The present invention relates to a multi-crystal diamond body and a method of making such diamond body, more specifically, to a synthetic multi-crystal diamond body grown by chemical vapor deposition (CVD) or other techniques. The diamond body includes a limited number of single crystal regions having two or more crystallographic orientations. The orientations are not random and related to each other by a geometrical operation. The diamond growth conditions for the formation of specific crystallographic orientations in the multi-crystal diamond body produce high quality, crack free diamond substrates suitable for optical, electronic, semiconductor, tooling, and many other diamond applications.
Diamond possesses a number of unique physical properties, such as extreme hardness, extreme thermal conductivity, high carrier mobility, transparency over a wide range of electromagnetic wavelengths, long spin-relaxation times, etc., making it an excellent material for many applications. Diamond may be grown in different crystalline forms. One extreme case may be a single (or mono-) crystal. Another extreme case, which is the most common and represents the majority of conventional polycrystalline diamonds, may be a poly-crystal, including a plurality of small single crystals (often called grains) randomly oriented with respect to each other. Grain sizes in conventional polycrystalline diamond may range from about 0.1 to about 1 μm (fine grains), to about 1 to about 10 μm (medium grains), and to about 10 to about 100 μm (large grains). The numerous grain boundaries in polycrystalline diamond are responsible for significant differences between physical properties of single crystal and polycrystalline diamond. For example, the presence of grain boundaries reduces diamond's thermal conductivity, electron/hole mobility, and transparency to radiation. As result, many important properties of conventional polycrystalline diamond are inferior to a single crystal diamond. Significant reduction of the number of grain boundaries may improve the quality of polycrystalline material making it more close to a single crystal material.
One specific form of polycrystalline material, including diamond, is a material where twins are present. Twins are a highly oriented association of two or more individual single crystals of the same phase in which the mutual orientation is not random, but related by a geometrical operation. Geometric operations may be those related to crystal symmetry and include rotation, reflection, and inversion, but not, generally, those related to translation. The inclination between twinned crystals is typically large, usually exceeding about 10°. It may be assumed by the skilled in the art person that a single crystal diamond is an untwinned crystal.
In many applications, the full potential of diamond material may be realized only through the use of either single crystal diamond or a polycrystalline diamond having properties very close to single crystal diamond. In addition, many diamond applications may require fabrication of high quality diamond components larger than about 1 cm diameter in several dimensions. However, natural single crystal diamonds larger than about 1 cm are extremely expensive. Production of synthetic single crystal diamonds by high pressure high temperature (HPHT) processes is also limited to about the same size of about 1 cm. One of the most common shapes of diamond for many applications (for example for electronic, optical, and sensor applications) is a diamond wafer representing a thin and flat slice of diamond material. As used herein, the term wafer refers to a three dimensional body without restriction. Low pressure diamond growth from a vapor phase (or vapor deposition) may produce synthetic diamond wafers up to about 20 to about 30 cm diameter and potentially larger. It has been demonstrated that the production cost of synthetic diamond by vapor deposition may drop significantly with increase of diamond size.
In the vapor deposition method, diamond grows from highly reactive gas phase carbon precursors, created by the activation of feed gases. The activation may be achieved in different ways which define different vapor deposition methods. For example, activation may be achieved by using plasma, high temperature, laser, ionizing radiation, or, in general, using any method resulting in appearance of relevant diamond growth carbon precursors near the growth surface. Plasma vapor deposition techniques may include microwave, direct current (DC), radio frequency (RF), arc jet, flame torch, glow discharge, and other techniques creating plasmas. Sometimes different vapor deposition techniques are defined as chemical vapor deposition (CVD) or physical vapor deposition (PVD). For example, some of abovementioned vapor deposition techniques are often defined as hot filament CVD, plasma CVD/plasma assisted CVD, microwave plasma CVD, microwave plasma assisted CVD, DC plasma CVD, etc. Existing CVD/PVD techniques are well suited to grow both polycrystalline and single crystal diamond material.
