein said cell is a eukaryote.
  • 14. The host cell of claim 13 wherein said cell is a human cell.
  • 15. A process for making a lentiviral particle comprising expressing, in a host cell, HIV Gag and HIV Pol from a vector comprising the nucleotide sequences encoding HIV Gag and HIV Pol set forth in FIG. 1 (SEQUENCE ID NO: 1) and expressing a gene encoding an envelope protein by growing the host cell under conditions suitable to cause expression of HIV Gag, HIV Pol and envelope protein so that a lentiviral particle is formed.
  • 16. A lentiviral expression system which is capable of functioning in the absence of Rev, Tat, and any viral RNA transport element comprising the following:(a) a packaging vector comprising a HIV-1 gag/pol gene which is capable of functioning in the absence of Rev, Tat, and any viral RNA transport element; (b) a transfer vector; and (c) an envelope encoding vector wherein the HIV-1 gag/pol gene has the coding sequence of the HIV-1 gag/pol gene set forth in FIG. 1 (SEQUENCE ID NO: 1).
  • 17. A process for making a lentiviral particle in the absence of Rev, Tat, or any viral RNA transport element comprising expressing HIV Gag and HIV Pol in a host cell from a HIV-1 gag/pol gene which is capable of functioning in the absence of Rev, Tat, and any viral RNA transport element and expressing an Envelope protein from a envelope encoding gene whose expression is independent of Rev, Tat, or any viral RNA transport element wherein the HIV-1 gag/pol gene has the coding sequence of the HIV-1 gag/pol gene set forth in FIG. 1 (SEQUENCE ID NO: 1).
  • 18. The lentiviral expression system of claim 16 wherein the packaging vector has the DNA sequence of packaging construct pCMVgag/polBNKan set forth in FIG. 9 (SEQUENCE ID NO: 6).
  • 19. The lentiviral expression system of claim 16 wherein the transfer vector has the DNA sequence of pmBCwCNluci set forth in FIG. 10 (SEQUENCE ID NO: 8) or pmBCmCNluci set forth in FIG. 11 (SEQUENCE ID NO: 9).
  • 20. An isolated host cell comprising the lentiviral expression system of claim 16.
  • 21. The host cell of claim 20 wherein said cell is a eukaryote.
  • 22. The host cell of claim 21 wherein said cell is a human cell.
Parent Case Info

This is continuation-in-part of international application No. PCT/US00/34985, filed Dec. 22, 2000 which claims benifit to Provisional application No. 60/173,036, filed Dec. 23, 1999.

US Referenced Citations (6)
Number Name Date Kind
5786464 Seed et al. Jul 1998 A
5795737 Seed et al. Aug 1998 A
5965726 Pavlakis et al. Oct 1999 A
5972596 Pavlakis et al. Oct 1999 A
6114148 Seed et al. Sep 2000 A
6174666 Pavlakis et al. Jan 2001 B1
Foreign Referenced Citations (17)
Number Date Country
WO 9011092 Oct 1990 WO
WO 9320212 Oct 1993 WO
WO 9609378 Mar 1996 WO
WO 9711086 Mar 1997 WO
WO 9812207 Mar 1998 WO
WO 9817816 Apr 1998 WO
WO 9834640 Aug 1998 WO
WO 9846083 Oct 1998 WO
WO 9904026 Jan 1999 WO
WO 9915641 Apr 1999 WO
WO 9930742 Jun 1999 WO
WO 9951754 Oct 1999 WO
WO 9961596 Dec 1999 WO
WO 0039302 Jul 2000 WO
WO 0039303 Jul 2000 WO
WO 0039304 Jul 2000 WO
WO 0065076 Nov 2000 WO
Non-Patent Literature Citations (76)
Entry
