The invention relates to photolithography in general, and more particularly to a device and method for producing two- and three dimensional patterned structures with a photolithography mask by a multi-photon optical process.
Non-linear optical processes can occur in molecular and atomic structures when the focused optical field reaches an optical power density of approximately 108 W/cm2. Such non-linear optical processes can include frequency conversion caused by higher order effects in the electric susceptibility as well as multi-photon absorption.
Because nonlinear optical and multi-photon processes are super-linear, they require a high optical power density in the material of interest to achieve a high efficiency. However, even with a pulsed laser light source with short pulse duration in the order of picoseconds to femtoseconds and a relatively low average power, the high peak-power pulses can still damage materials and/or structures placed in the optical beam. For example, a transmissive or reflective mask illuminated by a high peak-power pulse optical beam may be damaged and even destroyed by the intense optical and electrical field produced by the illuminating beam.
To limit damage to materials located from a pulsed high-power light source, for example the non-linear crystal used in solid state laser amplifiers, Strickland and Mourou (Opt. Commun. 56, 219 (1985)) developed a method referred to as Chirped Pulse Amplification (CPA). In this method a grating pair or highly dispersive optical fiber are used to “stretch” the pulse prior to amplification. In pulse stretching, the grating pair or fiber is used to arrange various frequency components of the original short pulse into a train of frequencies that then propagate sequentially in time through the amplifying medium. After amplification, another grating or pair of gratings is used to recompress the pulse in time which generates short pulses of very high peak-power which can be produce the desired non-linear optical effects.
It would therefore be desirable to provide a system and method for patterned exposure of a photoactive medium by a pulsed optical beam with a high peak power, whereby damage to the optical component defining the pattern, such as a photolithography masks, can be prevented or at least limited.
The exemplary methods and systems described herein relate, inter alia, to the transfer of an optical image from a photolithography mask into a photoactive material by using a pulsed high peak-power optical beam.
According to one aspect of the invention, a microlithography system includes a light source that produces a pulsed optical beam with a wavelength, a pulse duration and a peak power. A following pulse stretcher receives the pulsed optical beam and increases the pulse duration of the pulsed optical beam while reducing the peak power. The stretched beam illuminates a mask having a pattern defined thereon, and an optical element then images the illuminated pattern onto a photoactive material. A pulse compressor is arranged between the mask and the photoactive material. The pulse compressor decreases the pulse duration and increasing the peak power of the stretched beam, thereby exposing the photoactive material with the high peak power.
According to another aspect of the invention, a method for patterned exposure of a photoactive medium includes the steps of producing a pulsed optical beam with a high peak-power, stretching the pulse duration of the pulsed optical beam to reduce the high peak-power, and illuminating a pattern with the stretched pulse. The method further includes the steps of recompressing the stretched illuminated pattern and imaging the recompressed illuminated pattern onto the photoactive medium.
Embodiments of the invention can include one or more of the following features. The photoactive material can be a photon-activatable photoacid generator that can be activated by single-photon, two-photon, or multi-photon processes, with the light source being a pulsed laser. The wavelength exposing the photoactive material can be shorter than the laser emission wavelength and can be generated, for example, by optical frequency conversion, such as second or third harmonic generation. The pulse stretcher and the pulse recompressor can each include an optical grating pair that preferably operates in first order. The pulse stretcher can also be made of a suitable length of optical fiber. The mask can be a programmable mask, for example, a mask composed of arrays of movable micro-mirrors. To shape the wavefront and/or delay the phase of the stretched beam, a liquid crystal modulator can be placed in the optical beam path. The imaging resolution can be further enhanced by placing an index matching fluid between the optical element and the photoactive material.
The feature definition in the exposed photoactive material can be improved by micro-stepping or interleaving mask patterns by repeatedly imaging the recompressed illuminated pattern onto the photoactive medium with a relative offset between imaging steps, wherein a resulting separation between pattern features produced from different imaging steps is smaller than a diffraction-limited image of the pattern features.
This system and method is useful for the manufacture of integrated circuits that can have feature sizes of less than 100 nanometers, and for structured three-dimensional systems for medical applications, such as cardiac stents. The system and method can also be used to “print” three-dimensional optical devices such as photon crystals. Further features and advantages of the present invention will be apparent from the following description of several illustrated embodiments and from the claims.
The following figures depict certain illustrative embodiments of the invention in which like reference numerals refer to like elements. These depicted embodiments are to be understood as illustrative of the invention and not as limiting in any way.
a-1d show schematically a two-photon absorption process and an exposure region in a photoactive material;
The system described herein is directed to patterning a photoactive material, such as photoresist, applied on, for example, a wafer with a high peak-intensity optical beam, wherein the exposure is induced by simultaneously absorbing two photons which in the illustrated example have the same photon energy. In particular, the system described herein uses an optical projection-reduction system, similar to a projection mask aligner. However, unlike a conventional system, the short duration pulses of the exciting optical beam are first stretched to form pulses of longer duration with a smaller peak energy to prevent damage to the mask. These longer pulses then illuminate a patterned mask, whereafter they are recompressed, e.g., by another grating pair, and imaged onto the photoactive medium, such as photoresist, for example by a reduction optical system.
a to 1d show schematically a two-photon process in an optically absorbing material. Photons having photon energies ωp1 and ωp2, wherein ωp1 can be identical to or different from ωp2, are absorbed in the material to produce a transition from a ground state |0> to an excited state |2>. The two-photon process can occur either via a virtual level |1>, as indicated in
wherein λ is the exposure wavelength, NA is the numerical aperture of the optical system and k is a proportionality constant defining the finest pitch that can be printed. The smallest k equals k=0.5, where the highest order diffraction is captured at the edge of the imaging lens. Sophisticated imaging techniques such as phase shifting masks, optical proximity correction and off axis illumination allow the minimum printed feature to be less than p/2. Values as low as k=0.36 have been reported. In two-photon processes, the exposure threshold depends on I2 so that, for example, side-lobes of the beam do not print. Accordingly, two-photon exposures may be able to produce feature sizes down to
or less.