Single crystal diamond bodies may be produced by vapor deposition homoepitaxial diamond growth wherein the grown crystalline overlayer is the same material and the same crystalline orientation as the crystalline substrate (which may be also called seed). Homoepitaxial diamond growth of large size single crystal diamonds requires expensive large size natural or HPHT single crystal diamond substrates. An alternative approach to grow large size single crystal diamond is a mosaic method, wherein relatively smaller single crystal substrates, having the same crystal orientation, form a joint planar growth surface upon which a single crystal diamond overlayer is grown bonding smaller substrates together. Previously, mosaic CVD single crystal diamond s growth methods have been described for the growth of homoepitaxial single crystal diamond overlayers, and physical properties of such overlayers. However, practical attempts to fabricate large size single crystal diamond wafers from single crystal diamond overlayers grown over a mosaic substrate resulted in poor quality products, having cracks and uncontrolled polycrystalline diamond inclusions. It has been suggested previously that the high stress in diamond overlayers, leading to cracking, is the result of formation of polycrystalline inclusions in the diamond overlayer and between the initial diamond seed crystals. As a result, all growth particles such as twins, polycrystalline regions, abnormal particles, etc. were considered as highly unwanted defects which had to be completely eliminated by the proper growth conditions providing pure single crystal growth.
Therefore, as can be seen, there is a need for a new type diamond material with properties close to a single crystal diamond and which is large enough or otherwise suitable for commercial and scientific applications. The present invention is a new multi-crystal diamond body with a limited number of highly oriented single crystal regions, and a method of making such multi-crystal diamond body. The properties of this multi-crystal diamond body are very close to those of single crystal diamond.
In one embodiment of the present invention, a multi-crystal diamond body comprises a limited number of single crystal regions having two or more, crystallographic orientations significantly different from each other, but related to each other by a geometrical operation.
In another embodiment, a synthetic multi-crystal diamond body comprises a first single crystal partial volume and one or more of other single crystal partial volumes, wherein the first partial volume occupies less than about 100% of the total synthetic diamond body volume, and has the first crystallographic orientation; and each other single crystal partial volume comprises a plurality of single crystals volumes all having about the same crystallographic orientation; wherein the crystallographic orientation of each other partial volume is fixed against the first crystallographic orientation.
In still another embodiment, a method of making multi-crystal diamond body includes the steps of growing a first diamond layer over a first growth surface comprising surfaces of a plurality of single crystal diamond seeds on a substrate in a diamond deposition reactor; removing the substrate with a plurality of seeds and overgrown first diamond layer from the reactor; separating the plurality of seeds with overgrown diamond layer from the substrate; turning over the plurality of seeds with the first overgrown diamond layer, to provide a new diamond growth surface of a plurality of seeds, wherein the second diamond growth surface is different from the first grown diamond layer; growing a second diamond layer on the new diamond growth surface the plurality of single crystal diamond seed in a diamond deposition reactor.
In still another embodiment, a diamond wafer is made from the multi-crystal diamond body by separating the first and second grown diamond layers from the first and second growth surfaces.
In still another embodiment, a method of making synthetic multi-crystal diamond body may include growing a first diamond layer over a growth surface of a plurality of single crystal diamond seeds on a substrate in a diamond deposition reactor; removing the substrate with a plurality of seeds and overgrown first diamond layer from the reactor; separating the plurality of seeds with first overgrown diamond layer from the substrate; turning over the plurality of seeds with the first overgrown diamond layer, thus making a second diamond growth surface of a plurality of seeds, wherein a new diamond growth surface is different from the first grown diamond layer; growing a second diamond layer on the second diamond growth surface comprising the plurality of single crystal diamond seeds in a diamond deposition reactor; growing a third diamond layer on the first diamond growth surface, which is different from the second diamond layer; growing a fourth diamond layer on the second diamond growth surface, which is different from the third diamond layer, thus making a multilayer diamond seed body; alternating growth on the different sides of multilayer diamond seed body, such as each new consecutive diamond growth surface is different from the previous grown diamond layer.
In still another embodiment, a diamond wafer is made by separating the first, second, and any subsequently grown diamond layers from the first, second, or subsequent growth surfaces. In still another embodiment, a method of making synthetic multi-crystal diamond wafer may comprise growing a first diamond layer over a growth surface of a plurality of single crystal diamond seeds on a substrate in a diamond deposition reactor; removing the substrate with a plurality of seeds and overgrown first diamond layer from the reactor; separating the plurality of seeds and the substrate from the overgrown diamond layer: thus producing new growth surfaces without the original seed crystals; growing a second diamond layer on the new growth surfaces thus created.
