The subject matter herein generally relates to circuit boards, and particularly, to a multilayer flexible printed circuit board (FPCB).
Multilayer circuit boards are widely used in various kinds of electronic devices. A multilayer circuit board usually comprises an inner conductive wiring layer and at least one outer conductive wiring layer. A fall structure is usually formed between the inner conductive wiring layer and the outer conductive wiring layer. When a dry film covers the outer conductive wiring layer, the dry film cannot fill a bottom of the fall structure. Thus, there is a need to increase the dry film thickness to allow the dry film to fully fill the bottom of the fall structure. However, such dry film may have a low resolution, and further limit a line width and a line space of the outer conductive wiring layer. Therefore, there is room for improvement in the art.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.
The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series, and the like.
Referring to
At step 1, referring to
In at least one exemplary embodiment, the first isolated plate 11 is made of a polymer selected from a group consisting of polyimide, polytetrafluoroethylene, poly thiamine, poly (methyl methacrylate), polycarbonate, polyethylene terephthalate, and polyimide-polyethyleneterephthalate, or any combination thereof. In at least one exemplary embodiment, the first isolated plate 11 is made of polyimide.
At step 2, referring to
In at least one exemplary embodiment, step 2 can be carried out by defining the double-sided copper substrate 10 to form at least one connecting hole 161 which passes through the first copper plate 13 and the second copper plate 15. Each connecting hole 161 is metalized to form a copper layer 163 on an inner wall of the connecting hole 161, thus forming the electrically conductive hole 16.
At step 3, referring to
At step 4, referring to
In at least one exemplary embodiment, the second isolated plate 21 is made of a polymer selected from a group consisting of polyimide, polytetrafluoroethylene, poly thiamine, poly (methyl methacrylate), polycarbonate, polyethylene terephthalate, and polyimide-polyethyleneterephthalate, or any combination thereof. The second isolated plate 21 has a thickness of about 3 micrometers to about 10 micrometers.
At step 5, referring to
At step 6, referring to
In at least one exemplary embodiment, the through holes 201 of one single-sided copper substrate 20 correspond to the through holes 201 of the other single-sided copper substrate 20.
At step 7, referring to
Since a height of the fall structure formed between the third copper plates 23 and the exposed first inner conductive wiring layer 130/second inner conductive wiring layer 150 can be decreased by the stepped portions 252, the dry films 40 can fully fill the bottom of the fall structure, thus enabling a complete and reliable connection between the dry films 40 and the intermediate product 30.
In at least one exemplary embodiment, the dry film 40 has a thickness of about 15 micrometers.
At step 8, referring to
The stepped portions 252 can further prevent a short circuit from being formed between the outer wiring plates 20a and the inner wiring substrate 10a. The above method does not require a dry film 40 with a greater thickness, the multilayer FPCB 100 with minimum possible line width and line space can be formed.
In other exemplary embodiments, only one single-sided copper substrate 20 is provided at step 4, and the single-sided copper substrate 20 is formed on the first inner conductive wiring layer 130 or the second inner conductive wiring layer 150 at step 6. In this case, the double-sided copper substrate 10 provided at step 1 can be replaced by a single-sided copper substrate in which only one inner conductive wiring layer is formed.
In other exemplary embodiments, after step 8, steps 4 to 8 are repeated to form a multilayer FPCB 100 having more than one outer wiring plate 20a.
The inner wiring substrate 10a comprises a first isolated plate 11, and a first inner conductive wiring layer 130 and a second inner conductive wiring layer 150 connected to opposite surfaces of the first isolated plate 11. Two adhesive plates 25 are connected to a surface of the first inner conductive wiring layer 130 facing away from the first isolated plate 11 and a surface of the second inner conductive wiring layer 150 facing away from the first isolated plate 11.
At least one electrically conductive hole 16 is defined in the inner wiring substrate 10a which electrically connects the first inner conductive wiring layer 130 to the second inner conductive wiring layer 150. In at least one exemplary embodiment, each electrically conductive hole 16 comprises a connecting hole 161 which passes through the first isolated plate 11 and the first inner conductive wiring layer 130, and a copper layer 163 formed on an inner wall of the connecting hole 161.
Each outer wiring plate 20a further comprises a second isolated plate 21 and an outer conductive wiring layer 230 connected to the second isolated plate 21. Each adhesive plate 25 is connected to a surface of the second isolated plate 21 facing away from the corresponding outer conductive wiring layer 230.
Even though information and advantages of the present embodiments have been set forth in the foregoing description, together with details of the structures and functions of the present embodiments, the disclosure is illustrative only. Changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the present embodiments to the full extent indicated by the plain meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
201610396582.9 | Jun 2016 | CN | national |
This is a divisional application of patent application Ser. No. 15/285,593, filed on Oct. 5, 2016, entitled “MULTILAYER FLEXIBLE PRINTED CIRCUIT BOARD AND METHOD FOR MAKING THE SAME”, assigned to the same assignee, which is based on and claims priority to Chinese Patent Application No. 201610396582.9 filed on Jun. 7, 2016, the contents of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 15285593 | Oct 2016 | US |
Child | 15716540 | US |