McCluskie et al. Route and method of delivery of DNA vaccine influence immune responses in mice and non-human primates pp. 287-300 1999.*
Verma et al. Gene therapy promises, problems and prospects pp. 239-242 vol. 389 1997.*
Schneider et al. Cell Biochem, 1995 Suppl. 21B, 197.*
Anderson Human gene therapy pp. 25-30 vol. 392 1998.*
Azevedo et al. Main features of DNA-based immunization vectors pp. 147-153 1999.*
Nathanson et al. Biological considerations in the development of a human immunodeficiency virus vaccine pp. 579-589 2000.*
Walther et al., Viral Vector for Gene Transfer, Aug. 2000, Drugs, vol. 60, No. 2, pp. 249-271.*
Mountain et al., Gene therapy: the first decade, Mar. 2000, Tibtech, vol. 18, pp. 119-128.*
Mountain et a., Gene therapy: the first decade, Mar. 2000, Tibtech, vol. 18, pp. 119-127.*
Crystal, Transfer of Genes to Humans: Early Lessons and Obstacles to Success, Oct. 20, 1995, Science, vol. 270, pp. 404-409.*
Miller et al., Targeted vector for gene therapy, Feb. 1995, The Faseb Journal, vol. 9, pp. 190-199.*
Schneider et al., Inactivation of the Human Immunodeficiency Virus Type 1 Inhibitory . . . , Jul. 1997, Journal of Virology, vol. 71, No. 7, pp. 4892-4903.*
Moritz et al., J. Clin. Invest., 93:1451-1457, 1994.*
Riddell et al. (Nature Medicine, vol. 2, 2:216-223, 1996).*
Webster et al. (BioDrugs, 4, pp. 273-292, 1997).*
Piscitelli et al., The Annals of Pharmacotherapy, vol. 30, pp. 62-76, 1996.*
Ngo et al., “Comutational Complexity, Protein Structure Prediction, and the Levinthal Paradox,” The Protein Folding Problem and Tertiary Structure Prediction, K. Merz, Jr. and S. Le Grand, Editors (1994) pp. 491-495.
Akkina, R.K. et al., “High-Efficiency Gene Transfer into CD34+ Cells with a Human Immunodeficiency Virus Type 1-Based Retroviral Vector Pseudotyped with Vesicular Stomatitis Virus Envelope Glycoprotein G”, J. Virology, 70:2581-2585 (1996).
Amado, R. G. et al., “Lentiviral Vectors—the Promise of Gene Therapy Within Reach?”, Science, 285:674-676 (Jul. 1999).
Donahue, R.E. et al., “Transplantation of Immunoselected CD34+ Cells Transduced with a EGFP-Expressing Lentiviral Vector in Non-Human Primates”, Blood, 92 (Suppl. 1):383b, Abstract #4648.5 (1998).
Fox, J.L., “Researchers wary of fear-based ban on lentivirus gene therapy”, Nature Biotechnology, 16:407-408 (1998).
Goldman, M.J. et al., “Lentiviral Vectors for Gene Therapy of Cystic Fibrosis”, Human Gene Therapy, 8:2261-2268 (1997).
Kafri, T. et al., “Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors”, Nature Genetics, 17:314-317 (1997).
Kafri, T. et al., “A Packaging Cell Line for Lentivirus Vectors”, J. Virol., 73:576-584 (1999).
Kim, V.N. et al., “Minimal Requirement for a Lentivirus Vector Based on Human Immunodeficiency Virus Type 1”, J. Virol., 72:811-816 (1998).
Klimatcheva, E. et al., “Lentiviral Vectors and Gene Therapy”, Frontiers in Bioscience, 4:d481-496 (Jun. 1999).
Kotsopoulou, E. et al., “A Rev-Independent Human Immunodeficiency Virus Type 1 (HIV-1)-Based Vector That Exploits a Codon-Optimized HIV-1 gag-pol Gene”, J. Virol., 74:4839-4852 (2000).
Miyoshi, H. et al., “Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector”, Proc. Natl. Acad. Sci. USA, 94:10319-10323 (1997).
