MULTILAYER FLEXIBLE PRINTED CIRCUIT BOARD

Abstract
A flexible printed circuit board with multiple layers includes an inner wiring substrate and at least one outer wiring plate. Each outer wiring plate is connected to one surface of the inner wiring substrate, and defines at least one through hole which passes through the outer wiring plate to expose the inner wiring substrate. Each outer wiring plate further includes an adhesive plate connected to the inner wiring substrate. The adhesive plate includes a stepped portion extending towards a center of the through hole.
Description
FIELD

The subject matter herein generally relates to circuit boards, and particularly, to a multilayer flexible printed circuit board (FPCB).


BACKGROUND

Multilayer circuit boards are widely used in various kinds of electronic devices. A multilayer circuit board usually comprises an inner conductive wiring layer and at least one outer conductive wiring layer. A fall structure is usually formed between the inner conductive wiring layer and the outer conductive wiring layer. When a dry film covers the outer conductive wiring layer, the dry film cannot fill a bottom of the fall structure. Thus, there is a need to increase the dry film thickness to allow the dry film to fully fill the bottom of the fall structure. However, such dry film may have a low resolution, and further limit a line width and a line space of the outer conductive wiring layer. Therefore, there is room for improvement in the art.





BRIEF DESCRIPTION OF THE DRAWINGS

Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.



FIG. 1 is a diagrammatic view of an exemplary embodiment of a double-sided copper substrate according to the present disclosure.



FIG. 2 is a diagrammatic view showing an electrically conductive hole being formed in the double-sided copper substrate of FIG. 1.



FIG. 3 is a diagrammatic view showing the double-sided copper substrate of FIG. 2 being etched to form an inner wiring substrate.



FIG. 4 is a diagrammatic view of a single-sided copper substrate.



FIG. 5 is a diagrammatic view showing the single-sided copper substrate of FIG. 4 being punched to form a through hole.



FIG. 6 is a diagrammatic view showing the single-sided copper substrate of FIG. 5 and the inner wiring substrate of FIG. 3 being pressed to form an intermediate product.



FIG. 7 is a diagrammatic view showing a dry film covering the intermediate product of FIG. 6.



FIG. 8 is a diagrammatic view showing an outer conductive wiring layer being formed on the intermediate product of FIG. 7, to form a multilayer FPCB.





DETAILED DESCRIPTION

It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.


The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series, and the like.


Referring to FIGS. 1-8, a method for making a multilayer FPCB 100 (shown in FIG. 8) is presented in accordance with an exemplary embodiment. The multilayer FPCB 100 can be applied to a rigid-flexible printed circuit board. The method for making the multilayer FPCB 100 is provided by way of example, as there are a variety of ways to carry out the method. The exemplary method can begin at step 1.


At step 1, referring to FIG. 1, a double-sided copper substrate 10 is provided which comprises a first isolated plate 11, and a first copper plate 13 and a second copper plate 15 connected to opposite surfaces of the first isolated plate 11.


In at least one exemplary embodiment, the first isolated plate 11 is made of a polymer selected from a group consisting of polyimide, polytetrafluoroethylene, poly thiamine, poly (methyl methacrylate), polycarbonate, polyethylene terephthalate, and polyimide-polyethyleneterephthalate, or any combination thereof. In at least one exemplary embodiment, the first isolated plate 11 is made of polyimide.


At step 2, referring to FIG. 2, at least one electrically conductive hole 16 is defined in the double-sided copper substrate 10 which electrically connects the first copper plate 13 to the second copper plate 15.


In at least one exemplary embodiment, step 2 can be carried out by defining the double-sided copper substrate 10 to form at least one connecting hole 161 which passes through the first copper plate 13 and the second copper plate 15. Each connecting hole 161 is metalized to form a copper layer 163 on an inner wall of the connecting hole 161, thus forming the electrically conductive hole 16.


At step 3, referring to FIG. 3, the first copper plate 13 and the second copper plate 15 are etched to respectively form a first inner conductive wiring layer 130 and a second inner conductive wiring layer 150, thereby forming an inner wiring substrate 10a.


At step 4, referring to FIG. 4, two single-sided copper substrates 20 are provided, each comprising a second isolated plate 21, and a third copper plate 23 and an adhesive plate 25 connected to opposite surfaces of the single-sided copper substrate 20. In at least one exemplary embodiment, the adhesive plate 25 has a thickness of about 10 micrometers to about 25 micrometers.