The foregoing summary, as well as the following detailed description of the embodiments, may be better understood when read in conjunction with the appended drawings. It should be understood that the embodiments depicted are not limited to the precise arrangements and instrumentalities shown.
a shows a side schematic view and a schematic flow diagram of a method of making a diamond body according to an exemplary embodiment by growing a two-layer CVD diamond-seed body;
b show a side schematic view and a continued schematic flow diagram of a method of making a diamond body according to an exemplary embodiment by growing a multilayer CVD diamond-seed body; and
Exemplary embodiments provide a new type of polycrystalline diamond material, described as a “multi-crystal diamond” which has properties close to single crystal diamonds and diamond bodies or wafers made from this material. This multi-crystal diamond may have large lateral sizes over about 1 cm and may be used for making optical windows, electronic devices, sensors, heat sinks, and in many other diamond applications.
Exemplary embodiments provide a new type of multi-crystal diamond, in which different single crystal partial volumes have two or more consistent crystallographic orientations, that is, not randomly oriented. The two or more consistent crystallographic orientations are related to each other by a geometrical operation. This multi-crystal diamond may be fabricated using selected vapor deposition growth conditions, where the growth of randomly oriented poly-crystals is suppressed and where ordered polycrystalline inclusions may be predominantly present. This multi-crystal diamond may be less vulnerable to cracking and its properties may be superior to conventional polycrystalline diamond with randomly oriented grains. The multi-crystal diamond properties may be close to the properties of single crystal diamond.
One exemplary embodiment of current invention is the fabrication of multi-crystal diamond mosaic body using a plurality of single crystal diamond seed-plates having the same or very close crystalline orientations. Seed-plates may be single crystal diamond bodies. Deviation between the crystal orientations of different seed-plates should be less than about 5° and seed-plates should be separated from each other as little as possible (less than about 100 μm for example). Seed-plates may be made from natural or synthetic single crystal diamond material. Synthetic diamond seed plates may be fabricated by HPHT, CVD, PVD, or by any other suitable techniques producing good quality synthetic single crystal diamond. Seed-plates, which may be produced by lapping or polishing, should be flat and have low surface roughness. Surface roughness may be less than about 10 μm, or less than about 0.1 μm, for example. Seed plates may have to be cleaned to remove surface contaminations, using standard diamond cleaning techniques. For example, solvent cleaning, hot acid cleaning, molten salt cleaning, high temperature treatment in hydrogen atmosphere, plasma etching, or any suitable surface cleaning technique.
In another exemplary embodiment, the second crystallographic orientation β may be different from the first crystallographic orientation α by more than about 8°, for example. In further exemplary embodiment, the second crystallographic orientation β may be different from the first crystallographic orientation α by more than about 10° for example.
As shown in the two dimensional representation
In another exemplary embodiment, the difference between any two crystallographic orientation among α, β, and γ orientations may be more than about 8°, for example. In further another exemplary embodiment, the difference between any two crystallographic orientation among α, β, and γ orientations may be more than about 10° for example.
Still in
a and
Additionally, before diamond growth, growth surfaces of seed plates 30 may be cleaned by using such techniques as mechanical cleaning, thermal cleaning, chemical cleaning, fusion cleaning, sonication cleaning, ion-beam cleaning, molecular-beam cleaning, plasma cleaning, etc. Specifically, plasma cleaning (or plasma etching) conditions may include different plasma chemical compositions created by using different feed gases (H2, O2, inert gases, halogen containing gases, sulfur containing gases, phosphorus containing gases, boron containing gases, for example), different gas pressure (from about 1 mTorr to about 760 Torr, for example), different substrate temperature (from about −200 ° C. to about 2000° C., for example), etc. Plasma cleaning may be done inside the plasma deposition reactor for diamond growth or in a separate reactor. Cleaning techniques may provide clean diamond surface without impurities, and also may reduce surface roughness and surface concentration of unwanted defects in the seed surfaces.
One example of diamond described in this invention is the CVD grown multi-crystal diamond body comprising of first single crystal partial volume, with a relatively large size and a limited number of other partial single crystal volumes comprising twinned single crystals. The stress between twinned crystals is lower than the stress between randomly oriented poly-crystals. Thus, exemplary embodiment of multi-crystal diamond may be grown without cracks, which are typical for diamond with randomly oriented poly-crystals.