Miyoshi, H. et al., “Development of a Self-Inactivating Lentivirus Vector”, J. Virol., 72:8150-8157 (1998).
Miyoshi, H. et al., “Transduction of Human CD34+ Cells That Mediate Long-Term Engraftment of NOD/SCID Mice by HIV Vectors”, Science, 283:682-686 (1999).
Naldini, L. et al., “In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector”, Science, 272:263-267 (1996).
Naviaux, R.K. et al., “The pCL Vector System: Rapid Production of Helper-Free, High-Titer, Recombinant Retroviruses”, J. Virol., 70:5701-5705 (1996).
Poeschla, E.M. et al., “Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors”, Nature Med., 4:354-357 (1998).
Reynolds, P.N. et al., “Viral vectors show promise in Colorado”, Nature Biotechnology, 16:422-423 (1998).
Soneoka, Y. et al., “A transient three-plasmid expression system for the production of high titer retroviral vectors”, Nuc. Acids Res., 23:628-633 (1995).
Srinivasakumar, N. et al., “The Effect of Viral Regulatory Protein Expression on Gene Delivery by Human Immunodeficiency Virus Type 1 Vectors Produced in Stable Packaging Cell Lines”, J. Virol., 71:5841-5848 (1997).
Sutton, R.E. et al., “Human Immunodeficiency Virus Type 1 Vectors Efficiently Transduce Human Hematopoietic Stem Cells”, J. Virol., 72:5781-5788 (1998).
Takahashi, M. et al., “Rescue from Photoreceptor Degeneration in the rd Mouse by Human Immunodeficiency Virus Vector-Mediated Gene Transfer”, J. Virol., 73:7812-7816 (Sep. 1999).
Uchida, N. et al., “HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells”, Proc. Natl. Acad. Sci. USA, 95:11939-11944 (1998).
Vinner, L. et al., “Gene gun DNA vaccination with Rev-independent synthetic HIV-1 gp160 envelope gene using mammalian codons”, Vaccine, 17:2166-2175 (1999).
Wagner, R. et al., “Rev-Independent Expression of Synthetic gag-pol Genes of Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus: Implications for the Safety of Lentiviral Vectors”, Human Gene Therapy, 11:2403-2413 (2000).
White, S.M. et al., “Lentivirus Vectors Using Human and Simian Immunodeficiency Virus Elements”, J. Virol, 73:2832-2840 (1999).
Wolff, J.A. et al., “The Cambrian period of nonviral gene delivery”, Nature Biotechnology, 16:421-422(1998).
Zufferey, R. et al., “Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo”, Nature Biotechnology, 15:871-875 (1997).
Zufferey, R. et al., “Self-Inactivating Lentivirus Vector for Safe and Efficienct In Vivo Gene Delivery”, 72:9873-9880 (1998).
Nappi F, Schneider R, Zolotukhin A, Smulevitch S, Michalowski D, Bear J. Felber BK, and Pavlakis GN. “Identification of a Novel Posttranscriptional Regulatory Element by Using a rev- and RRE-Mutated Human Immunodeficiency Virus Type 1 DNA Proviral Clone as a Molecular Trap.” J Virol. May 2001;75(10):4558-69.
Qiu JT, Liu B, Tian C, Pavlakis GN, Yu XF. “Enhancement of primary and secondary cellular immune responses against human immunodeficiency virus type 1 gag by using DNA expression vectors that target Gag antigen to the secretory pathway” J Virol. Jul. 2000;74(13):5997-6005.
Qiu JT, Song R, Dettenhofer M, Tian C, August T, Felber BK, Pavlakis GN, Yu XF. “Evaluation of novel human immunodeficiency virus type 1 Gag DNA vaccines for protein expression in mammalian cells and induction of immune responses.” J Virol. Nov. 1999;73(11):9145-52.