In at least one exemplary embodiment, the second isolated plate 21 is made of a polymer selected from a group consisting of polyimide, polytetrafluoroethylene, poly thiamine, poly (methyl methacrylate), polycarbonate, polyethylene terephthalate, and polyimide-polyethyleneterephthalate, or any combination thereof. The second isolated plate 21 has a thickness of about 3 micrometers to about 10 micrometers.


At step 5, referring to FIG. 5, each single-sided copper substrate 20 is punched to form at least one through hole 201 which passes through the third copper plate 23, the second isolated plate 21, and the adhesive plate 25.


At step 6, referring to FIG. 6, the two single-sided copper substrates 20 punched in FIG. 5 is attached onto opposite surfaces of the inner wiring substrate 10a of FIG. 3 to expose the first inner conductive wiring layer 130 and the second inner conductive wiring layer 150 through the through hole 201. The adhesive plates 25 of the two single-sided copper substrates 20 are connected to the first inner conductive wiring layer 130 and the second inner conductive wiring layer 150. Then, the two single-sided copper substrates 20 are heated and pressed together to cause adhesive of the adhesive plates 25 to flow and fill each electrically conductive hole 16. The adhesive further extends towards a center of the through hole 201 along a direction substantially perpendicular to a center axis of the electrically conductive hole 16 to form a stepped portion 252, thereby forming an intermediate product 30. In at least one exemplary embodiment, the stepped portion 252 extends towards the center of the through hole 201 by a distance of about 2 millimeters to about 5 millimeters. The distance of the stepped portion 252 extending towards the center of the through hole 201 can be varied by adjusting a temperature for heating and a pressure for pressing the two single-sided copper substrates 20 together.


In at least one exemplary embodiment, the through holes 201 of one single-sided copper substrate 20 correspond to the through holes 201 of the other single-sided copper substrate 20.


At step 7, referring to FIG. 7, cover the two third copper plates 23, the exposed first inner conductive wiring layer 130, and the exposed second inner conductive wiring layer 150 of the intermediate product 30 with two dry film 40. The dry films 40 are pressed together and fill gaps formed by the exposed first inner conductive wiring layer 130, and the exposed second inner conductive wiring layer 150, thereby connecting the dry films 40 to the intermediate product 30.


Since a height of the fall structure formed between the third copper plates 23 and the exposed first inner conductive wiring layer 130/second inner conductive wiring layer 150 can be decreased by the stepped portions 252, the dry films 40 can fully fill the bottom of the fall structure, thus enabling a complete and reliable connection between the dry films 40 and the intermediate product 30.


In at least one exemplary embodiment, the dry film 40 has a thickness of about 15 micrometers.


At step 8, referring to FIG. 8, each third copper plate 23 is etched through the dry film 40 to form an outer conductive wiring layer 230. The dry films 40 are then removed, thereby forming two outer wiring plates 20a each comprising the outer conductive wiring layer 230, the corresponding second isolated plate 21, and the corresponding adhesive plate 25.


The stepped portions 252 can further prevent a short circuit from being formed between the outer wiring plates 20a and the inner wiring substrate 10a. The above method does not require a dry film 40 with a greater thickness, the multilayer FPCB 100 with minimum possible line width and line space can be formed.


In other exemplary embodiments, only one single-sided copper substrate 20 is provided at step 4, and the single-sided copper substrate 20 is formed on the first inner conductive wiring layer 130 or the second inner conductive wiring layer 150 at step 6. In this case, the double-sided copper substrate 10 provided at step 1 can be replaced by a single-sided copper substrate in which only one inner conductive wiring layer is formed.


In other exemplary embodiments, after step 8, steps 4 to 8 are repeated to form a multilayer FPCB 100 having more than one outer wiring plate 20a.



FIG. 8 illustrates that the multilayer FPCB 100 comprises an inner wiring substrate 10a and two outer wiring plates 20a connected to opposite surfaces of the inner wiring substrate 10a. Each outer wiring plate 20a defines at least one through hole 201 which passes through the outer wiring plates 20a to expose the inner wiring substrate 10a. Each outer wiring plate 20a comprises an adhesive plate 25 connected to the inner wiring substrate 10a. The adhesive plate 25 comprises a stepped portion 252 extending towards a center of the through hole 201.


The inner wiring substrate 10a comprises a first isolated plate 11, and a first inner conductive wiring layer 130 and a second inner conductive wiring layer 150 connected to opposite surfaces of the first isolated plate 11. Two adhesive plates 25 are connected to a surface of the first inner conductive wiring layer 130 facing away from the first isolated plate 11 and a surface of the second inner conductive wiring layer 150 facing away from the first isolated plate 11.