In addition, high-power laser pulses of short duration can be efficiently frequency-doubled or frequency-tripled. Two-photon lithography today uses typically an exposure wavelength of 750-800 nm, which can be doubled or tripled to, for example, 260-400 μm. This has the advantage that photoresists designed for exposure wavelengths of 193 nm or 157 nm wavelength can be used, which are transparent at the doubled or tripled exposure wavelength of 260-400 nm. It follows from the above equation that for a system having a numerical aperture NA=0.9 and an exposure wavelength of 270 nm a minimum feature size of 36 nm could be printed at a pitch of 150 nm (k=0.5).
A concept of printing a smaller feature size than the pitch is schematically illustrated in
However, point-by-point scanning is time-consuming and therefore unsuitable for volume-production of wafers. Modern wafer fabs use projection mask aligners and steppers, allowing rapid area exposure of photoresist with high resolution and high throughput. Here a mask, or reticule, with an image pattern is imaged with 4-10 times reduction onto a layer of a photoactive material, e.g. photoresist, coated on the wafer. This image is subsequently developed and device features are defined in a number of semiconductor process steps. Typically, in excess of ninety 12 inch wafers may be processed per hour with a single stepper or scanner. Up to 25 masking levels may be required to process the most advanced CMOS process wafers.
As mentioned above, a photoactive material activated by a two-photon exposure process requires a high peak-power beam to be efficient; however, such a high peak-power beam can damage the mask (which after all is an optical absorber). It would therefore be advantageous to expose the mask with a beam generated by a pulsed light source, such as a laser beam, that has a smaller optical peak power than the beam required for two-photon exposure of the photoresist, while maintaining approximately the same average beam power to achieve adequate wafer throughput. This can be accomplished by first stretching the optical pulse generated by the light source (laser) for exposing the mask, and subsequently recompressing the pulse with the impressed mask pattern for exposing the photoactive material by a multi-photon processes.
Turning now to
The imaged beam then passes through suitable imaging optics 43a, 43b and a pulse-compressor, such as grating pair 46, and is imaged onto a wafer 47 or another suitable substrate coated with or formed of a photoactive medium (e.g., photoresist) that can be placed in a reduction mask-aligner/stepper 48. The aligner/stepper 48 can be of a conventional design used in the semiconductor industry. The projection/reduction optics 45 of the mask-aligner/stepper 48 can reduce the imaged feature size of mask 49 by a factor of up to 1000.
The pulse compression gratings should have high reflectivity across the bandwidth of the laser pulse and also be designed to have very little wavefront distortion. A distortion of less that λ/10-λ/20 is desirable. In addition, with broad bandwidth laser pulses optical dispersion may occur in the projection optics. This can be compensated for by acousto-optic or liquid crystal array phase modulator systems, located in the spectrally dispersed optical beam (see, for example,
The photomask 49 can not only be imaged onto the surface of wafer 47 to expose the photoresist at the wafer surface, but due to the threshold exposure associated with two-photon processes can also expose the photoresist selectively at a certain depth in the photoresist layer. Accordingly, three-dimensional features can be defined in the photoresist by the nonlinear two-photon exposure process.
Because in the nonlinear two-photon exposure process the rendered feature size can be considerable smaller than the pitch, as described above with reference to
Conventional ultraviolet (UV)-sensitive photoacid generators (PAG) such as diaryliodonium and triarylsulfonium cations, have been used for two-photon microfabrication. Other materials, such as bis[(diarylamino)styryl]benzene with attached sulfonium moieties with orders of magnitude larger two-photon cross-sections have been proposed. I.e., with photoresists for two-photon lithography readily available, the aforedescribed exposure system will offer unprecedented feature definition and resolution in two-dimensional and three-dimensional photolithography.
The disclosed system and method can therefore advantageously provide:
1) An area exposure with a resolution that is significantly higher than can be achieved with standard one-photon projection reduction lithography—because photochemistry is initiated only at the peaks of the optical field, which can therefore smaller features than the diffraction-limited resolution of a microscope or reduction lens.
2) A three-dimensional exposed pattern in the interior of a thick layer of a photoactive medium. Unlike in one-photon projection reduction lithography where significant photo-activation can occur outside of the focal region in the converging and diverging optical beam, the two-photon process is only efficiently activated in the high intensity focal volume of the image.
While the invention has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. For example, instead of using a photoactive medium responsive to two-photon processes, a medium operating with single-photon excitation or by excitation by three or more photons can also be used, as long as a short pulse duration and high peak power is desirable for the exposure. Moreover, the photolithography mask can operate in reflection or transmission. This could be advantageous, for example, for improving the thermal management during the exposure. Accordingly, the spirit and scope of the present invention is to be limited only by the following claims.