The multi-crystal diamond wafer may be sliced/cut from multi-crystal diamond body described above. The wafer plane may be sliced/cut through one or more single crystal partial volumes, thus representing a cross-section of the body, and the single crystal partial areas on the wafer plane represent single crystal partial volumes which the plane crosses. Single crystal partial areas may have different crystallographic orientations, which can now be defined by Miller indices. For example the first single crystal partial area may have (100) orientation or it may have also one of the other main diamond orientations, like (110), (111), (311), etc.
a depicts a method 200 of making diamond wafer including the steps of providing a seed assembly 28, including a plurality of single crystal diamond seeds 30 on a substrate 32; placing the seed assembly 28 into a vapor deposition reactor, such as a chemical vapor deposition reactor, for example; growing a first diamond layer 34 over the growth surfaces of the plurality of seeds 30 in a step 210, bonding diamond seeds together and making a joined diamond layer-seed assembly body 36; removing the substrate 32 with the diamond layer-seed assembly body 36 from the vapor deposition reactor; separating the diamond layer-seed assembly body 36 from the substrate 32; reorienting the diamond layer-seed assembly body 36 and placing it on a substrate 32, replacing the reoriented assembly into the deposition reactor in a step 230, in a such way, that the new diamond growth surface will be a different side of the plurality of single crystal diamond seeds 30; and growing a second diamond layer 38 on the new growth surface representing a different side of the plurality of single crystal diamond seed in a step 230, thus making a diamond multilayer-seed assembly body 40. In step 230, the individual growth surfaces of the seed plates 28 may not deviate significantly (less than about 50 μm, or less than about 5 μm, for example) from the common imaginary plane passing through the growth surfaces of all seed plates.
As shown in
Multi-crystal diamond bodies grown from assembly of single crystal diamond seeds may be used to make large size diamond wafers suitable for further wafer processing. Processing may include, but not limited to, lapping and polishing to desired thickness, flatness and roughness, patterning by photo-lithography, e-beam lithography or by other patterning techniques. The large size diamond wafer may be used to fabricate individual devices on selected diamond areas of the wafer. For example, selected areas may represent single crystals areas or areas with specific crystallographic orientation. Selected areas on multi-crystal wafer, suitable for device fabrication may be determined by using EBSD, X-ray topography, optical microscopy (birefringence, polarized light, UV-luminescence image, etc.), Raman topography, cathode-luminescence, continuous wave or time-resolved photoluminescence, and other suitable techniques.
A microwave plasma CVD reactor used for diamond coating was equipped with 2.45 GHz magnetron microwave source, microwave cavity, quartz bell-jar inside which plasma was maintained, water cooled stage inside the bell-jar for sample holder accommodation, gas system for feed-gas supply, and optical pyrometer for surface temperature measurement. Gas pressure inside the bell-jar was 50-400 mBar, and microwave power was 1.5-6 kW. Feed gases were supplied at flow rates of 1000 sccm for hydrogen and 10-100 sccm for methane. Growth conditions were controlled by adjusting the gas pressure inside the bell-jar, microwave power, feed gas flow rates, and the sample holder spatial position inside the plasma. Surface temperature of diamond seeds was controlled by optical pyrometer and kept constant using microwave power or gas pressure feedback.
Several polished (RMS roughness about 5-10 nm), were chemically cleaned and diamond seed plates were placed on a molybdenum support plate in a sample holder sitting on a water-cooled stage inside a CVD reactor in a way that their growth surfaces were directly exposed to the plasma during diamond deposition, facing the plasma ball. A first, about 300 μm thick, diamond layer was grown on the growth surfaces of seed assembly, thus forming a continuous CVD diamond layer over the diamond seeds, bonding diamond seeds together, and making a rigid CVD diamond layer-seed body. Then, the resulting CVD diamond layer-seed body was taken out of the reactor, cleaned from all non-diamond material by etching in the mixture of nitric and sulfuric acids and placed back on the support plate in the sample holder inside a CVD reactor in a way that previous bottom part of the seed assembly, opposite to the first CVD diamond layer, became a new growth surface of the body or a top surface, facing a plasma ball. After the second CVD diamond layer with the thickness of about 300 μm was grown over the new growth surface of the body, the body was taken out from the reactor and cleaned in the acid mixture. The body was used to continue the above mentioned diamond deposition steps alternating the top and bottom surfaces of the body as diamond growth surfaces, and making a thick CVD diamond multilayer-seed body. The alternating growth of diamond layers on the growing surface and bottom parts of the body was done in a way, when the thickness of the consecutive growing surface and bottom grown diamond layers was about the same, approximately 300 μm. The resulting thick CVD diamond multilayer-seed body was cut to form about 1 mm thick diamond wafers.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2012/072319 | 12/31/2012 | WO | 00 |