Schneider R, Campbell M, Nasioulas G, Felber BK, Pavlakis GN. “Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/protease and particle formation.” J Virol. Jul. 1997;71(7):4892-903.
Afonina E, Neumann M, Pavlakis GN. “Preferential binding of poly(A)-binding protein 1 to an inhibitory RNA element in the human immunodeficiency virus type 1 gag mRNA.” J Biol Chem. 1997 Jan. 24;272(4):2307-11.
Schwartz S, Campbell M, Nasioulas G, Harrison J, Felber BK, Pavlakis GN. “Mutational inactivation of an inhibitory sequence in human immunodeficiency virus type 1 results in Rev-independent gag expression.” J Virol. Dec. 1992; 66 (12):7176-82.
Andre S, Seed B, Eberle J, Schraut W, Bultmann A, Haas J. “Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage.” J Virol. Feb. 1998; 72(2):1497-503.
Haas J, Park EC, Seed B. “Codon usage limitation in the expression of HIV-1 envelope glycoprotein.” Curr Biol. Mar. 1, 1996;6(3):315-24.
Ikemura, T. “Codon Usage and tRNA Content in Unicellular and Multicellular Organisms.” Mol. Biol. Evol. 2(1):13-34 (1985).
T. Maruyama et al., “Codon usage tabulated from the GenBank genetic sequence data”, Nucl. Acids Res. 14:r151-r197 (1986).
S. Aota et al., “Codon usage tabulated from the GenBank genetic sequence data”, Nucl. Acids Res. 16:r315-r402 (1988).
Shiver, et al., “DNA Vaccine-Mediated Cellular Immunity Against HIV-1 gag And env,” abstract from the Conference on Advances in aids Vaccine Development; 8th Annual Meeting of the National Cooperative Vaccine Development Groups for AIDS (NCVDGs), Feb. 11-15, 1996.
Albert B Sabin, “Improbability of effective vaccination against human immunodeficiency virus because of its intracellular transmission and rectal portal of entry”, Proc. Natl. Acad. Sci. USA, 89:8852-8855 (Sep. 1992) (“Reference 1”).
Saladin Osmanov et al., “HIV-1 Genetic Variability: Implications for the Development of HIV Vaccines”, Antibiotics and Chemotherapy, 48:30-38 (1996) (“Reference 2”).
Kavita S. Lole, et al., “Full-Length Human Immunodeficiency Virus Type 1 Genomes from Subtype C-Infected Seroconverters in India, with Evidence of Intersubtype Recombination”, Journal of Virology, 73:152-160 (Jan. 1999) (“Reference 3”).
“Nikkei Biotechnology Annual Report '98”, Ed. Nikkei Biotech, (Nov. 30, 1997), Nikkei Business Publications, Inc., p. 214 (English translation of table on p. 214, lines 30-35 entitled “The recent stream of research and development on AIDS”) (“Reference 4”).
R.I. Connor, et al., “Immunological and Virological Analyses of Persons Infected by Human Immunodeficiency Virus Type 1 while Participating in Trials of Recombinant gp120 Subunit Vaccines”, Journal of Virology, 72:1552-1576 (Feb. 1998) (“Reference 5”).
“Nikkei Biotechnology Annual Report '97”, Ed. Nikkei Biotech, (Nov. 30, 1996), Nikkei Business Publications, Inc., p. 246 (English translation of a table on p. 246, lines 43-46 entitled “The recent stream of biotechnological research on AIDS”) (“Reference 6”).
“Nikkei Biotechnology Annual Report '99”, Ed. Nikkei Biotech, (Nov. 30, 1998), Nikkei Business Publications, Inc., p. 79 (English translation of table on p. 79, lines 14-17 entitled “The main stream of research and development on AIDS”) (“Reference 7”).
