Conventional switch system on chip (switch SOC) generally includes serializer/deserializer (SerDes) circuits to convert serial data to parallel data or to convert parallel data to serial data. In order to satisfy next generation switch SOC, the SerDes circuits need to support multi-standards to meet the system requirement, however, designing multi-standards SerDes circuits within the switch SOC may cause some problems. First, the power dissipation cannot be optimized for every SerDes circuit, and the SerDes circuits may take a lot of overhead to support different standards such as non-return-to-zero (NRZ) standard and pulse-amplitude modulation (PAM) standard at the same circuits. Second, the switch SOC is manufactured by advanced Complementary Metal-Oxide-Semiconductor (CMOS) process that is the best choice for the core circuit, but this advanced CMOS process may not be the best for the high-speed SerDes circuits. In addition, the core circuit of the switch SOC may be manufactured by a low supply voltage process, for example 10 nm process with 0.75V supply voltage, however, some SerDes circuits should be operated in wide dynamic range so that the low supply voltage process is not a good solution.
It is therefore an objective of the present invention to provide a multi-chip structure, which comprises a switch SOC and a plurality of input/output (IO) chips, and each of the switch SOC and IO chips can be designed to optimize its performance, to solve the above-mentioned problems.
According to one embodiment of the present invention, a multi-chip structure comprises a switch SOC, a plurality of SerDes chips positioned around the switch SOC, and a plurality of inter-chip interfaces for connecting the switch SOC to the plurality of SerDes chips, respectively.
According to another embodiment of the present invention, a multi-chip structure comprises a SOC, at least three SerDes chips positioned at different sides of the switch SOC; and a plurality of inter-chip interfaces, for connecting the switch SOC to the plurality of SerDes chips, respectively.
According to another embodiment of the present invention, a multi-chip structure comprises a SOC, a plurality of IO chips positioned around the SOC, and a plurality of inter-chip interfaces for connecting the SOC to the plurality of IO chips, respectively.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ” The terms “couple” and “couples” are intended to mean either an indirect or a direct electrical connection. Thus, if a first device couples to a second device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
Please refer to
In this embodiment, each of the IO chips 12_1-120_4 is a SerDes chip, and is configured to convert the serial data to parallel and/or convert the parallel data to serial data. In addition, the IO chips 120_1-120_4 may supports at least two different Ethernet standards, wherein the at least two different Ethernet standards may comprise, without limitation, 100G-base 5R4/CR4/KR4 (25G*4)NRZ, 400G-base 5R16 (25G*16) NRZ, 400G-base LR8/CR8/KR8 (50G*8) NRZ or PAM-4, 400G-base LR4 (100G*4) PAM-4, and 400G-base LR2 (200G*2) PAM-4/PAM-8/PAM-16, . . . and any other suitable modulation standards.
In one embodiment, the IO chips 120_1-120_4 may be manufactured by at least two different semiconductor processes to optimize their performances. For example, one of the IO chips 120_1-120_4 may be manufactured by a low supply voltage process such as 10 nm process with 0.75V supply voltage, while another one of the IO chips 120_1-120_4 may be manufactured by another process having a higher supply voltage.
In the operations of the circuits shown in
For the lower portion of
Then, the multiplexers 337 and 336 (4-to-1 mux) convert the parallel data to the serial data having the frequency equal to 56 GHz, and the TXDRV 335 sends the serial data to another chip within or without the package 100. In addition, the PLL 338 is arranged to provide a clock signal to the multiplexer 336, and the clock signal used by the other multiplexers may be derived from this clock signal or from other sources. In addition, the clock frequency (e.g. 56 GHz and 800 MHz) and the transmission of the clock signal (e.g. TX_CLK) shown in
By using the embodiment shown in
In addition, the quantity of the IO chips and their positions shown in
Please refer to
In this embodiment, each of the IO chips 420_1-420_3 is a SerDes chip, and is configured to convert the serial data to parallel and/or convert the parallel data to serial data. In addition, the IO chips 420_1-420_3 may support at least two different Ethernet standards, wherein the at least two different Ethernet standards may comprise, without limitation, 100G-base SR4/CR4/KR4 (25G*4) NRZ, 400G-base SR16 (25G*16) NRZ, 400G-base LR8/CR8/KR8 (50G*8) NRZ or PAM-4, 400G-base LR4 (100G*4) PAM-4, and 400G-base LR2 (200G*2) PAM-4/PAM-8/PAM-16, . . . and any other suitable modulation standards.
In one embodiment, the IO chips 420_1-420_3 may be manufactured by at least two different semiconductor processes to optimize their performances. For example, one of the IO chips 420_1-420_3 may be manufactured by a low supply voltage process such as 10 nm process with 0.75V supply voltage, while another one of the IO chips 420_1-420_3 may be manufactured by another process having a higher supply voltage.
The package structure and the inner circuit structure of the package 400 may refer to the embodiment shown in
Briefly summarized, in the multi-chip structure of the present invention, the IO chips are connected to the SOC via the inter-chip interfaces, respectively, and the IO chips and the SOC can be designed and manufactured independently. Therefore, these flexible IO chips can be designed independently to optimize their performance, and can be manufactured by a most suitable semiconductor process. In addition, when a new product is developed, the IO chips may not need to re-design to save the development cost.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
This application claims the priority of U.S. Provisional Application No. 62/205,789, filed on Aug. 17, 2015, which is included herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6628679 | Talarek | Sep 2003 | B1 |
6821029 | Grung | Nov 2004 | B1 |
7010612 | Si | Mar 2006 | B1 |
7376767 | Black | May 2008 | B1 |
8218537 | Gui | Jul 2012 | B1 |
8576865 | Lo | Nov 2013 | B1 |
8762608 | Longstreet | Jun 2014 | B1 |
9515694 | Sidiropoulos | Dec 2016 | B1 |
20020191620 | Chen | Dec 2002 | A1 |
20040218597 | Choi | Nov 2004 | A1 |
20060244482 | Peterson | Nov 2006 | A1 |
20080179735 | Urakawa | Jul 2008 | A1 |
20120300792 | Patel | Nov 2012 | A1 |
20140186023 | Louderback | Jul 2014 | A1 |
20140300003 | Kariyazaki | Oct 2014 | A1 |
20140321804 | Thacker | Oct 2014 | A1 |
20150113495 | Shapiro | Apr 2015 | A1 |
20160013794 | Su | Jan 2016 | A1 |
20160019174 | Sreenath | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
203984453 | Dec 2014 | CN |
Entry |
---|
Lattice Semiconductor, “High-Speed SERDES Interfaces in High Value FPGAs,” www.latticesemi.com, Feb. 2009, pp. 1-10 (Year: 2009). |
Wikipedia, Pulse-amplitude modulation, May 18, 2015, pp. 1-3, https://en.wikipedia.org/w/index.php?title=Pulse-amplitude_modulation&oldid=662931696. |
Number | Date | Country | |
---|---|---|---|
20170054656 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
62205789 | Aug 2015 | US |