At least one electrically conductive hole 16 is defined in the inner wiring substrate 10a which electrically connects the first inner conductive wiring layer 130 to the second inner conductive wiring layer 150. In at least one exemplary embodiment, each electrically conductive hole 16 comprises a connecting hole 161 which passes through the first isolated plate 11 and the first inner conductive wiring layer 130, and a copper layer 163 formed on an inner wall of the connecting hole 161.


Each outer wiring plate 20a further comprises a second isolated plate 21 and an outer conductive wiring layer 230 connected to the second isolated plate 21. Each adhesive plate 25 is connected to a surface of the second isolated plate 21 facing away from the corresponding outer conductive wiring layer 230.


Even though information and advantages of the present embodiments have been set forth in the foregoing description, together with details of the structures and functions of the present embodiments, the disclosure is illustrative only. Changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the present embodiments to the full extent indicated by the plain meaning of the terms in which the appended claims are expressed.

Claims
  • 1. A multilayer flexible printed circuit board comprising: an inner wiring substrate; andat least one outer wiring plate, each outer wiring plate connected to one surface of the inner wiring substrate;wherein each outer wiring plate defines at least one through hole passing through the outer wiring plate to expose the inner wiring substrate, each outer wiring plate comprises an adhesive plate connected to the inner wiring substrate, the adhesive plate comprises a stepped portion extending towards a center of the through hole.
  • 2. The multilayer flexible printed circuit board of claim 1, wherein the inner wiring substrate comprises a first isolated plate, and a first inner conductive wiring layer and a second inner conductive wiring layer connected to two opposite surfaces of the first isolated plate, wherein the adhesive plate of one of the at least one outer wiring plate is connected to a surface of the first inner conductive wiring layer facing away from the first isolated plate, and the adhesive plate of another of the at least one outer wiring plate is connected to a surface of the second inner conductive wiring layer facing away from the first isolated plate, and wherein at least one electrically conductive hole is defined in the inner wiring substrate which electrically connects the first inner conductive wiring layer to the second inner conductive wiring layer.
  • 3. The multilayer flexible printed circuit board of claim 2, wherein the first isolated plate is made of a polymer selected from a group consisting of polyimide, polytetrafluoroethylene, poly thiamine, poly (methyl methacrylate), polycarbonate, polyethylene terephthalate, and polyimide-polyethyleneterephthalate, or any combination thereof.
  • 4. The multilayer flexible printed circuit board of claim 2, wherein each electrically conductive hole comprises a connecting hole which passes through the first isolated plate, the first inner conductive wiring layer, and a copper layer formed on an inner wall of the connecting hole.
  • 5. The multilayer flexible printed circuit board of claim 2, wherein each outer wiring plate further comprises a second isolated plate and an outer conductive wiring layer connected to the second isolated plate, and wherein each adhesive plate is connected to a surface of the second isolated plate facing away from the corresponding outer conductive wiring layer.
  • 6. The multilayer flexible printed circuit board of claim 5, wherein the second isolated plate is made of a polymer selected from a group consisting of polyimide, polytetrafluoroethylene, poly thiamine, poly (methyl methacrylate), polycarbonate, polyethylene terephthalate, and polyimide-polyethyleneterephthalate, or any combination thereof
  • 7. The multilayer flexible printed circuit board of claim 6, wherein the second isolated plate has a thickness of about 3 micrometers to about 10 micrometers.
  • 8. The multilayer flexible printed circuit board of claim 1, wherein the adhesive plate has a thickness of about 10 micrometers to about 25 micrometers.
  • 9. The multilayer flexible printed circuit board of claim 1, wherein the stepped portion extends towards the center of the through hole by a distance of about 2 millimeters to about 5 millimeters.
  • 10. The multilayer flexible printed circuit board of claim 1, wherein the dry film has a thickness of about 15 micrometers.
Priority Claims (1)
Number Date Country Kind
201610396582.9 Jun 2016 CN national
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a divisional application of patent application Ser. No. 15/285,593, filed on Oct. 5, 2016, entitled “MULTILAYER FLEXIBLE PRINTED CIRCUIT BOARD AND METHOD FOR MAKING THE SAME”, assigned to the same assignee, which is based on and claims priority to Chinese Patent Application No. 201610396582.9 filed on Jun. 7, 2016, the contents of which are incorporated by reference herein.

Divisions (1)
Number Date Country
Parent 15285593 Oct 2016 US
Child 15716540 US