Ulmer JB., Donnelly JJ., Parker SE., Rhodes GH., Felgner PL., Dwarki VJ., Gromkowski SH., Deck RR., DeWitt CM., Friedman A., Hawe LA., Leander KR., Martinez D., Perry HC., Shiver JW., Montgomery DL., Liu MA. “Heterologous Protection Against Influenza by Injection of DNA Encoding a Viral Protein.” Science 259:1745-1748 (Mar. 19, 1993).
Afonina E., Stauber R. Pavlakis GN. “The Human Poly(A)-binding Protein 1 Shuttles between the Nucleus and the Cytoplasm”, The Journal of Biological Chemistry, 273:13015-13021 (May 22, 1998).
Solomin L., Felber BK., Pavlakis GN. “Different Sites of Interaction for Rev, Tev, and Rex Proteins within the Rev-Responsive Element of Human Immunodeficiency Virus Type 1”, Journal of Virology, 64:6010-6017 (Dec. 1990).
Benko DM., Robinson R., Solomin, L., Mellini M., Felber BK., Pavlakis, GN. “Binding of Trans-Dominant Mutant Rev Protein of Human Immunodeficiency Virus Type 1 to the Cis-Acting Rev-Responsive Element Does Not Affect the Fate of Viral mRNA”, The New Biologist, 2:1111-1122 (Dec. 1990).
Schwartz S., Felber BK., Pavlakis GN., “Distinct RNA Sequences in the gag Region of Human Immunodeficiency Virus Type 1 Decrease RNA Stability and Inhibit Expression in the Absence of Rev Protein”, Journal of Virology, 66:150-159 (Jan. 1992).
D'Agostino DM., Felber BK., Harrison JE., Pavlakis GN. “The Rev Protein of Human Immunodeficiency Virus Type 1 Promotes Polysomal Association and Translation of gag/pol and vpu/env mRNAs”, Molecular and Cellular Biology, 12:1375-1386 (Mar. 1992).
Myers G., Pavlakis GN. “Evolutionary Potential of Complex Retroviruses”, The Retroviridae, 1:51-105 (1992).
Zolotukhin AS., Valentin A., Pavlakis GN., Felber BK. “Continuous Propagation of RRE(—) and Rev(13 )RRE(—) Human Immunodeficiency Virus Type 1 Molecular Clones Containing a cis-Acting Element of Simian Retrovirus Type 1 in Human Peripheral Blood Lymphocytes”, Journal of Virology, 68:7944-7952 (Dec. 1994).
Tan W., Felber BK., Zolotukhin AS., Pavlakis GN., Schwartz S. “Efficient Expression of the Human Papillomavirus Type 16 L1 Protein in Epithelial Cells by Using Rev and the Rev-Responsive Element of Human Immunodeficiency Virus or the cis-Acting Transactivation Element of Simian Retrovirus Type 1”, Journal of Virology, 69:5607-5620 (Sep. 1995).
Wolff JA., Malone RW., Williams P., Chong W., Acsadi G., Jani A., Felgner PL. “Direct Gene Transfer into Mouse Muscle in Vivo” Science, 247:1465-1468 (Mar. 23, 1990).
Wolff JA., Ludtke JJ., Acsadi G., Williams P., Jani A. “Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle”, Human Molecular Genetics, 1(6):363-369 (1992).
Egan MA., Charini WA., Kuroda MJ., Schmitz JE., Racz P., Tenner-Racz K., Manson K., Wyand M., Lifton MA., Nickerson CE., Fu T., Shiver JW., Letvin NL. “Simian Immunodeficiency Virus (SIV) gag DNA-Vaccinated Rhesus Monkeys Develop Secondary Cytotoxic T-Lymphocyte Responses and Control Viral Replication after Pathogenic SIV Infection” Journal of Virology, 74(16):7485-7495 (Aug. 2000).
Provisional Applications (1)
Number Date Country
60/173036 Dec 1999 US
Continuation in Parts (1)
Number Date Country
Parent PCT/US00/34985 Dec 2000 US
Child 09/872733 US